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Abstract 
A common task in computer graphics is to visualise models of real-world 
objects. The visualisation of large and complex models is required more and 
more frequently. This is followed by number of operations which must be done 
before the own visualisation, whether it be an analysis of input data (e.g. 
searching for an iso-surface) or a model simplification. Surfaces of such models 
are usually represented by triangular meshes and often contain thousands or 
millions of triangles. Since a fast interaction with these models is desired, such 
as real time visualization, we need either to improve our graphics hardware or 
to simplify somehow the complexity of the mesh. In spite of huge progress 
made in graphics hardware field in last years, we still need to increase 
a performance using optimal algorithms and programming techniques. One of 
the techniques that enhance the power is parallel computation. 

In this work we present an original efficient and stable algorithm for triangle 
mesh simplification also in parallel environment. We use a method based on 
our original super independent set of vertices to avoid critical sections. The 
advantage of this algorithm is its high speed even in sequential run and 
reasonable quality of resulting approximation. 

Since more than just geometrical error matters in estimation of simplification 
algorithms, we present a new algorithm for triangular mesh simplification with 
respect to the similarity of appearance of the original model and resulting 
approximation. We introduce an approach how to estimate a new vertex 
position during an edge collapse algorithm based on supposed surface 
curvature. 
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Abstrakt 
Jedním z hlavních úkolů počítačové grafiky je vizualizace modelů objektů z 
reálného světa. Stále častěji je požadováno zobrazování rozsáhlých modelů. To 
jde ruku v ruce s počtem a složitostí operací, které musí být provedeny ještě 
před samotným zobrazením, ať už se jedná o transformaci vstupních dat (např. 
hledání iso-plochy), nebo třeba zjednodušení daného modelu. Výsledné 
povrchy těchto modelů jsou obvykle reprezentovány trojúhelníkovou sítí 
obsahující často tisíce až miliony trojúhelníků. Jelikož požadujeme rychlou 
interakci s těmito modely (např. zobrazování v reálném čase), je třeba buď 
zdokonalovat grafický hardware, nebo automatizovaně zjednodušovat jejich 
narůstající složitost. Navzdory obrovskému vývoji na poli grafických karet 
a akcelerátorů, stále potřebujeme zvyšovat výkon využíváním optimálních 
algoritmů a programovacích technik. Jednou z takových technik může být 
například paralelizace. 

V této práci je prezentován původní algoritmus pro redukci trojúhelníkových 
sítí, který je efektivní, stabilní a pracuje i v paralelním prostředí. Jedná se o 
postup založený na tzv. super-nezávislé množině vrcholů, díky které zamezíme 
kritickým sekcím v paralelním kódu. Předností tohoto algoritmu je vysoká 
rychlost i při sekvenčním běhu a přiměřená kvalita výsledné aproximace. 

Jelikož geometrická chyba nemusí být jediným kritériem při posuzování 
výsledků simplifikačního algoritmu, představujeme novou metodu, která je 
založena na zachování podobnosti vzhledu mezi původním modelem 
a výslednou aproximací. Představujeme zde nový přístup jak určit novou pozici 
vrcholu při kontrakci hran, založený na předpokládané křivosti povrchu 
v daném místě. 
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Chapter 1  

Introduction 
In all areas, which employ complex models, there is a trade off between the 
accuracy with which the surface is modelled and the time needed to process it. 
To achieve acceptable running times, we must often substitute simpler 
approximations of the original model. A model, which captures very fine 
surface detail, may in fact be desirable when creating archival datasets; it helps 
ensure that applications that later process the model have sufficient accurate 
data. However, many applications will require far less detail than is present in 
the full dataset. Therefore, techniques for the simplification of large and highly 
detailed polygonal meshes have been developed. 

This work is focused on the automatic simplification of highly detailed 
polygonal models to get an approximation containing fewer polygons making 
its surface (see Figure 1-1).  

 

Figure 1-1: Automatic simplification of polygonal model (courtesy Cyberware). 
From left: original, 50% fewer polygons, 90% fewer polygons.  

We will describe the simplification algorithm which has been developed to 
meet criteria such as high speed, large input capability and good approximation 
quality. In addition a super-independent set is introduced as a special vertices 
selection for removal during simplification process. Using such a set we can 
benefit from a parallel implementation without critical sections.  



 
 
 

8 

1.1 Motivation 
One of the main tasks in computer graphics is a visualization of scientific data. 
Due to the wide technological advances in the field of computer graphics 
during the last few years, there has been an expansion of applications dealing 
with models of real world objects. Advances in technology have provided vast 
databases of polygonal (typically triangular) surface models, but these models 
are often very complex. With growing demands on quality, the complexity of 
the computations we have to handle models having hundreds thousands or 
perhaps even millions of triangles (for example well known model of 
Michelangelo’s David [30] contains 2*109 triangles, see Figure 1-2). The sources 
of such models are usually: 

• Laser range scanners, computer vision systems, and medical imaging 
devices, which can produce models of real world objects. 

• CAD systems, which commonly produce complex and high detailed 
models. 

• Surface reconstruction or iso-surface extraction methods such as 
Marching Cubes algorithm [34] that produce models with a very high 
density of polygonal meshes displaying almost regular arrangement of 
vertices. 

 

Figure 1-2: The digital Michelangelo scan of David (taken from [30]). 

Since a fast interaction with the models is desired, such as real time 
visualization, we need either to improve our graphics hardware or to simplify 
somehow the complexity of the mesh. In recent years, many of mesh 
simplification algorithms has been developed. The aim of such techniques is to 
reduce the complexity of the model whilst preserving its important details.  



 
 
 

9 

Although, the first methods were focused on terrain or height field 
simplification, techniques for simplification of general 3D polygonal surfaces 
have been proposed relatively recently. At Siggraph ’92 Shroeder et al. [46] 
presented algorithm called triangle decimation based on local vertex deletion 
followed by re-triangulation. Since that time other notable algorithms have 
been presented including methods that are guaranteed accurate within global 
error bounds [23] or within a simplification envelope [6].  

Many algorithms are designed to preserve the original topology of the mesh. 
While this may be important for many applications (e.g. analysis or 
computational geometry), preserving topology introduces constraints into the 
reduction process. Mesh reduction is typically used to improve rendering speed 
or to minimize data size or compression requirements. In such applications 
topology-preserving reduction schemes could be incapable of achieving desired 
reduction levels. Removing topological constraint can create large gains in 
reduction factors. 

Our goal has been to produce a simple and fast simplification algorithm that 
produces high quality results. 

 

1.2 Simplification in Computer Graphics 
At the beginning it is important to mention, that there are several forms of 
simplification in computer graphics. Some processes are so routine nowadays 
that we tend to disregard them, e.g. the quantization of colour to 24 bits or the 
use of three-color channels (red, green, and blue) to represent the spectral 
response of the virtual scene. Even storing a polygonal mesh may involve 
simplification, since we usually use limited precision of the coordinates 
(typically to 32 bits). Also the quantization of colour and geometric attributes, 
especially in interactive graphics, is indeed a simplification. This also implies 
a lot of benefits, for example use of fixed-point arithmetic, fewer bits of 
precision for vertex coordinates, etc. In general the line between simplification 
and losing compression techniques, which include quantization in its various 
forms, can be blurry. However, we will define a simplification throughout this 
work as processes that reduce the complexity of polygonal meshes, not their 
precision or storage size. 

The thought of polygonal model simplification is not new. Proposals of some 
procedures are over 25 years old. The need of models with several levels of 
detail (LOD) arouse in military flight simulators and later in computer games 
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industry in general. In order to manage the level of detail of an object, we need 
to represent it as a multiresolution model – a surface representation that 
supports the reconstruction of various approximations, which can 
accommodate a wide range of viewing contexts.  
We briefly describe three main frameworks of simplification algorithms: 
discrete, continuous, and view-dependent LOD [36]. 

A discrete LOD is used in most 3D graphics applications today and we are 
mainly focused on it in this work as well. The main philosophy is to create 
multiple versions of every object, each at a different level of detail, during an 
offline pre-process. At run-time the appropriate level of detail, or LOD, is 
chosen to represent the object. Since long-distance objects use coarser LODs, the 
total number of polygons is reduced and rendering speed increased. Because 
individual approximations are computed offline during pre-processing, the 
simplification process cannot predict from what direction the object will be 
viewed. The simplification therefore typically reduces detail uniformly across 
the object, and for this reason we sometimes refer to discrete LOD as isotropic 
or view-independent LOD. This approach has many advantages. Since the 
simplification algorithm runs offline, it can take as long as it needs and run-time 
program simply choose which approximation to use. Furthermore, modern 
graphics hardware leads itself to the multiple model versions created by static 
level of detail. Individual approximations can be compiled during pre-
processing to an optimal rendering format and use features such as triangle 
strips, display lists, and vertex arrays. These will be obviously rendered much 
faster than just an unordered list of polygons. 

In continuous LOD (also called a progressive LOD [20]), rather than creating 
individual approximations during the pre-processing stage, we create 
a data structure encoding a continuous spectrum of detail. The desired level of 
detail is then extracted from this structure at run-time. A major advantage of 
this approach is better granularity: since the level of detail for each object is 
specified exactly rather than selected from a few pre-created options, no more 
polygons than necessary are used. This frees up more polygons for rendering 
other objects, which in turn use only  as many polygons as needed for the 
desired level of detail, freeing up more polygons  for other objects, and so on. 
Better granularity thus leads to better use of resources and higher overall 
fidelity for a given polygon count. Continuous LOD also supports streaming of 
polygonal models, in which a simple base model is followed by a stream of 
refinements to be integrated dynamically. 
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View-dependent LOD extends continuous LOD, using view-dependent 
simplification criteria to dynamically select the most appropriate level of detail 
for the current view.  Nearby portions, or the silhouette regions of the object are 
shown at higher resolution than distant portions, or interior regions 
respectively. This leads to better fidelity for a given polygon count (see Figure 
1-3).  

 

Figure 1-3: Example of view-dependent simplification (taken from [38]). 

These methods are fairly necessary in visualisation of large objects, such as 
terrains or scientific data, which are represented by extremely large data sets 
and can not be adequately simplified in any other way. 

 
It this work we will focus on a process of making discrete approximations 

driven by rules of budget-based simplification. However, algorithms presented 
here can be modified and used in continuous or view-dependent 
simplifications. 

1.3 Contributions 
The primary contributions of this work as described in this dissertation are: 

• Super-independent set of vertices. We have defined a new criterion 
how to choose vertices as candidates for removal during simplification 
process. It is based on independent set of vertices [21] with more strict 
constraints to vertices neighbourhood. The use of super-independent set 
of vertices leads to ability to have a parallel code without critical sections 
in simplification process. 

• Surface Simplification Algorithm. By combining several approaches of 
mesh simplification and principles of super-independent set of vertices, 
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we have developed a fast parallel algorithm capable to produce high-
quality approximations of polygonal surfaces. This algorithm can 
simplify both manifold and non-manifold models. It's robust, very fast 
and accurate while preserving a mesh topology. Since the algorithm 
keeps the subset of original vertices, in addition to producing single 
approximations, it can be also used to generate multiresolution 
representations such as progressive meshes and vertex hierarchies for 
view-dependent refinement.  

• Edge classification and introduction of new vertex position. Finally, we 
have introduced an original approach of edge evaluation and 
classification, which results in a new simplification algorithm. This 
algorithm mainly preserves the visual appearance by detecting and 
keeping important features of the original model such as sharp edges or 
high detail regions during even drastic simplification. While we suppose 
that original surface tends to be curved according to its vertex normals, 
a new vertex position is determined to lay on such supposed surface 
using near least-square curvatures. 

1.4 Used terms 
To streamline all the discussion and explanation, we present here a list of terms, 
abbreviations and symbols used later in this thesis.  

By convention, all vectors in this text are assumed to be column vectors and 
are set in lowercase bold type. Therefore, uTv = u.v denotes the inner product of 
two column vectors u and v. However, in more complicated equations 
transposition notation will be used for better readability. Matrices are set in 
uppercase bold type, thus A = uvT denotes the outer product matrix aij = uivj. 
Also instead of vertex coordinates in space V=[x,y,z], we will use its radius 
vector (vector from origin to given coordinates v = (x-0,y-0,z-0) and will be 
typed in lowercase bold as a common vector. 

Other terms are used as follows: 
polygon 

- usually triangular polygon since all general polygons can be 
transformed into a set of triangles 

triangulation, polygonisation 

- a triangular/polygonal mesh 
mesh, polygonal mesh, triangular mesh (surface) 

- input/output polygonal mesh as described in 2.1 
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reduction, simplification, decimation 

- iterative process of decreasing number of vertices/edges/triangles in 
a mesh 

LOD, multiresolution 

- level of detail (one or more approximations of specific detail) 
sharp edge 

- an edge in triangulation whose adjacent triangles contains less angle 
than some specific threshold 

 
In equations and formal text following symbols and their meaning are used: 
N  number of vertices 
i,j,k  iteration symbols 
M  polygonal mesh 
n  norm vector 
x  vector 
 
For a set of vertices will be used notation V = (v1,v2,v3,…,vn). Analogously, for 

a set of polygons (triangles, faces) is used F = (f1,f2,f3,…,fn). Polygonal model is 
then referenced as a pair of M=(V,F). 

 
As a preface of next chapters it must be explained that for readability we 

have decided to use loose informal language when discussing topology, and in 
particular have avoided the use of simplicial complex notation. For example, we 
use expression such as "the set of triangles surrounding edge e" instead of the 
comprehensive notation    e . However, for completeness, these formal 

definitions are mentioned in Chapter 2. 

1.5 Overview of Material 
This work is structured as follows. In Chapter 2 theoretical background and 
related work is presented. We define terms such as polygonal mesh and mesh 
topology. Also some base conditions and simplification operators are discussed 
and frequently used data structures are mentioned. Chapter 3 provides 
information about error estimation. Several metrics are described for different 
simplification approaches and METRO tool is presented. Having established 
the background information, we walk through state-of-the-art algorithms 
divided into lucid categories in Chapter 4. After methods survey Chapter 5 
introduces our original algorithm based on some conclusions made in previous 
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sections. Besides original simplification technique also a parallel processing is 
considered and super-independent set of vertices is presented. In Chapter 6 we 
show experimental results and discuss shortcomings of presented approach. 
Chapter 7 introduces a heuristic for mesh simplification with respect to a model 
appearance. Finally Chapter 8 concludes the work, recalls the main 
contributions and briefly suggests a possible future work.  
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Chapter 2   

Background & Related Work 
This chapter provides an overview of background material used throughout the 
rest of this dissertation. We describe mesh simplification as an optimization 
process under given conditions. Before we review some simplification 
approaches developed by others, we need to define a polygonal (triangular) 
surface as well as terms like a topology, manifold, or a non-manifold 
respectively.  

After describing the range of mesh simplification operators available, we 
conclude with a discussion of the data structure and present some commonly 
used approaches to store the data introduced in last few years. 

2.1 Surface Representation 
The aim of polygonal surface simplification is to provide a mechanism for 
controlling the complexity of polygonal surface models, but these are not the 
only available surface representation. Various alternatives exist, and they each 
provide certain benefits and drawbacks as compared with polygonal models. 
However, none of these alternatives provide a solution which would obviate 
the need for simplification. In fact, they suffer from some of the same problems 
addressed by polygonal surface simplification. 

The most important reason to focus on polygonal models is purely pragmatic: 
polygonal models are both flexible and ubiquitous. They are supported by the 
vast majority of rendering and modelling packages, and polygonal surface 
data is widely available. Hardware acceleration of polygon rendering is also 
becoming much more widely available; affordable yet reasonably powerful 
accelerator cards are now available in consumer-level computers. Currently, no 
other single type of model enjoys the same level of support. In fact, it is 
common practice in various situations to convert other model types into 
polygonal surfaces prior to processing. 
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In the most general sense, a polygonal surface model is simply a set of planar 
polygons in the three-dimensional Euclidean space R3. Without loss of 
generality, we can assume that the model consists entirely of triangular faces, 
since any non-triangular polygons may be triangulated in a pre-processing 
phase. The example of triangular surface model can be seen on Figure 2-1. 

To streamline the discussion, we will assume that the models do not contain 
isolated vertices and edges, thus all vertices and edges are part of any triangle. 
Although the underlying algorithm stays the same, to handle such vertices and 
edges the implementation becomes more complicated. We also do not alter the 
mesh connectivity - if the corners of two triangles coincident in the space, then 
these triangles do not need to share a common vertex. Given these assumptions, 
we use a definition according to [11]. A polygonal surface model M = (V,F) is 
a pair containing list of vertices V and  a list of triangles F. The vertex list V = (v1, 
v2,…, vr) is an ordered sequence, each vertex may be identified by a unique 
integer i. The face list F = (f1, f2,…,  fn) is also ordered, assigning a unique integer 
to each face. Every vertex vi = [xi yi zi]T is a column vector in the Euclidean space 
R3. Each triangle fi = (j, k, l) is an ordered list of three indices identifying the 
corners (vj , vk, vl) of fi. 

By design, this definition of a polygonal model corresponds to a form of 
simplicial complex. For our purposes here, a simplex σ  is either a vertex (or 0-
simplex), a line segment (1-simplex), or a triangle (2-simplex). In general, 
a k-simplex σ k is the smallest closed convex set1 defined by k+1 linearly 
independent points σ k = a0a1…ak which are called its vertices. We can express 
any point p within this set as a convex combination of the vertices 

∑=
i iiatp where 1=∑i it  and [ ]1,0∈it . Any simplex defined by a subset of the 

points a0a1…ak is a subsimplex of the simplex σ k. A two-dimensional simplicial 
complex K is a collection of vertices, edges, and triangles satisfying the 
conditions:  

1. If Kji ∈σσ , , then they are either disjoint or intersect only at a common 

subsimplex. Specifically, two edges can only intersect at a common 
vertex, and two faces can only intersect at a shared edge or vertex. 
2. If Ki ∈σ , then all of its subsimplices are in K. For instance, if a triangle 

f is in K, then its vertices and edges must also be in K. 

                                                 
 
 
1 In other words, the convex hull 
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Figure 2-1: The example of polygonal surface model (courtesy Cyberware). This 
original model contains 40117 vertices and 80354 triangles. 

The surface defined by this complex is the union of the point sets defined by 
its constituent simplices. Our definition of a polygonal model is slightly 
different and it is only explicitly a collection of vertices and faces. The only 
allowable edges are those which are implied by the intersection of neighbouring 
faces. 

 
Manifold and Non-manifold Surfaces 

Surfaces, in the mathematical sense, are often assumed to be manifolds. 
A manifold is a topological space that is locally Euclidean (i.e. around every 
point, there is a neighbourhood that is topologically the same as the open unit 
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ball in Rn). In other words, a manifold surface is, everywhere, locally 
homomorphic (that is, of comparable structure) to a two-dimensional disk 
(manifold surfaces with boundary are everywhere homomorphic to a disk or 
a half-disk). 

For example, a disk may be fully applied to any portion of the torus, but the 
disk does not fully apply to all points of a pot (see Figure 2-2). In particular, the 
disk is truncated along the upper boundary of the pot bowl. 

 

Figure 2-2: Manifold and manifold-with-boundary surfaces. 

Any tessellation (e.g. triangulation) of a manifold surface will produce edges 
that are of degree two, which means that all edges are shared by exactly two 
faces. Tessellations of non-manifold surfaces produce edges of degree 1, 2, 3, or 
more.  A polygonal surface is a manifold (with boundary) if every edge has 
exactly two incident faces (except edges on the boundary which must have 
exactly one), and the neighbourhood of every vertex consists of a closed loop of 
faces (or a single fan of faces on the boundary).  Figure 2-3 illustrates four kinds 
of vertex neighbourhoods in a polygonal model. 

 

Figure 2-3: Neighbourhoods of a given vertex vi. 

Many surfaces encountered in practice tend to be manifolds, and many 
surface-based algorithms require manifold input. It is possible to apply such 
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algorithms to non-manifold surfaces by cutting the surface into manifold 
components and subsequently stitching them back together. However, it can be 
advantageous for simplification algorithms to explicitly allow non-manifold 
surfaces. Not only does this broaden the class of permissible input models, but 
it provides more flexibility during simplification. Many simplification 
algorithms proceed by repeatedly making local simplifications to the model. 
These local transformations can easily result in non-manifold regions. Consider 
the example shown in Figure 2-4. The same local simplification, namely edge 
contraction, is applied in two different ways.  

 

Figure 2-4: Two approximations of the same surface, both constructed by 
contracting a single edge (top – original, middle – manifold, bottom – non-

manifold). 

Depending on the choice of edge, contraction may result in either a manifold 
or non-manifold result. By allowing non-manifold surfaces, we allow the 
simplification algorithm to select the better choice based on criteria such as 
geometric fidelity rather than artificially limiting it to only apply operations 
which produce manifold surfaces.  

 

Figure 2-5: Preserving genus limits drastic simplification (taken from [36]). 
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This issue is of particular relevance in algorithms which seek to simplify the 
topology of the model. Imagine a model of a metal plate with many small holes 
drilled in it. The common contraction-based approach for removing a hole from 
this model would begin by collapsing one end of the hold into a single point, 
resulting in a non-manifold vertex neighbourhood. While it is possible to 
explicitly cut and re-stitch the surface during simplification, this can add 
substantial complexity to the algorithm. Figure 2-5 shows an example of two 
approximations with and without preserving object topology.  The topology 
problem is more discussed in section 2.2. 

2.2 Topology 
A very important factor in advising particular algorithms is their relationship 
and behaviour regarding mesh topology. Topology studies the properties of 
a geometric object that remains unchanged by deformations such as bending, 
stretching, or squeezing but not breaking. In this concept a sphere is 
topologically equivalent, or homomorphic, to a cube because, without breaking 
them, each can be deformed into the other as if they were made of modelling 
clay. A sphere is not equivalent to a doughnut, because the former would have 
to be broken to put a hole in it. Such a definition of topology leads to the 
following mathematical joke [41]: 
Q: What is a topologist? A: Someone who cannot distinguish between 
a doughnut and a coffee cup. 

 
In this work a term topology refers to the structure of the connected 

polygonal mesh. 
An important topological property of a surface is its Euler-Poincaré 

characteristic, a number which can be calculated from any polyhedral 
decomposition of the surface. If V is the number of points (vertices) in the 
decomposition, E is the number of line segments (edges), and F is the number of 
regions (faces), then the characteristic is given by χ=V−E+F and is the same for 
all possible polyhedral decomposition of the given surface. For a sphere, χ=2, 
and the formula is identical with Euler's formula for the vertices, edges, and 
faces of a spherical polyhedron, to which the sphere is topologically equivalent. 
For a torus, χ=0. The Euler-Poincaré characteristic for an orientable surface is 
χ=2−2g, where g is called the genus of the surface.  
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Genus is a topologically invariant property of a surface defined as the largest 
number of nonintersecting simple closed curves that can be drawn on the 
surface without separating it  [53]. Roughly speaking, it is the number of holes 
in a surface. For example, a sphere and a cube have a genus of zero, while 
a doughnut and a coffee cup have a genus of one. 

Any orientable closed surface is topologically equivalent to a sphere with g 
handles attached to it; e.g., the torus, having χ=0, is of genus 1 and is equivalent 
to a sphere with one handle, and a double torus (two-hole doughnut), 
equivalent to a sphere with two handles, is of genus 2 and has χ=−2. For 
a nonorientable surface, χ=2−q, where q is the number of cross-caps that must be 
added to a sphere to make it equivalent to the surface. (A cross-cap is a cap with 
a twist like a Möbius strip in it, see). 

 

Figure 2-6: Möbius strip (taken from Wikipedia.org). 

Closely related to the Euler-Poincaré characteristic is the connectivity number 
of a surface, which is equal to the largest number of closed cuts (or cuts 
connecting points on boundaries or on previous cuts) that can be made on the 
surface without separating it into two or more parts. The connectivity number 
is equal to 3−χ for a closed surface and to 2−χ for a surface with boundaries 
(e.g., a disk). A surface with a connectivity number of 1, 2, or 3 is said to be 
simply connected, doubly connected, or triply connected, respectively, and 
similarly for more complex surfaces; a sphere is simply connected, while a torus 
is triply connected. Thus, any surface can be classified by its boundary curves 
(if any), its orientability, and its Euler-Poincaré characteristic or connectivity 
number; and any surface is topologically equivalent to a sphere with an 
appropriate number of handles, cross-caps, or holes.  
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A surface is a simple example of a topological space, the basic entity studied 
in topology. The local topology of a face, edge, or vertex refers to the 
connectivity of that feature's immediate neighbourhood. As already said the 
mesh forms a 2-manifold if the local topology is everywhere equivalent to 
a disc, that is, if the neighbourhood of every feature consists of a connected ring 
of polygons forming a single surface. In a triangulated mesh displaying 
manifold topology, every edge is shared by exactly two triangles2, and every 
triangle shares an edge with exactly three neighbouring triangles.  

 
In simplification we recognize two approaches based on their relation to the 

topology: topology-preserving and topology-modifying algorithms. 
 
Topology-preserving algorithms preserve manifold connectivity at every 

step. Such algorithms do not close holes in the mesh or join previously 
unconnected areas, and therefore preserve the overall genus. Since no holes are 
appearing or disappearing during simplification, the visual fidelity of the 
simplified object tends to be relatively good. This constraint limits the 
simplification possible, however, since objects of high genus cannot be sim-
plified below a certain number of polygons without closing holes in the model 
(see Figure 2-7). Algorithms that preserve topology also require the initial mesh 
to be manifold. They either ignore non-manifold regions or faced to them 
simply fail. 

There are plenty of areas where topology-preserving algorithms only are 
acceptable. For example study of tolerances in mechanical CAD requires that 
the topology of the models is not simplified. Similarly, in medical imaging the 
data collected from computer-aided tomography (CT) or magnetic resonance 
imaging (MRI) scans often have important topological structures that are better 
left in the data, rather than simplified away. 

  
Topology-modifying algorithms have no limitations preserving a manifold 

topology and therefore can close up holes in the model and join separate 
elements such as vertices, triangles or even whole objects during simplification 
process, permitting drastic simplification beyond the scope of topology-

                                                 
 
 
2 A 2D manifold with boundary permits boundary edges, which belong to only one triangle. 
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preserving schemes. Most topology-modifying algorithms do not require valid 
topology in the initial mesh, which greatly increases their utility in real-world 
CAD applications.  

Since topological simplification refers the capability of gradually simplifying 
any given mesh to a simplest surface with decreasing genus, it is often used for 
interactive visualization applications. In Figure 2-7 we can see several topology-
preserving levels of detail of the brake rotor created by the simplification 
envelopes approach [6]. The closest rotor has 4700 triangles and the farthest 
rotor has about 1000 triangles. Most of the triangles in the farthest rotor are 
used for representing the 21 holes in the rotor even though barely one hole is 
visible. For this example, if the topology for the farthest rotor were simplified to 
a single hole, it will permit a much more aggressive geometric simplification 
without sacrificing visual realism (see Figure 2-5). Topology simplifications of 
sub-pixel holes may also help reduce aliasing artefacts, effectively removing 
details that will be undersampled. 

 

Figure 2-7: A level-of-detail hierarchy for the rotor from a brake assembly 
(taken from [6]). 

In general, algorithms preserving topology are the most suitable when visual 
fidelity is crucial, or with an application such as finite element analysis, in 
which surface topology can affect results. Preserving topology also simplifies 
some applications, such as multiresolution surface editing, which require 
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a correspondence between high- and low-detail representations of an object. 
When drastic simplification is required, topology-modifying algorithms do the 
best work. On the other hand this drastic simplification often comes at the price 
of poor visual fidelity. 

New algorithms presented in this work have been developed to preserve the 
original mesh as much as possible, thus they are strictly topology-preserving.  

2.3 Simplification Conditions 
We can also look at the simplification process from the view of desired result. In 
some application it is required to have a specific number of triangles at the 
output rather than the exact value of approximation error reached. Different 
algorithms thus can be divided into two sets providing either budget-based or 
fidelity-based simplification [36]. 
 

Budget-based simplification 

As already said, in budget-based simplification the user specifies the maximum 
number of resulting triangles, and the algorithm attempts to minimize the error 
E without exceeding given constraint. Since these algorithms generates a fixed 
number of triangles (given by the user at the beginning of simplification 
process), it is appropriate for time-critical applications where a desired frame 
rate dictates the per-frame triangle budget. Thus, this approach is often used for 
applications where interactivity is paramount. Since the error E is not 
controllable by the end user, this approach does not guarantee visual fidelity. 
This implies that solving the budget-based simplification problem optimally is 
difficult.  

 
Fidelity-based simplification 

In fidelity-based simplification user provides a fidelity constraint that the 
simplified mesh must satisfy with respect to the original input mesh. The 
simplification algorithm then generates a simplified mesh, attempting to 
minimize the number of triangles while respecting the fidelity constraint.  The 
constraint is usually specified as some measure of the difference between the 
simplified mesh and the input mesh, denoted by the simplification error E. This 
error can be measured many ways; Chapter 3 discusses various error metrics in 
detail. Solving this minimization problem optimally is suspected to be NP-hard. 
Fidelity-based simplifications are typically best suited for applications in which 
visual fidelity is more important than interactivity. 
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The algorithms introduced in Chapter 5 and Chapter 7 fall into the category 
of budget-based simplification. As presented before, the main requirements 
motivated this work were capability of processing large datasets in critical time 
demands. Comparisons across different budget-based algorithms are often 
based on empirical observations on a few data sets that have become de facto 
benchmarks in the field. However, there are also measurement standards such 
as METRO which can be used as objective comparator (see Chapter 3). 

2.4 Operation 
This section provides a brief overview of various mesh simplification 
algorithms. We describe mesh simplification as an optimization process to be 
achieved by the application of local and global mesh simplification operators. 
Local operators simplify the geometry and connectivity in a local region of the 
mesh, reducing the number of polygons, while global operators operate over 
much larger regions and help simplify the mesh topology. 

 

Local simplification operator 

In this section we discuss the various low-level local operators that have been 
used for simplification of meshes. Each of these operators reduces the 
complexity of a mesh by some small amount. 

First and probably most common is a collapse operator. Depending on 
a context used we recognize edge collapse, vertex pair collapse, triangle 
collapse and cell collapse operator. 

 
Edge collapse 
This operator collapses an edge (vi, vj) to a single vertex vn. This causes the 
removal of the edge (vi, vj) as well as the triangles sharing that edge. There is 
also an inverse operator called a vertex split, which adds the edge and the 
triangles adjacent to it. Thus, the edge collapse operator simplifies a mesh and 
the vertex split operator adds detail to the mesh. 

There are two kinds of the edge collapse operator: half-edge collapse and full-
edge collapse. In the half-edge collapse (see Figure 2-8), the vertex to which the 
edge collapses to is one of its end points. In the more general full-edge collapse 
or just edge collapse the resulting vertex vn has a newly computed position. 
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Figure 2-8: Edge collapse operator; original mesh (left), half-edge collapse 
(middle), full-edge collapse (right). 

Although the edge collapse operator is simple to implement in some 
circumstances it would cause a mesh foldover or a topological inconsistency. 

 
Mesh foldovers are an undesirable side effect of a special case of edge 

collapses. In Figure 2-9 you can see an example of half-edge collapse which will 
cause a triangle foldover. This can be detected by measuring the change in the 
normals of the corresponding triangles before and after an edge collapse: 
a mesh foldover is characterized by a large change in the angle of the normal, 
usually greater than 90°. Another solution of this phenomenon is described in 
section 5.6. Mesh foldovers result in visual artefacts, such as shading 
discontinuities. 

folding triangle

Vj

Vi

V=Vj

 

Figure 2-9: An edge contraction, which causes the mesh to fold over on itself. 

If the neighbourhoods of two vertices vi and vj share more than two vertices, 
the collapse of the edge (vi, vj) will create a nonmanifold areas in a mesh, where 
none has been before (see Figure 2-10). Non-manifold edges have one, three, or 
more adjacent triangles; since many algorithms rely on manifold connectivity, 
introducing such edges can create problems later in the simplification process. 
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Figure 2-10: Edge collapse leading to nonmanifold mesh. 

Vertex-pair collapse 
A vertex-pair collapse is a special case of collapse where two unconnected 
vertices are joined. Since these vertices do not share an edge, no edges or 
triangles are removed. However, triangles surrounding collapsed vertices are 
updated as if the edge was present. For this reason, the vertex-pair collapse 
operator has also been referred to as a virtual-edge collapse. Collapsing 
unconnected vertices enables connection of unconnected components as well as 
closing of holes and tunnels, thus topology is changed. The virtual-edge 
collapse algorithms use some heuristic to limit the candidate virtual edges to 
a small number – usually virtual edge is constructed between vertices within 
some small distance δ.  

 
Triangle collapse 
A triangle collapse operator simplifies a mesh by collapsing a triangle (vi, vj, vk) 

to a single vertex vn. The vertex vn can be either one of original vertices or 
a newly computed vertex. A triangle collapse is equivalent to two edge 
collapses. In general this operation requires less memory than an equivalent 
edge collapses, but is less fine-grained than an edge collapse. 

 
Cell collapse 
The cell collapse operator simplifies the input mesh by collapsing all the 
vertices in a certain volume, or cell to a single vertex. In [43] the vertices of the 
mesh are placed in a regular grid. All the vertices that fall in the same grid cell 
are then unified into a single vertex. All triangles of the original mesh that have 
two or three of their vertices in a single cell are either simplified to a single edge 
or a single vertex. Note that such a simplification does not preserve the 
topology and that the level of simplification depends on the resolution of the 
grid. 
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Besides collapse operators there are also removal operators used in 
simplification algorithms. One of the first ever used was vertex removal [46], 
followed by polygon merging and general region replacement. 

 
Vertex removal  
The vertex removal operator removes a vertex, along with its adjacent edges 
and triangles, and triangulates the resulting hole. Triangulation of the hole can 
be accomplished in several ways. One of these triangulations can be the same as 
a half-edge collapse. In this respect the vertex removal operator may be 
considered to be a generalization of the half-edge collapse operator. On the 
other hand, in general, the triangulation in 3D is non trivial optimization 
problem. 

 
Polygon merging 
In polygon merging nearly coplanar and adjacent polygons are merged into 
larger polygons, which are then triangulated. Polygon merging is more general 
than vertex removal since it can combine polygons (not just triangles). Since 
several vertices can be removed at once, it may even result in merged polygons 
with holes. Polygon merging as a simplification operator has been used in 
different applications under different names, such as superfaces or face 
clustering (see Figure 2-11). 

 

 

Figure 2-11: Face cluster partitions produced by iterative pair-wise merging 
(taken from [12]); original 11,036 clusters (left), 6000 clusters (middle), 1000 

clusters (right). 

If we go a step further in generalization we will get the general geometric 
replacement operator, which is the most general of the mesh simplification 
operators. It proceeds by replacing a subset of adjacent triangles by another set 
of (simplified) triangles, while their boundaries are the same. In addition to 
edge collapses and vertex removals, it can also encode an edge flip, where the 
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common edge between two triangles is replaced by another edge that joins the 
two other opposite vertices. This general operator can be used to replace 
geometry of one primitive type with geometry of another primitive type. 
 

The algorithms presented later in Chapter 5 will mainly gain from edge 
collapse operator combined with vertex removal. It is interesting to note that 
there is a subset of the possible edge collapse operations that are equivalent to 
a subset of the possible vertex removal operations. This common subset is the 
set of half-edge collapses, which share some of the properties of each of the 
other two operation types as will be shown. 
 
Global simplification operators 

The global simplification operators modify the topology of the mesh in 
a controlled fashion. They tend to be more complex than the local simplification 
operators, which only consider a small portion of the model. Before these 
operators can be applied, first the input model has to be voxelized. In the 
volumetric domain the topology modifiers are applied and the model is 
converted back into a triangular mesh using an iso-surface extraction method. 
The topology simplifying operators used in the middle stage are low-pass 
filtering [14] and morphological operations of dilation and erosion [37]. 

 

Low-Pass Filtering 
Ten years ago first algorithms were introduced to simplify the topology of an 
input model in the volumetric domain. The input model is first converted to 
a volumetric data set. The straightforward approach is to build a spatial grid 
over the model and estimate a voxel density in each cell as a value of inclusion 
of the object in a cell. This enables data sets derived from polygonal meshes to 
be treated in the same manner as native volumetric data sets such as CT or MRI 
scans.  

After that a low-pass filter to each of the grid values of the volumetric buffer 
is applied. Low-pass filtering eliminates fine details in the volumetric model, 
including topological features such as small holes and tunnels. This is followed 
by iso-surface reconstruction using a method such marching cubes algorithm 
[34]. Figure 2-12 shows the results of volume-domain topology simplification. 
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Figure 2-12: Medical iso-surface using volume-domain topology simplification 
(taken from [14]). 

 
Morphological Operators 
The basic idea behind using morphological operators is the voxelization of the 
input model into a volumetric data set using a parity-count scheme for a single 
component polygonal model, or a ray stabbing method for polygonal models 
with multiple intersecting components. In volumetric domain a distance field is 
built and erosion and dilatation are applied on it (see Figure 2-13 ). The distance 
field contains a distance of each inside/outside voxel to the nearest 
outside/inside voxel. In the dilatation operator with threshold T, every outside 
voxel with a distance value less than T is reclassified as being inside. Thus this 
process enlarges the object, fills the holes and connects unconnected 
components that lie within the distance T. The erosion operator is the 
complement of the dilation operator and ends up shrinking the object. 
A dilation operator followed by an erosion operator will result in 
a topologically simplified object with the same dimensions as the original. 
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Figure 2-13: Erosion and dilatation in 2D. 

After such simplification process in volumetric domain, the iso-surface is 
extracted using marching cubes algorithm. Resulting surface is then simplified 
using any above mentioned approach for geometry simplification. The 
advantage of this technique is that the dilatation and erosion operators are very 
precise and can be used to control very finely the level of topological 
simplification of the object. 

2.5 Data Structure 
Just before we introduce several state-of-the-art algorithms a note about 
data structure should be mentioned here. To construct a polygonal mesh it is 
needed to have a data structure consisting of at least two pieces of information: 
the geometry, or coordinates, of vertices, and the definition of each triangle in 
terms of its three vertices. Since ordered lists of triangles surrounding a vertex 
are frequently required, it is desirable to maintain a list of the triangles adjacent 
to each vertex. 

 
Although data structures such as a radial or a winged edge can represent this 

information, many implementations use a space-efficient vertex-triangle 
hierarchical ring structure [46]. This data structure contains hierarchical 
pointers from the triangles down to the vertices, and pointers from the vertices 
back up to the triangles sharing the vertex. These pointers essentially form 
a ring relationship. There are usually three lists: a list of vertex coordinates a list 
of triangle definitions and another list of lists of triangles containing each 
vertex. Edges are not explicitly defined but they can be defined as ordered 
vertex pairs in the triangle definition. 
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Another original approach is so called corner-table proposed by [42]. It is 
a simple data structure consisting of nothing more than two arrays of integers 
(the V and O tables). Similar to other structures, vertices are identified using 
positive integers and their location is stored in an array called G for 
“geometry”. V and O have 3 times as many entries as there are triangles and 
hold the integer references to vertices and to opposite corners. In real 
implementation the object oriented approach is suggested to use. A corner c is 
the association of a triangle c.t with one of its bounding vertices c.v. The entries 
in V and O are consecutive for the 3 corners (c.p==c.n.n, c, c.n) of each triangle. 
Thus, c.t returns the integer division of c by 3 and the corner-triangle relation 
needs not be stored explicitly. For example, when c is 4, c.t is 1 and thus c is 
a corner of the second triangle. Figure 2-14 illustrates the example. 

 

c V O 

triangle 0 corner 0 1 7 

triangle 0 corner 1 2 8 

triangle 0 corner 2 3 5 

triangle 1 corner 3 2 9 

triangle 1 corner 4 1 6 

triangle 1 corner 5 4 2 

 

Figure 2-14: Vertices and corners in corner-table scheme. 

The main advantage of such data structure is quite fast evaluation of triangle 
neighbours and it is extensible for edges as well. However it is not very 
practical for traversing the mesh or search for vertex neighbours. It also has 
some limitations like the need of oriented triangles or enclosed surfaces. 
 

In our algorithms we use a modified ring structure. Figure 2-15 shows how 
information is stored.  
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Figure 2-15: Scheme of data structure used. 

 
We have list of vertex coordinates, where each vertex has its own unique id. 

The list of triangles consists again from triangle id and three indices of its 
corner vertices. In addition to vertex coordinates in vertex list we store there 
also a list of neighbouring triangles, which facilitates vertex importance 
evaluation and whole simplification process. 

 

 

Triangle list for vn: (1,5,4,7,3,2,6) 
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Chapter 3  

Error Estimation 
 

So far we have studied approaches to mesh simplification but we did not 
mention a crucial question – the measurement of the output quality. The way 
we measure error both during and after the simplification process can have 
a dramatic impact on the visual appeal and usefulness of resulting models. 
However, there are plenty of techniques describing how to compute the 
approximation quality, and each follows the specific property of the desired 
surface. In some applications it is important to preserve a volume or area, in 
others, for example, the geometric distance between the original and resulting 
model. Error measurement often involves complex geometrical constructs and 
error minimization may rely on solving nontrivial algebraic problems.  

In this chapter we present some key elements of measuring simplification 
quality at a high level. Most simplification error metrics incorporate some form 
of object-space geometric error measure. Moreover, some algorithms also 
incorporate a measure of attribute errors such as colour, normal, and texture 
coordinate attributes. These geometric and attribute errors may be combined in 
a number of ways during the simplification process and later in the run-time 
rendering system. Several of the published algorithms will be referred to see the 
range of possible approaches to the problem. 

3.1 Fidelity Metrics 
As already mentioned, many simplification algorithms work on base of 

nested optimizations. The outer optimization process finds the best available 
simplification operation to perform, while the inner optimization makes each 
operation work as well as possible. The best available operation is usually 
defined with respect to some simplification error metric. The better the metric is 
the better choices are made during simplification process. Since optimizing an 
error metric in the inner optimization process improves the quality of 
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performed outer operation, a consistent, quantitative error metric is useful for 
both of these optimization problems. 

There are also situations when we want to know the exact quality of final 
approximation, separately metric used to guide the simplification process. For 
example if we want to compare results of several different algorithms, or just 
measure the final error of budget-based approaches. In such cases a general tool 
like METRO is reasonable (see section 3.7).  

3.2 Similarity of Appearance 
Although, most of simplification methods rely on purely geometrical basis, the 
similarity of appearance is often the crucial requirement and needs to be 
properly defined. 

An appearance of model M regarding observer conditions ξ (viewpoint) is 
determined by raster image Iξ, produced by a renderer. Assuming that and 
having given conditionsξ, we can consider models M1 and M2 as identical if 
their images ξ

1I and ξ
2I  are alike. 

All common error measures quantify the error present in input image making 
use of residue, that is, the input image subtracted from the original. In such way 
the mean square error averages the square of pixel differences: 
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where K and L defines a size of image raster and ),(),( 21 yxIyxI ξξ −  is Euclidean 

distance (see section 3.3) between two RGB values (represented as they were 
vectors in 3D space) at I1(x,y) a I2(x,y). 

Taking the square root is one way of reducing the range of values. Using 
equation (3.2), large pixel errors have a greater contribution in the error. 
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The better M2 approximates M1 for given ξ, the smaller the values mse or rmse 
is. Having such formula we can measure a similarity of two models using 
integration of ξξ

21 II −  over all ξ. We assume the finite number of viewpointsξ. 

The main advantage of this approach is the fact that we measure the real 
fidelity of resulting image, which is what we desire. On the other hand such 
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measure is closely coupled with the viewpoints ξ, which must be identical for 
original and resulting model. Also, the more viewpoint we have the precise 
error measurement we get, which makes the comparison computationally very 
expensive. However, this approach is used by several simplification algorithms 
which are discussed in section 4.10 

3.3 Geometric Error 
Simplification of a polygonal mesh reduces the number of vertices and 
therefore changes the shape of the surface as a result. Measuring and 
minimizing a 3D geometric error as we perform the simplification allows us to 
preserve the original shape as best we can.  

Euclidean geometry defines a measure of the distance between two points. 
For two points p1= (x1,y1,z1)  and p2= (x2,y2,z2), the distance d between them is 

( ) ( ) ( )2
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However, finding the distance between two surfaces is more involved than 
presented in previous section. We can think of each surface as an infinite set of 
infinitesimal points. Then conceptually, finding the distance between the two 
surfaces involves matching up pairs of points, computing their distances, and 
tabulating all the results. In practice, we may exploit the polygonal nature of 
our surfaces to allow us to use small, finite sets of points, or we can compute 
conservative bounds or estimates on these distances rather than taking many 
point-wise measurements. 

 
The Hausdorff distance is a well-known concept from topology, used in 

image processing, surface modelling, and a variety of other application areas. 
The Hausdorff distance is defined on point sets, but because a surface may be 
described as a form of a continuous point set, it applies to surfaces as well. The 
Hausdorff distance is the maximum of minimum distances between points in 
the two point sets (M1 and M2). In other words, for every point in set M1, the 
closest point in set M2 is found, and vice versa. Following formula expresses the 
definition above: 
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where  
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The function h(M1, M2) is called one-sided Hausdorff distance and finds for 
each point in M1 the closest point in M2 and takes the maximum. This function 
is not symmetric. Every point in M1 is paired with a single point in M2, but there 
may be unpaired (and multiply paired) points in M2. Thus, h(M1,M2) ≠ h(M2,M1). 
The two-sided Hausdorff distance (or just Hausdorff distance) is constructed to 
be symmetric by considering both of the one-sided Hausdorff distances and 
reporting the maximum. This is illustrated in Figure 3.1, where d12=h(M1,M2) and 

d21=h(M2,M1). The two-sided Hausdorff distance is then: 

( ) ( )
12211221 ,max, dddMMH ==  (3.6) 

 

 

Figure 3-1: The Hausdorff distance between two surfaces M1 and M2. 

Although Hausdorff distance is the tightest possible bound on the maximum 
distance between two surfaces, it has some shortcomings for polygon simplifi-
cation. The problem is that it does not provide a correspondence mapping 
between the surfaces, which make it difficult to carry attribute values from the 
original surface to the simplified surfaces in a continuous fashion. 

As an alternative to the Hausdorff distance a continuous bijection (one-to-one 
and onto mapping) between the two surfaces is considered, and the distance 
with respect to this mapping is measured [36]. 
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Given such a continuous mapping BAF →: , we define mapping distance  

( ) ( )aFaFD
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max  (3.7) 

Thus D is the distance between corresponding points in A and B, where the 
correspondence is defined by the mapping function F. If this mapping is 
accomplished via correspondences in a 2D parametric domain, such as a texture 
map, we call this a parametric distance, which can be expressed as 
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where x is a point in the 2D parametric domain and each of the F-1 functions 
maps this 2D point onto a 3D mesh, either before or after a particular 
simplification operation. 

Because there can be a lot of such mappings and therefore many possible 
mapping distances, we simply search for minimum possible mapping distance 
as shows equation (3.9). 

( )FDD
SF∈

= minmin  (3.9) 

Here S is the set of all such continuous mapping functions. Note that although 
Dmin and its associated mapping function may be impossible to explicitly 
compute, any continuous mapping function F provides an upper bound on Dmin 
as well as on the Hausdorff distance. If our simplification goal is to provide 
a guaranteed bound on the maximum error, any such function will accomplish 
this. However, if the bound is very loose, we might use much more polygons 
than necessary to provide a specified quality. Similarly, if our goal is to 
optimize the quality for a fixed polygon budget we would like the bound to be 
as tight as possible to ensure the best real quality in our rendered scene. 

 

As specified above, both the Hausdorff distance (often presented as Emax) and 
the general mapping distance are evaluated as s the error compute the final 
distance between two surfaces as the maximum of all the point-wise distances. 
Although it is a valid choice, there are other reasonable choices as well. In some 
cases we are interested more in average or mean square distance rather than 
taking the maximum of the point-wise.  
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The average error Eavg is defined as follows: 
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where w1,w2 are the surface areas of M1, M2. In practice we approximate this 
exact metric using discrete set of points X1, X2. These sets should contain at least 
all the vertices of their models M1, M2. 
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where M1 and M2 are original and reduced model and k1 and k2 are numbers of 
vertices on each model. The distance dv(M) is defined as 
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The maximum error is often referred to a guaranteed error bound. For some 
applications such as medical and scientific visualizations is quite desirable to 
know that error is never higher than some specified tolerance. 

The average error, on the other hand, can be an indication of the error across 
the entire surface as opposed to a few particularly bad locations. The maximum 
error can be even ten times larger than the average error for a particular model. 
This observation implies that algorithms minimizing the maximum error may 
ignore large increases in the average error. Similarly, heuristics that focus on 
minimalization the average error may introduce several regions with extremely 
high maximum error values. 

3.4 Attribute Error 
Today’s polygonal models consist not only of vertex coordinates but also other 
attributes such as normals, colours or even texture coordinates. These attributes 
may be specified on faces or vertices. This allows vertices to have multiple 
attribute values, describing attribute discontinuities across adjacent faces when 
desired. For example, vertices on sharp edges can have two normals. 

The earlier algorithms took exclusively geometric input and had o support 
for these attributes. Properties such as normals were computed as a cross 
product of the triangle edges if flat or smooth shading was desired. 

Some present algorithms carry the attribute values and also to measure the 
attribute error incurred by the simplification operation. This allows to actually 
reduce the attribute error for a given simplification operation as part  
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of the inner optimization by carefully choosing the attribute values for the 
newly created or modified vertices. 

The natural space for normals is on the Gaussian sphere (a unit sphere with 
centre at the origin), on which each point represents a normal vector. The 
proper measure for distance between two normal vectors is an angular distance: 

( ) ( )( )
zyxzyxn nnnnnnd 222111 ,,,,arccos ⋅=  (3.12) 

Normals optimization us often used to prevent foldovers, comparing normal 
of triangle before and after proposed operation. If the angle between normals is 
greater than some given threshold, the operation may be disallowed. It is also 
possible to minimize the normal error by choosing the best normal vector at 
newly created vertices. A common approach is to optimize the normals as if 
they were in a standard Euclidean space, considering them as standard 3D 
points. However, optimizing normals in a Euclidean normal space generally 
requires renormalizing the resulting normal, which projects it back onto the 
Gaussian sphere. 
 

The colours in computer graphics are usually stored as a triple of [R,G,B] in 
the range [0,1] for each value. The most straightforward way to measure colour 
error is to treat the RGB space as a Euclidean space and compute the RGB 
distance between corresponding points as 
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21

2

21

2

21 bbggrrd c −+−+−=  (3.13) 

The RGB values are treated as three independent values and are optimized 
separately. A frequently ignored problem with this approach is that this RGB 
space is perceptually nonlinear. That means that equal distances between 
different portions of RGB appear to the human eye as different distances. The 
solution is to evaluate the error in some more perceptually linear space, such as 
CIE-L*u*v*. Another problem to solve is the case when a colour value of 
resulting exceeds [0,1] range. The colour component is usually set to one of the 
border values. 

 

Texture coordinates are represented as (u,v) coordinate pairs that define 
a mapping of vertices to points in a 2D texture space. Analogously to the colour 
space, the texture space uses values in the range [0,1]. Thus, similar issues to the 
colour optimization have to be solved. However, unlike the colour space, the u 
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and v values should not be considered as totally independent. The texture 
coordinates are intended to describe a bijection between the polygonal surface 
and the texture space, thus the simplification process should avoid creating 
folds in the texture space. Such folds would cause that the same texture space 
location is mapped to multiple locations on the surface.  

 
Another kind of attributes which are not included in input models, but are of 

particular importance are volume and surface area of the model. Many 
algorithms preserve these attributes as the main optimization principle and the 
overall error bound is determined by the amount of volume or surface 
area changed. Although, such metrics can improve a lot resulting 
approximation, the computation cost is also noticeable. Therefore these 
optimizations are used mostly as a part of the inner optimization process, while 
in the outer another metrics is used. 

3.5 Combining Errors 
As presented above, a simplification algorithm can measure not only the 
geometry error, but can consider other attribute errors during the process of 
evaluation of a potential simplification operation. This is also the case of our 
algorithm. The geometry error is used in outer optimization process (namely 
vertex-to-plane distance, see section 3.6), however in inner process of vertex 
removal the impact on normal vectors and area of resulting mesh guides the 
simplification.  

The majority of simplification algorithms are iterative simplifying processes. 
Triangles that are simplified in further steps can already be a result of some 
previous simplification operation. This leads to an important consideration 
whether to measure and optimize the total error (with respect to initial state) or 
just increment some error value while triangles are modified during the 
simplification (error value then reflect only the difference of the error before 
and after some operation is applied). 

In many cases, the incremental error is more efficient to measure and 
optimize. However, the total error is the more useful measure as part of the 
simplification output. 

3.6 Measurement Methods 
Regarding previous section we can divide algorithms into categories according 
to the method they use to measure the error. Those categories are vertex-to-
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vertex, vertex-to-plane, vertex-to-surface, surface-to-surface approaches. 
Finally, we discuss the use of image-space metrics as opposed to object- and 
attribute-space metrics. The algorithms referenced in this section will be 
described more in detail in Chapter 4. 
 
Vertex-to-vertex distance 

The most straightforward approach to measure the approximation error is 
based on measuring distances between the original vertices and vertices of 
simplified model. The quality of such results is determined by the choice of 
correspondences of vertices. It is easy to imagine that few vertices on the same 
position in space can define different surface and therefore this method will be 
useful only on some particular cases. For example vertex merging operations 
such as edge collapse or cell collapse where clustering of two or more vertices 
gives exact mapping between original and resulting meshes (see Figure 3-2).   

 

Figure 3-2: Several examples of vertex mapping while clustering one triangle. 

In algorithms from grid-based vertex clustering family the maximal error 
bound is given by the diagonal of one cell. The floating-cell approach proposed 
by [35] does not use a regular grid for clustering. Instead of choosing vertices 
according to the cells, the cells are chosen to surround so called representative 
vertices (see Chapter 4 for more details). These cells are cubes or spheres of 
radius corresponding to vertex grade. During simplification all vertices in given 
cell are merged to chosen vertex and therefore the error bound is determined by 
the cell radius (and is halved compared to regular grid approach while 
supporting similar number of resulting vertices). 
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Vertex-to-plane distance 

Even more computationally efficient than distance between two points is the 
distance between a point and a plane. Given a plane with unit normal n, and 
signed distance from the origin D, the shortest distance from point p = (x,y,z) to 
the plane is 

DznynxnDpnd zyx +++=+⋅=  (3.14) 

Since the models are composed of planar polygons rather than infinite planes, 
the vertex-to-plane distance methods do not really provide a bound on the 
maximum or average distance between models. Measuring the error of 
a simplified mesh thus requires another metric or a tool such as Metro (see 
section 3.7). However, simplification methods based on vertex-to-plane distance 
are fast and moderately accurate, tending to produce approximations with low 
error for a given polygon count.  

These methods usually work on a following basis. For each simplified vertex 
the maximum distance between the vertex and supporting planes is measured. 
Each adjacent triangle defines one supporting plane. When two vertices are 
merged, the set of supporting planes of resulting vertex will contain supporting 
planes of both vertices. The error metric is defined as  
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where v = (x,y,z,1) and p = (nx,ny,nz,D). This measure can either overestimate or 
underestimate the maximum distance because the vertex distance can be 
different for the plane and the actual polygon. 

Probably most famous mesh simplification method [10] uses error quadrics. It 
replaces the maximum of squared vertex-to-plane distances, shown above, with 
the sum of squared distances as follows: 
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Qp is called error quadric and it is 4x4 symmetric matrix. It represents 
a contribution to Ev by plane p. The contribution of all planes surrounding 
vertex v is computed as a sum of all Qps. Thus when an edge is collapsed, 
the resulting quadric will be the sum of quadric of original vertices. As obvious, 
neither storage nor computation requirements grow during simplification 
process.  
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Vertex-to-surface distance 

In vertex-to-surface distance metric the vertices of the original model are 
mapped to their closest points on the polygons of the simplified surface. This 
approach is entirely appropriate for models created from a set of points (for 
example from 3D scanner) which are then triangulated. This leads to the 
thought which is also discussed in Chapter 7, namely that the vertices are only 
true data to be preserved rather than the input surface. Vertex-to-surface 
approaches are much slower than vertex-to-plane approaches because suitable 
mappings must be found for the many input vertices. 

Hoppe’s progressive mesh algorithm [20] is based on edge contraction works 
in following steps: 

1. Choose an initial value for the position of the new vertex v (e.g., an 
edge vertex or midpoint). 

2. For each original vertex, map it to the closest point on one of the 
simplified triangles. 

3. Optimize the position of v to minimize the sum of squared distances 
between the pairs of mapped points (solve a sparse, linear least-
squares problem). 

4. Iterate steps 2 and 3 until the error converges. 
 
Since vertex mapping process is a part of inner loop, the whole computation 

is very expensive. Also in some cases, this system will never converge, because 
the optimal vertex position may be at infinity. 
 
Surface-to-surface distance 

A surface-surface distance metric can provide the strongest guaranteed bounds 
on the error of a simplified surface. By definition, such a metric considers all 
points on both the original and simplified surface to determine the error at 
a given stage of the simplification process. These methods generally choose to 
minimize the maximum error, perhaps because finding a guaranteed maximum 
bound on the simplification error is the whole point of using such a rigorous 
approach. Applications for which such bounds may be especially useful include 
medicine and scientific visualization. Algorithms based on surface-to-surface 
distance metrics are for example simplification envelopes [6], plane mapping [1] 
or tolerance volumes [13]. 
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Image metric 

Different algorithms use different measures of the geometric error. However, 
often the crucial measure of fidelity is not geometric but perceptual. As already 
briefly mentioned in section 3.2, there exist algorithms that their simplification 
process guide by comparing images of original and reduced model when 
rendered. One of such algorithms is [33], which measures the error for 
simplification operations by rendering multiple images of the object using 
a sphere of virtual cameras. Each camera renders an image of the original 
model and of the simplified model, and a root-mean-squared error of pixel 
luminance values is computed between the two sets of pixels from all the 
cameras – see equation (3.1).  

This approach naturally incorporates visual errors due to a number of 
sources, such as motion of the silhouette, and deviation of colour, normal, and 
texture coordinate attributes. It even accounts for factors such as the content of 
the texture maps and the shading modes used to render the model (such as flat 
or Gouraud shading). 

However, image-based simplification algorithm is significantly slower than 
the slowest geometric algorithms, since rendering multiple images for every 
edge collapse is an intrinsically expensive way to measure error.  

3.7 METRO 
Having presented several error estimation approaches there is a question how 
to compare particular simplification algorithms. Since the criteria to drive the 
simplification process are highly differentiated and many simplification 
approaches do not return measures of the approximation error introduced 
while simplifying the mesh, a common tool to measure the approximation error 
has been developed. Such a tool is called Metro [5].  
Metro numerically compares two triangle meshes M1 and M2, which describe 
the same surface at different levels of detail. It requires no knowledge of the 
simplification approach adopted to build the reduced mesh.  
It evaluates the difference between the two meshes on the basis of the 
approximation error measure defined in the section 3.3. It adopts an 
approximate approach based on surface sampling and the computation of 
point-to-surface distances. The surface of the first (pivot) mesh is sampled, and 
for each elementary surface parcel it computes the distance to the not-pivot 
mesh. The program outputs the maximum and average distance from the first 
model to the second model (SGI version even provides graphical output, see 
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Figure 3-3). A two-sided distance function may also be computed by swapping 
the order of the models and running the algorithm again. The tool has been 
used in several research papers to report on the relative merits of various 
simplification algorithms and it is also referred in results sections of presented 
algorithms in later sections of this work. 

 

Figure 3-3: Graphical output of Metro (taken from [5]). 

We have examined the motivation to measure approximation error, the key 
elements common to many simplification error metrics, and several particular 
metrics as well. These metrics has been classified into vertex-to-vertex, vertex-
to-plane, vertex-to-surface, and surface-to-surface distance measures. Each class 
provides different characteristics in terms of speed, quality, robustness, and 
ease of implementation. At the end Metro has been mentioned as a standard 
tool for approximation error evaluation and comparison. 
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Chapter 4  

Algorithms survey 
 

A common application of simplification is reducing the complexity of very 
densely over-sampled models. Those models are often uniformly tessellated, 
thus a triangle density is the same in both flat and highly curved regions. It is 
usually preferable that local triangle density adapts to local curvature. In other 
words, we tend to obtain an approximation with a smaller amount of triangles 
in flat areas in opposite to curved parts of the surface. 

Successful algorithms for simplifying curves and height fields were 
developed twenty years ago, but the work on more general surface 
simplification is much more recent [26]. Note that, since height fields are 
a special case of general surfaces, optionally approximating a surface is NP-
hard. The traditional approach to multiresolution surface models has been 
manual preparation. A human designer must construct various levels of detail 
by hand. The general goal of the work done on surface simplification has been 
to automate this task. 

Just before we present various simplification algorithms we present high 
level frameworks upon which the methods are constructed. Knowing these 
approaches helps to understand some fundamental concepts of particular 
methods. Since new algorithms presented in this work are related to vertex 
decimation and edge contraction methods, these two approaches are discussed 
more in detail in following survey.  

4.1 High level frameworks 
The typical simplification algorithm uses a nested optimization process: an 
outer optimization makes a sequence of discrete choices for which operations to 
perform and in what order, and an inner optimization makes choices in 
processing the operator, such as which way to fill the hole during a vertex 
removal or where to place the new vertex during an edge collapse. 
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We will discuss a few of the high-level queuing algorithms for choosing the 
ordering of the simplification operations as well as the choice of simplification 
operators. 

 
Nonoptimizing 

The simplest algorithms essentially apply all possible simplification operations 
in an arbitrary order. This is desirable in methods based on clustering, where 
any operation may be performed completely independently of any other. Note 
that such algorithms are nonoptimizing in the sense that they do not concern 
itself with the outer optimization problem. There is still some possibility to 
make optimizations during the actual application of the selected (inner) 
operation. 

 
Greedy 

Greedy algorithms solve the outer optimization problem according to some cost 
function. This function usually defines a resulting error of proposed 
simplification operation. At the beginning the cost of all operations is evaluated 
and they are sorted according to their values. The minimum cost operation is 
applied to the current mesh and removed from the priority queue. Since the 
operation may affect the cost of other operations in the neighbouring mesh, the 
cost of neighbouring operations is updated. The most of the time in real 
implementation is consumed by the evaluation of operation cost while 
updating the neighbours. Thus, choosing operations with fewer neighbours can 
significantly improve the performance. For example, vertex removal and half-
edge collapse operations affect fewer triangles than the edge collapse, and thus 
they change the costs of fewer neighbouring operations.  

 
Lazy 

Lazy queuing algorithms attempt to reduce the number of calls to cost function 
in comparison to the greedy approach. The main idea is that it is not necessary 
to update the cost of operation in affected area every time, since it can be 
updated several times before it is actually used. Instead the dirty flag is used to 
mark the cost no longer accurate assuming that new value will be not to far off. 
On every operation taken from priority queue the dirty flag is checked. If it is 
false the operation is processed, otherwise an actual cost and reinserting it into 
the queue is applied. 
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Estimating 

Another method for reducing the number of cost computations performed 
simply replaces the expensive computations with cheaper (faster) estimates. 
The priority ordering of the operations is determined entirely by estimated 
costs, whereas the accurate cost computation is performed only once per 
operation when applied. This method will work well if the ordering generated 
by the estimated costs is similar to the ordering that would be generated by the 
accurate costs.  

 
Independent 

The independent algorithms perform a maximum set of independent 
operations, or operations whose mutual neighbourhoods do not overlap, 
chosen in order of the cost function at the time. Each pass of iterative process 
creates one level of the simplification hierarchy. Within a pass, only operations 
affecting independent mesh neighbourhoods are applied, with the remaining 
operations placed on a list L for processing in a future pass. This approach leads 
to parallel processing and its extension is described in Chapter 5. 

 
Interleaved simplification operators 

In this approach geometry simplification alternates with topology 
simplification. This is motivated by the observation that each simplification 
stage allows the mesh to be simplified more aggressively than if only one kind 
of simplification had been applied. For instance, closing small holes by 
topology simplifications allows higher geometry simplification. The simplest 
scheme for both simplifications is the nonoptimizing approach. However, any 
of the previously mentioned approaches can be used. 

 
We showed that simplification process can be characterized according to the 

optimization algorithm, simplification operator, and error metric that it uses. 
The particular choice depends on the constraints imposed by the target 
application, ease of coding, and the nature of the input data sets. In next section 
of this chapter we will present some state-of-the-art algorithms divided info 
categories already used in previous text. 

4.2 Volume methods 
Some work has been done on volumetric approaches to multiresolution 
modelling. Generally speaking, if the models in question are acquired as 
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volumes and will be rendered as volumes, volume simplification is a good 
approach. However, if the simplified volumes must be converted into 
a polygonal form before rendering, volume methods become significantly less 
attractive. The simplification algorithm [37] for polygonal meshes has 4 stages:  

• convert the input polygon model into a volumetric model 
• application of morphological operators in the volumetric domain to 

simplify the topology 
• iso-surface extraction to obtain a polygonal representation of the 

simplified surface 
• topology-preserving triangle count reduction to decimate the iso-

surface.  
 
For mesh voxelization they use a parity count algorithm, which is simply the 

3D extension to the parity count method of determining whether a point is 
interior to a polygon in 2D. Thus, a voxel V is classified by counting the number 
of times that the ray with its origin at the centre of V intersects polygons of the 
model. An odd number of intersections means that V is interior to the model, 
and an even number means it is outside.  

The morphological operators are well suited to simplify the topology of 
objects because they present a clean and efficient way to remove small features, 
close holes and join disconnected components of a model. The first step in using 
morphological operators is the calculation of a distance map. Given a binary 
volume that is classified into feature and non-feature voxels, a distance map 
associates with each voxel the distance to the nearest feature voxel. Feature 
voxels are those that are inside the object and non-feature voxels are those that 
lie outside the object. Feature voxels have a distance map value of zero. The two 
atomic morphological operators are erosion and dilation. They take as input the 
volume, the distance map, and an erosion/dilation distance. For dilation, [37] 
look through the distance map, and any non-feature voxel that has distance less 
than or equal to the threshold is turned into a feature voxel. Erosion is the 
complement of dilation. In this case, the volume is negated (i.e. a feature voxel 
becomes non-feature and vice versa), the distance map is calculated and 
dilation performed. After this, the volume is negated again to obtain the final 
result. While useful by themselves, erosion and dilation are usually used in 
conjunction with each other. The reason is that if they are used in isolation, then 
they increase (dilation) or decrease (erosion) the bounds of the volume. When 
erosion is performed followed by dilation, it is called an opening. This is due 
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the fact that this operation will widen holes, eliminate small features and 
disconnect parts of the model that are connected by thin structures. The 
complement of this operation is a closing, which is a dilation followed by an 
erosion. This will close holes and connect previously disconnected parts of the 
model.  

To create a manifold polygonal model, [37] extracts an iso-surface from the 
volumetric representation of the model using the standard marching cubes 
algorithm [34]. 

The new iso-surface usually has simpler topology than the input model. In 
addition, because the Marching Cubes algorithm considers cubes in isolation, it 
frequently over tessellates the surface. Therefore, the number of triangles of this 
iso-surface can be drastically reduced without degrading the quality of the 
model. To achieve this end, Garland and Heckbert’s polygon-based 
simplification method based on quadric error measurement [10] is used. This 
method is based on a generalized form of the edge collapse operation called 
vertex pair contraction, and will be described later in this chapter. 

4.3 Simplification envelopes 
Simplification envelopes [6] are something of a meta-method. The main feature 
of this algorithm is to use no error measure but only a geometric construction to 
control the simplification. Simplification envelopes are two surfaces constructed 
on each side of the original surface using a user specified offset and making 
sure these surfaces do not self-intersect. The space between the two surfaces is 
then used to build a new surface. Therefore, the only constraint is that the new 
polygons should not intersect with any one of the surfaces. This naturally 
preserves the original model topology, and guarantees a global error. In order 
to construct the envelopes, the original model must be an oriented manifold.  

The amount of simplification is controlled by the offset used for constructing 
the surfaces. The case where envelope surfaces are most likely to self-intersect is 
along the sharp edges of the original mesh, where there will not be much room 
to build one of the surfaces. The surfaces which self-intersect must then be 
moved closer to the original mesh until the condition is verified. Thus, near 
sharp edges, the spaces between the two surfaces will be smaller and less 
simplification will be permitted. Conversely, in planar areas, the distance will 
be maximal, and therefore, maximal simplification will be allowed.  
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Figure 4-1: Building inner and outer envelopes for a triangle (taken from [6]). 

At the beginning the envelopes have to be constructed (see Figure 4-1). The 
algorithm is as follows: 

1. Offset the outer surface along vertex normals by a fraction of the 
desired final offset.  

2. If, for any vertex, the surface self-intersects, cancel the move for that 
vertex.  

3. Repeat 1 and 2 until either no further increment can be made without 
intersection, or the offset as reached the desired value.  

4. Repeat 1 to 3 for the inner surface.  
5. Repeat 1 to 3 for the border tubes. These are built along the borders of 

non-closed objects to allow for simplification there also.  
The algorithm then goes on to generate the simplified mesh. For each vertex 

of the initial mesh:  
1. Remove the vertex and the adjacent faces.  
2. If possible, iteratively fill the hole by triangulation using as big faces as 

possible and ensuring that they do not intersect with the offset 
surfaces. Otherwise cancel the removal and process the next vertex.  

 
This algorithm is appealing because it does not use any measure of the error. 

The envelopes are the only control over the simplification. However, this 
approach is computationally expensive, especially during the envelope 
construction phase. 

4.4 Wavelet surfaces 
Wavelet methods provide a fairly clean mathematical framework for the 
decomposition of a surface into a base shape plus a sequence of successively 
finer surface details. Approximations can be generated by discarding the least 
significant details. Wavelet decompositions are generally unable to resolve 
creases on the surface unless they fall along edges in the base mesh [20], [18]. 
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Essentially, this requires that the surface be reconstructed using a wavelet 
representation. This is as usual difficult. Eck et al. [7] developed a method for 
constructing wavelet representations of arbitrary manifold surfaces. This is not 
actually a simplification algorithm. It is a pre-processor for another algorithm, 
which produces a multiresolution representation of a mesh, which is a compact 
geomorphic containing a simple base mesh and a series of wavelet coefficients 
that are used to introduce details in the mesh. From this representation, a new 
mesh can be retrieved at any required level of detail. However, it suffers from 
some serious drawbacks. Before the wavelet representation can be built, the 
surface must be remeshed so that it has subdivision connectivity. This process 
alone introduces error into the highest level of detail. In addition, the topology 
of the model must remain fixed at all levels of detail.  

As already said, this method requires the input mesh to be constructed by 
recursive subdivision i.e. where each triangle is subdivided using a 4-to-1 split 
operator until the desired amount of detail is reached. Such a mesh is encoded 
into a multiresolution representation. The algorithm below describes how to 
convert any mesh so that it has the property of recursive subdivision.  

It is an adaptive subdivision algorithm, which preserves topology but does 
identify any characteristic features in the mesh. Approximation error is 
measured using the distance to the original mesh. Harmonic maps are used at 
several steps to parameterize a 3D mesh into a planar triangulation. The 
algorithm has four main steps. 

 

Figure 4-2: Four steps in the MRA algorithm (taken from [17]). 

• Partitioning. A Voronoi-like diagram is constructed on the original 
mesh (Figure 4-2/1) using a multi-seed path finding algorithm in the 
dual graph of the mesh (where the nodes are the faces of the mesh and 
the arcs represent adjacency and are weighed using the distance 
between the centres of adjacent faces). This diagram is then 
triangulated using a Delaunay-like method and the harmonic maps to 
straighten the edges (Figure 4-2/2).  
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• Parameterization. The result is a base mesh (Figure 4-2/3) that is 
parameterized using a harmonic map. The parameterization is forced 
to be continuous across the faces so that the number of wavelet 
coefficients is minimal.  

• Re-sampling. The base mesh is now re-sampled using the 4-to-1 split 
operator until the mesh is at a certain distance from the original mesh 
(Figure 4-2/4). Each step is parameterized as in previous step.  

• Multiresolution Analysis. The resulting succession of meshes is passed 
to the multiresolution analysis algorithm to be encoded using 
wavelets.  

 
Like other subdivision-based schemes, wavelet methods cannot easily 

construct approximations with a topology different from the original surface. 
The wavelet representation is unable to adequately preserve sharp corners and 
other discontinuities on the surface. Wavelet methods cannot change the 
topology and are capable of reducing smooth manifolds only. They produce 
a wide range of simplification and details can be added in specific parts of the 
mesh. But it is also computationally very expensive. Furthermore, extracting 
a valid mesh from wavelet-based representation is also expensive. 

4.5 Vertex Clustering 
Vertex clustering methods spatially partition the vertex set into a set of clusters 
and unify all vertices within the same cluster [43], [35]. They are generally very 
fast and work on arbitrary collections of triangles. Unfortunately, they can often 
produce relatively poor quality approximations. 

The simplest clustering method is the uniform vertex clustering shown in 
Figure 3. The vertex set is partitioned by subdividing a bounding box on 
a regular grid, and the new representative vertex for each cell is computed 
using cheap heuristics (i.e. the average of vertices coordinates). This process can 
be implemented quite efficiently. The algorithm also tends to make substantial 
alternations to the topology of the original model.   
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before                                after  

Figure 4-3: Uniform clustering in two dimensions. 

Note that, the results of this algorithm can be quite sensitive to the actual 
placement of the grid cells. It is also incapable of simplifying features larger 
than cell size. A planar rectangle consisting of many triangles all larger than the 
cell size will not be simplified at all, even though it can be approximated using 
two triangles without error. The most natural scheme is to use an adaptive 
partitioning scheme such as octrees. Centring cells on important vertices, can 
also improve approximations. 

Clustering methods tend to work well if the original model is highly over-
sampled and the required degree of simplification is not too great. They also 
tend to perform better when the surface triangles are smaller than the cell size. 
Since no vertex moves further than the diameter of its cell, clustering algorithms 
provide guaranteed bounds on the Hausdorff approximation error sampled at 
the vertices of the original model and its approximation. However, to achieve 
substantial simplification, the required cell size increases quite rapidly, making 
the error bound rather weak. In particular, at more aggressive simplification 
levels, the quality of the resulting approximations can quickly degrade. Vertex 
clustering methods are fast and general. On the other hand the simplification 
process itself is hard to control and gives poor quality approximations. 

4.6 Region Merging 
A handful of simplification algorithms operate by merging surface regions 
together [16]. In general, these algorithms usually partition the surface into 
disjoint connected regions based on planarity assumption. At the beginning 
a planarity threshold has to be set. For each triangle its neighbourhood is 
checked and if it is sufficiently planar, the triangles are merged together. After 
such merges the boundary of each region is simplified, and the resulting region 
(loop) is triangulated. These algorithms are restricted to manifold surfaces, and 
do not alter the topology of the model. Region merging techniques produce 
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good quality results, and they provide bounds on the approximation error. 
However, the implementation of such algorithms is more complicated in 
comparison to others without any superior approximations. 

In some ways different, but in principle the same approach is proposed by 
Garland et al. [12]. Their method is derived from the edge contraction method. 
They create a dual graph of the surface, and instead of edge collapse in the 
original surface they perform face clustering in the dual representation using 
dual quadric metrics [10], [12], [15], [19], see Figure 4-4.  

 

Figure 4-4: Edge contraction in the dual graph. The two faces of the surface 
corresponding to the endpoints of the dual edge are merged to form a single 

face cluster. 

At the end the clusters of triangles are re-triangulated. In opposite to region 
merging algorithms, the dual quadric metrics seek to minimize the average 
deviation without any guaranteed bounds on the maximum. The quadric metric 
will be described later in detail. As [44] shows, clustering methods seem to be 
a promising approach for the simplification of massive meshes. 

 

Figure 4-5: Face clusters computed for Isis statue, composed of 375,736 
triangles. Cluster shape adapts to surface shape. From left 10,000 clusters,  5000 

clusters, 2500 clusters, 1000 clusters and 100 clusters. 
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4.7 Vertex decimation 
Decimation methods are algorithms that start with a polygonization (typically 
triangulation) and successively simplify it until the desired level of 
approximation is achieved. The advantage of decimation methods is that they 
can be generalized to volumes [39]. 

One of the more widely used algorithms is vertex decimation, an iterative 
simplification algorithm originally proposed by Schroeder et al. [46]. In each 
step of the decimation process, a vertex is selected for removal, all the faces 
adjacent to that vertex are removed from the model and the resulting hole is re-
triangulated. Since the re-triangulation usually requires a projection of the local 
surfaces onto a plane, these algorithms are generally limited to manifold 
surfaces. The fundamental operation of vertex deletion is also incapable of 
simplifying the topology of the model. Schroeder [45] was able to lift these 
restrictions by incorporating cutting and stitching operations into the 
simplification process.  
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1. The three steps of the algorithm are: 
2. Characterize the local vertex geometry and topology. 
3. Evaluate the decimation criteria. 
4. Triangulate the resulting hole. 

 
Now let us have a look at the algorithm in more detail. All the vertices in 

a mesh are initially evaluated according to their importance in the mesh. There 
are 5 fundamental vertex types recognized by their topology, see Figure 5-2. 
Only three types of vertices are usually used in the simplification process; 
simple, boundary and interior edge vertices. 

The vertex importance is calculated according to the vertex type. For a simple 
vertex the importance is equal to its distance from the average plane computed 
from the positions of surrounded vertices, see Figure 6a. In case of a boundary 
or interior edge respectively, vertex importance is equal to its distance from the 
bisector traversing through other two vertices on the border or important edges 
respectively (see Figure 4-6b).  
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Figure 4-6: The distance between a vertex and the average plane (a) and 
between a vertex and the bisector (b). 

An average plane is constructed using the triangle normals ni, centres xi and 
areas Ai.  
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where the summation is over all triangles in the loop. The distance of the vertex 
v to the plane is then d = |n (v-x)|. If the vertex is within the specified distance 
to the average plane it may be deleted. Otherwise it is retained. 
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Once the vertex is eliminated, the hole arising has to be triangulated. The new 
triangulation must be regular – no crossing triangles or triangles with vertices 
on the line. If such triangulation does not exist, the vertex must be preserved. It 
is also recommended that the new triangulation of the hole should be a good 
approximation of the original surface and the triangles would not be too thin 
and long. Schroeder et al. propose such a triangulation algorithm where 
a splitting plane iteratively divides the hole in two parts, until each hole has the 
shape of a triangle.  

The original vertex decimation algorithm used a fairly conservative estimate 
of approximation error. When a vertex is being removed, its distance to a new 
surface is computed and this value is distributed then to neighbouring vertices. 
The vertex is deleted if its importance and the accumulated error value are 
under some threshold. More recent methods [24], [3] use more accurate error 
metrics, like the localized Hausdorff error. Klein et al. [24], [25] use one-sided 
Hausdorff distance computed before vertex removal. If the error value is 
sufficiently low, the vertex is removed, otherwise it is preserved.  The algorithm 
of Schroeder et al. is reasonably efficient both in time and space, but it seems to 
have some difficulty preserving smooth surfaces [11]. The triangulation method 
has also been improved. Ciamplalini et al [3] use 2D triangulations: an ear 
cutting solution and minimum angle modification of the previous one. To be 
able to apply standard 2D triangulation algorithms, they must project 
a triangulated area onto a plane. They use 14 planes projecting the border of the 
hole on each of them until they find a ”valid” projection plane (where the 
projection has no intersecting edges). Klein et al. [23], [25] have tested several 
triangulation methods and found that the optimal triangulation method 
depends on the model being reduced. For example Delaunay triangulation 
turned out to be unsuitable for models such as a coke can. Lee et al. [29] 
recently described an algorithm, which establishes smooth parameterizations 
for irregular connectivity, 2-manifold triangular meshes of arbitrary topology. 
By applying a vertex decimation algorithm they simplify the original mesh and 
use piecewise linear approximations of conformal mapping to incrementally 
build a parameterization of the original mesh over a low face count base 
domain. The resulting parameterizations are of high quality and their utility is 
demonstrated in an adaptive, subdivision-connectivity remeshing algorithm 
that has guaranteed error bounds. 



 
 
 

60 

Vertex decimation methods [39] produce good quality results, preserve mesh 
topology and are generally applicable to manifolds only. 

4.8 Edge Contraction 
The other class of decimation techniques is based on the iterative contraction of 
vertex pairs (edges) [10], [44], [31], [20], [19]. These algorithms have become 
very popular in recent years. An iterative edge contraction (or edge collapse) 
takes the two endpoints of the target edge, moves them to the same position 
and links all the incident edges to one of the vertices, deletes the other vertex, 
and removes any faces that have degenerated into lines or points, see Figure 
4-7. Note that the fundamental operation of contraction does not require the 
immediate neighbourhood to be manifold. Thus contraction-based algorithms 
can more conveniently deal with non-manifold surfaces than vertex decimation 
algorithms. 

VjVi V

 

Figure 4-7: Edge (vi, vj) is contracted. The dark triangles become degenerate and 
are removed. 

Typically, this removes two triangular faces per edge contraction. These 
algorithms work by iteratively contracting edges of the model. The primary 
difference lies in how the particular edge to be contracted is chosen and how 
a new vertex position is set. 

The methods consist of repeatedly selecting the edge with minimum cost, 
collapsing this edge, and then re-evaluating the cost of edges affected by this 
edge collapse. The first step in the simplification process is to assign costs to all 
edges in the mesh, which are maintained in a priority queue. For each iteration, 
the edge with the lowest cost is selected and tested for candidacy. An edge is 
rejected as a candidate if no solution exists for its replacement vertex. There are 
usually some topological constrains to preserve the genus and to avoid 
introducing non-manifold simplexes. If the edge is not a valid candidate, its cost 
is set to infinity, and the edge is moved to the back of the queue. Given a valid 
edge, the edge collapse is performed, followed by a re-evaluation of edge costs 
for all nearby edges affected by the collapse. Once the costs for edges have been 
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updated, the next iteration begins, and the process is repeated until a desired 
number of simplexes remain.  

 
The general edge collapse method involves two major steps: choosing 

a measure that specifies the cost of collapsing an edge, and choosing the 
position for the new vertex that replaces the edge. Many approaches to vertex 
placement have been proposed, such as picking one of the vertices of the edge, 
using the midpoint of the edge, or choosing a position that minimizes the 
distance between the mesh before and after the edge collapse. This problem can 
be viewed as an optimization problem. 

General pair contractions, where vertices need not be connected by an edge, 
have been proposed to provide a means of merging separate topological 
components during simplification. This may implicitly alter the topology of the 
surface (e.g., by closing holes). Contracting a non-edge pair will remove one 
vertex and join previously unconnected regions of the surface. In general, pair 
contraction requires the algorithm to support non-manifold surfaces, because 
when two separate components are joined together, a non-manifold region will 
almost certainly be created. 

To perform the contraction, we must choose the target position for the new 
vertex. The simplest strategy is to use one of the original vertices, or the 
midpoint of the edge being contracted. However, the better approximation is 
usually required, and a new vertex is allowed to float freely in space in order to 
minimize some error metric. This will generally result in higher quality 
approximations, but the storage requirements for multiresolution 
representation will be higher.  

The most important task is to find a way in which the cost of edges is 
evaluated for the contraction. The cost of the contraction is meant to reflect the 
amount of error introduced into the approximation by the contraction by the 
pair in question. Hoppe’s algorithm [20] is based on minimization of an energy 
function. This function has four terms: 

)()()()()( MEMEMEMEME discscalarspringdist +++=  (4.2) 

The first one Edist ensures that the simplified mesh remains close to the 
original mesh. This geometric error term is very much like Eavg (see equation 
(3.11)). The second (Espring) corresponds to placing on each edge of the mesh 
a spring of rest length zero and favours triangles with better proportions. The 
third term Escalar discourages the simplification of colour and texture 
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discontinuities. Finally, the last term Edisc discourages the simplification of 
topology and normal discontinuities. The algorithm maintains a set of sample 
points on the original surface, and the distances between these points and the 
corresponding closest points on the approximation determine the geometric 
error.  

The basic steps of the algorithm are very similar to the general scheme of 
edge collapse algorithm. Anyway, we show it here for illustration: 

1. Sort the edges using the least cost of simplification. This cost is 
measured using the variation of the energy function.  

2. Apply the edge collapse operator for the edge at the head of the list 
and record the corresponding vertex split in the progressive mesh 
structure (including colour, texture and normal information).  

3. The position of the new vertex is chosen among the two initial vertices 
and the centre of the edge, depending on which one is the closest to 
the original mesh.  

4. Re-compute the cost for the edges that have been affected by the 
operator and reorder the list.  

5. If the list is empty or the cost of the next simplification exceeds 
a certain bound, the algorithm terminates and returns the final 
progressive mesh.  

6. Otherwise, jump to step 2. 
 
This algorithm produces some of the highest quality results among currently 

available methods. The mesh optimisation algorithm [17] performs explicit 
search rather than simple greedy contraction. It exhibits even longer running 
times, but may produce the highest quality results. 

 
The quadric error metric developed by Garland and Heckbert [10], [15] also 

defines error in terms of distances to sets of planes. However, it uses a much 
more efficient implicit representation of these sets. Each vertex is assigned 
a single symmetric 4x4 matrix, which can measure the sum of squared distances 
of a point to all the planes in the set. Under suitable conditions, the eigenvectors 
and eigenvalues of a quadric accumulated over a smooth surface region are 
determined by the principal directions and principal curvatures of the surface. 
While the quadric metric sacrifices some precision in assessing the 
approximation error, the resulting algorithm can produce quality 
approximations very rapidly. 
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Their simplification algorithm is based on the iterative contraction of vertex 
pairs; a generalization of the iterative edge contraction. A pair contraction 
moves vertices v1 and v2 to the new position v, connects all their incident edges 
to v1, and deletes the vertex ∆(v). The effect of contraction is small and highly 
localized. If (v1,v2) is an edge, then 1 or more faces will be removed. Otherwise, 
two previously separate sections of the model will be joined at v. The primary 
benefit, which is gained by utilizing general vertex pair contractions, is the 
ability of the algorithm to join previously unconnected regions together. 
A potential side benefit is that it makes the algorithm less sensitive to the mesh 
connectivity of the original model. 

At the initialization time, the set of valid pairs is chosen, and only these pairs 
are considered during the course of the algorithm. The pair (v1,v2) is a valid pair 
for contraction if either (v1,v2) is an edge, or ||v1-v2|| < t, where t is a threshold 
parameter. Using a threshold t = 0 gives a simple edge contraction algorithm. To 
define the edge cost of contraction a symmetric 4x4 matrix Q is associated with 
each vertex, and the error at vertex v is defined as a quadric form ∆(v) = vTQv. 
For a given contraction of vertices v1 and v2 a new matrix Q’, which 
approximates the error at v’, is derived such as Q’ = Q1 + Q2. A new position of 
vertex v is set according to the need to minimize ∆(v). This is equivalent to 
solving: 
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for v’. Assuming that the matrix is invertible, we can write 
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If the matrix is not invertible, the optimal vertex position is found along the 
segment v1v2. If this also fails, v’ is chosen from amongst the endpoints and the 
midpoint. 

The algorithm can be quickly summarized as follows: 
• Compute the Q matrices for all the vertices. 
• Select all valid pairs. 
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• Compute the optimal contraction target v’ for each valid pair (v1,v2). The 
error v-T(Q1+Q2)v’ of this target vertex becomes the cost of contracting 
that pair. 

• Place all the pairs in a heap keyed on cost with the minimum cost pair at 
the top. 

• Iteratively remove the pair (v1,v2) of least cost from the heap, contract 
this pair, and update the costs of all valid pairs involving v1. 

 
The initial matrices Q are computed using the matrix Kp, where: 
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where p = [a b c d]T represents the plane for the triangles adjacent to vertex v 

defined by the equation ax + by + cz + d = 0 where a2 + b2 +c2 = 1. 
 
The “memoryless” algorithm developed by Lindstrom and Turk [31] is 

interesting in that, unlike most algorithms, it makes possible decisions based 
purely on the current approximation alone. No information about the original 
shape is retained. They use linear constraints, based primarily on the 
conservation of volume, in order to select an edge for contraction and the 
position at which the remaining vertex will be located.   

In choosing the vertex position v from an edge collapse, [31] attempt to 
minimize the change of several geometric properties such as volume and area. 
The idea of preserving a volume is based on choosing a vertex position, which 
will minimize the volume of tetrahedrons constructed from the vertices of all 
triangles, affected by edge collapse, and the new vertex. Thus if we have 
a triangle t=(ve,v1,v2), where ve is a vertex on collapsing edge, we try to 
minimize the volume of tetrahedral th=(v,ve,v1,v2). The formula is as follows: 
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To further constraints the vertex position, [31] also attempts to minimize the 
unsigned volume of each individual tetrahedron, which is a measure of the 
local surface error for each corresponding triangle. To minimize these errors, 
the minimum of  

∑=
i

ttt

v
iii vvvvVvef 2

210 )),,,((),(  (4.8) 

is searched for. 
 
By defining the edge cost in terms of the objective function that is minimized 

above, the vertex position is optimal with respect to the incurred cost of 
collapsing the edge. That is, the cost is a weighted sum of the terms minimized 
in the volume optimization. As a measure of triangle shape quality, Lindstrom 
and Turk have chosen the following expression:  

∑=
i
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which is the sum of squared lengths of the edges incident upon v.  
 
The reported results suggest that it can generate good quality results, and 

that it is fairly efficient, particularly in memory consumption. 
 
One of the major benefits of iterative decimation is the hierarchical structure 

that it induces on the surface. This quite naturally leads to useful 
multiresolution surface representation, as described in following section. 

4.9 Multiresolution Models 
The simplest method for creating multiresolution surface models is to generate 
a set of increasingly simple approximations. A renderer can then select, which 
model will be rendered, accordingly to the level of detail needed. In other 
words it would be using a series of discrete levels of detail, from which our 
multiresolution model would consist. The reason why the discrete 
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multiresolution approach is so popular is its simplicity. However it can 
potentially cause significant visual artefacts. Since the number of polygons in 
two models can differ significantly, their appearances in the output image can 
be different as well. This can lead to “popping” artefacts while the level of 
detail is changing. Despite this limitation, discrete multiresolution models can 
be quite useful in many applications. Support for discrete levels of detail has 
been included in a number of commercial rendering systems, including 
RenderMan, Open Invertor, or IRIS Performer. Discrete levels of detail have 
also been used for accelerating the computation of radiosity solutions. 

On the other hand there are many applications where discrete 
multiresolution models are not sufficient. Imagine a large surface, such as 
terrain, being viewed from the viewpoint positioned just above the surface, 
looking out towards the horizon. An approximation with a constant level of 
detail would be either too dense in the distance or too sparse near the 
viewpoint. In such a case we would like the level of detail to be view 
dependent. Thus, we need a multiresolution representation that continuously 
adapts the surface at run time based on viewing conditions. Since this kind of 
representation is required by many applications today, we dedicate a particular 
attention to this area. 

 
The direct by-product of iterative contraction is an incremental 

representation, the so called simplification stream [11]. During the process of 
simplification, we get a sequence of models 
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where each step ii
MM →−1 corresponds to the application of a single 

contraction iφ . Thus each intermediate approximation Mi can be expressed as 

the result of applying some of the total sequence of contractions onto the 
original mesh M0. Since we store the entire original model M0 plus the 
contraction sequence, the resulting representation is necessarily larger than the 
original model. If we assume that our original model is very large and our 
desired approximation is quite small, certainly a common case, we are faced 
with more significant problem. Fortunately, a closely related representation can 
solve this problem. 
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The progressive mesh (PM) structure, originally introduced by Hoppe [20], 
[18], provides the same functionality as a simplification stream. However, it has 
two important advantages. First, the resulting representation can actually be 
smaller than the original model. Second, reconstruction time is proportional to 
the desired approximation size. A PM is, in essence, a reversed simplification 
stream. It exploits the fact that the contraction operator is invertible. For each 
edge contraction we can define a corresponding inverse called a vertex split. 
Thus we begin with the final approximation (in Hoppe’s notation base mesh) 
and produce a sequence of models applying a sequence of vertex split 
operations and terminating at the original model. Each item in vertex split 
sequence must encode the vertex being split, positions for the two resulting 
vertices, and which triangles to introduce into the mesh. Hoppe [20] also 
demonstrated that PM is an effective technique for compressing the input 
geometry. 

 
It does not need to be only an edge contraction approach that can generate 

multiresolution models. There are plenty of techniques based on vertex 
decimation as well. Klein et al. [23], [25] suggest starting from a base mesh, 
which is refined by adding vertices in the reverse order of their removal. The 
main difference to the progressive meshes algorithms is that aside from a new 
vertex and two anchor vertices also the triangulation of the accompanying 
fragment has to be transmitted. The unique solution brings Ciampaliny et al. 
[3], which can rebuild an approximation of certain error. Let us consider a set of 
all the triangles that were generated during the whole decimation process, 
including the triangle of the original mesh. Each facet from the set is 
characterized by two time stamps: its creation and its elimination. An 
intermediate mesh is associated by definition with each time stamp, and 
therefore we can associate with each time stamp the global approximation error 
held by the mesh. Given the birth and death time stamps, each facet is therefore 
tagged with two errors, called the birth and death errors. The extraction of 
a representation at a given precision is therefore straightforward: surface is 
composed of all of the facets such that their life interval contains the error 
threshold searched for. 
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4.10 Post-processing techniques 
Mesh Smoothing 

Since the majority of simplification algorithms is primarily focused on the 
amount of triangles and the error of the approximation, the need for other 
requirements such as the quality of triangulation or the smoothness of the 
surfaces are often neglected. However, it is often desired to use the 
approximations in further scientific processing and not only for visualization. It 
is common to find that the quality of approximations is improved in some post-
processing. In recent years many techniques for mesh smoothing have been 
developed especially for the needs of CAD/CAM engineering design and 
analysis [52]. Since most existing algorithms based on fairness norm 
optimisation are prohibitively expensive for very large surfaces, Taubin’s [48], 
[49] geometric signal processing on polygonal meshes with linear time and 
space complexity seems to be quite promising. The algorithm is based on an 
analogy with signal processing. The smooth surface can be seen as a signal 
without high frequencies. Taubin converts the problem of surface smoothing to 
the problem of low-pass filtering. Most smoothing algorithms move vertices of 
the polygonal mesh without changing the connectivity of the faces. Basically the 
internal vertices are iteratively moved to the barycentre of their neighbouring 
vertices. Taubin’s special filter function avoids mesh shrinkage, and also the 
triangles of the mesh are forced to be equilateral. 

His approach to extend Fourier analysis to signals defined on polyhedral 
surfaces of arbitrary topology is based on the observation that the classical 
Fourier transform of signal can be seen as the decomposition of the signal into 
a linear combination of the eigenvectors of the Laplacian operator. To extend 
Fourier analysis to surfaces of arbitrary topology it is only necessary to define 
a new operator that takes the place of Laplacian. A discrete surface signal is 
a function x = (x1,….,xn)t defined on the vertices of a polyhedral surface. The 
discrete Laplacian of a discrete surface signal is defined by weighted averages 
over its neighbourhoods 
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where the weights wij are positive numbers that add up to one. The weights can 
be chosen in many different ways taking into consideration the neighbourhood 
structures. One particularly simple choice is to set wij equal to the inverse of the 
number of neighbours 1/i* of vertex vi. If W = (wij) is the matrix of weights, with 
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wij = 0 when j is not a neighbour of i, the matrix K is defined as K = I – W. Now 
low-pass filtering – the approximate projection onto the subspace of low 
frequencies – can be formulated in exactly the same way as for n-periodic 
signals, as the multiplication of a function f(K) of the matrix K by the original 
signal  

xKfx )('=   (4.12) 

and this process can be iterated N times 

xKfx NN
)(=  (4.13) 

The function of one variable f(k) is the transfer function of the filter. For 
example in the case of Gaussian smoothing the transfer function is f(k) = 1 – λk. 
To avoid the shrinkage effect know in Gaussian smoothing, Taubin proposes 
following function 

)1)(1()( kkkf µλ −−=  (4.14) 

where 0 < λ, and µ is a new negative scale factor such that µ < -λ. That is, after 
the Gaussian smoothing step with positive scale factor for all vertices is 
performed – the shrinking step –, we then perform another similar step for all 
the vertices, but with negative scale factor µ instead of λ: 
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Since f(0) = 1 and µ + λ < 0, there is a positive value of k, the pass-band 
frequency kpb, such that f(kpb) = 1. The value of kpb is  

0
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pbk   (4.16) 

Values from 0.01 to 0.1 of kpb produce good results. Since we want to 
minimize N, the number of iterations, λ is chosen to be as large as possible, 
while keeping |f(k)|<1 for kpb < k ≤ 2. The exact values of µ and λ are computed 
using the expressions above. 
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Image-Driven Mesh Optimization 

This method presented by [32] does provide optimization on already simplified 
model comparing visual appearance of the original and resulting model. The 
algorithm begins with two input meshes, the original detailed mesh and 
a simplified version of this mesh that has the desired number of vertices. It is 
unimportant what method is used to create the simplified mesh. Given 
a number of viewpoints, the algorithm renders images of both the original and 
the simplified meshes for each viewpoint and an edge in the simplified mesh is 
selected for improvement (see Figure 4-8).  

 

Figure 4-8: Twelve uniformly distributed views of a model. The viewpoints 
correspond to the vertices of a regular icosahedron (taken from [32]). 

The algorithm then attempts a number of changes to the mesh at and around 
this edge to create a mesh whose rendered images are closer to those of the 
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original mesh. Possible changes to the mesh include moving two or more 
vertices, edge swapping, or even a vertex teleport (moving a vertex between 
entirely different portions of the mesh). 

The measure of similarity is based on the work by [33] in which an image 
metric is used to order a set of edge collapses. Although their method uses 
geometry-based heuristics for positioning the vertices, here is used the image 
metric directly to determine the best vertex positions and what changes to make 
to the connectivity. 

This mesh optimization method takes into account not just the geometry of 
a model but also properties such as textures and surface normals. This 
approach fixes problems in a simplified mesh that simplification methods are 
insensitive to, such as cracks between surface parts and object interpenetration. 

4.11 Conclusion 
Recent research in the field of surface simplification has produced several 
effective techniques for constructing approximations and multiresolutional 
representations. Some commercial packages have included several 
simplification facilities. The algorithms available offer several possible trade 
offs between quality and efficiency. We have very high quality, but very slow 
algorithms such as mesh optimisation [17]. On the other hand there are very 
fast, but low quality vertex clustering algorithms [35]. Somewhere between 
these extremes we have a number of algorithms, such as the quadric error 
metric [10] or vertex decimation [46], which provide various compromises 
between the speed and quality of the approximation. There are a number of 
areas in which current simplification methods could be improved. 

A new algorithm capable of producing approximations, which are provably 
close to optimal would be quite useful, or an algorithm, which could preserve 
higher-level surface characteristic, such as symmetry. 

All current simplification methods assume that the surface being simplified is 
rigid. There are many applications where surfaces are changing over time. For 
example, animation systems usually represent characters as surface attached to 
articulated skeletons. As the skeletal joints bend, the surface is deformed. 
Current simplification methods must be extended to handle this more 
generalized class of models. 

Many simplification methods are based on the same framework: greedy 
application of simplification operators. For example, greedy decimation can 
limit the quality of the final result. Since it only iteratively does what appears to 
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be the best local operation to perform, a bad decision at some point can lead to 
results that are far from optimal. Alternative frameworks are possible. For 
instance techniques using a simulated annealing-like process [17], or methods 
based on the principle of signal processing on polygonal meshes [51]. 

New methods for measuring approximation error are also needed. Similarity 
of appearance is the ultimate goal for rendering applications. It would be 
helpful to have appearance-based metrics for comparing the visual similarity of 
two models. Even if there are primarily concerned with preserving the shape of 
an object, it is also unclear whether metrics like Emax and Eavg adequately reflect 
the similarity of an approximation whose topology has been simplified. 
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Chapter 5   

Simplification Algorithm 
In the previous chapter, we have reviewed various algorithms which have been 
developed for automatic simplification of polygonal surface models. Now, we 
will present the simplification algorithm which we have developed. It is 
founded on two fundamental components: vertex decimation and half-edge 
collapse algorithm. In this chapter, we will focus on the description of the 
algorithm itself. We will examine algorithm's performance and its genesis in 
Chapter 6 and 7. 

5.1 Design goals 
The core of the algorithm lies on vertex decimation. We assume to have 
digitally measured data, where vertices represent the exact values and edges 
and triangles just supply the mesh connectivity. In many cases the actual 
presence of edges in the mesh is usually given either by some higher 
knowledge or as a random result of polygonization algorithm. On Figure 5-1 
you can see an example of four measured vertices (with boundary) - these 
values are exact but there is no additional information, how the edge e1 should 
be placed in resulting triangulation.  

 

Figure 5-1: Two possibilities of placing edge e1 to triangulate the area among 
four vertices. 
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Since surface energy tends to be minimal, we can suppose such edge position 
that will minimize the resulting area. However, in cases such as sharp-edges the 
situation can be different. This implies our goal not to introduce new vertices in 
simplified mesh but keep just a subset of original vertices in resulting 
approximation. Having these assumptions, we need a method to evaluate 
vertex importance considering neighbouring vertices only. Such evaluation 
provides a method proposed originally by W. Schroeder [46].  

5.2 Importance evaluation 
The evaluation scheme depends on vertex topology in input mesh. Therefore 
vertex type must be classified at first. We recognize 5 vertex types, see Figure 
5-2.  

 

Figure 5-2: Vertex classification. 

Simple vertex is a vertex with a neighbourhood topologically equivalent to 
a disk, where no sharp edge is adjacent to the vertex. A boundary vertex lies on 
the border of the mesh, where by the border is meant an edge adjacent to one 
triangle only. Interior-edge vertex is vertex similar to simple vertex, except it is 
adjacent to two sharp-edges. Corner vertex is adjacent to one, three or more 
sharp-edges, and a complex vertex is a vertex that belongs to non-manifold 
area. 

It is obvious that the original algorithm can deal with non-manifold meshes 
too, but just in a manner, that non-manifold parts are left untouched. In our 
modification, we can process non-manifold meshes as well. Vertices of 
particular interest are only simple, border and interior-edge vertices. For each 
of them a different evaluation process is used.  

The importance of simple vertex v is given by the distance of the vertex from 
the average plane given by neighbouring vertices (see Figure 5-3a). 
A neighbouring vertex is a vertex which shares an edge with the vertex in 
question, in other words, there exists an edge between two neighbouring 
vertices. The plane is called average since the neighbouring vertices generally 
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do not lie on the plane and we have to specify it artificially using the average 
normal vector n and a point x. The normal vector n is computed as 
a normalized average of area weighted unitary normal vectors ni of each 
surrounding triangle. The bigger the area Pi of a triangle is, the bigger is its 
influence on the resulting normal vector.  

,,
N

N
n

n
N ==

∑
∑

m i

m ii

P

P
 (5.1) 

where m is the number of adjacent triangles to the vertex v. 
Having the normal vector n of the average plane, we need to determine the 

point x, lying on the average plane. This point is defined in terms of the average 
of area weighted vectors xi from the origin to the midpoint of each surrounding 
triangle 

∑
∑
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P

Px
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The final distance d of the vertex v from the average plane is given by the 
following equation 

( ).. xvn −=d  (5.3) 

In case of boundary or interior edge vertices, the importance is evaluated as 
the distance of vertex v from a bisector given by its two neighbouring border 
vertices or vertices on opposite sides of interior edge respectively (see Figure 
5-3 - b). 

 

Figure 5-3: Distance d for vertex importance evaluation, (a) - simple vertex case, 
(b) - boundary vertex case. 
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To evaluate the distance of a point from a bisector, we can use an analogy 
with the relation of height and area in parallelogram (v,v1,v2,p). The area can be 
either computed as a product of the base length and the height, or as a size of 
vector product vvvv 121 × . Thus the distance can be evaluated as 

( )
., 21

1
vvq

q

qvv
=

×
=d  (5.4) 

Complex and corner vertices have their importance set to some high value 
which is far below the threshold which allows vertices to be removed. When all 
the vertices are evaluated, a priority queue must be created, where the vertices 
are sorted according to their importance in increasing order.  

As obvious, this process frames the outer optimization loop and is based on 
vertex collapse operator. In the inner loop an edge collapse operator is used. 
Choosing edge collapse had several reasons. The most important one is that 
after vertex removal a triangulation of resulting area has to be done. Although 
it is possible to use projection in 2D, such a triangulation is a non trivial 
problem from aside its computational cost, especially if we want to compare 
qualities of several possibilities. Therefore, once we take the least important 
vertex from the priority queue, we start evaluating its neighbourhood in terms 
of searching the best edge to collapse.  

Since we want only the removal of the least important vertex, we use half-
edge collapse approach, where no new vertex position is evaluated during 
simplification (chosen edge is collapsed to its endpoint different from removing 
vertex).  

5.3 Local edge contraction 
When vertex to be removed is chosen a local simplification operator is applied. 
All neighbouring edges are evaluated according to a change they cause to the 
surface when collapsed. To find such evaluation we simulate all possible 
contractions and estimate the quality of resulting mesh. This quality measure is 
defined as a minimal change to resulting mesh area while given maximal 
triangle normal deviation allowed. Such conditions are based on assumption 
that simplified area should be nearly planar. The edge with best evaluation is 
collapsed to its endpoint, opposite to the vertex being removed. The only 
exceptions are so called sharp edges; edges whose adjacent triangles have 
spatial angle smaller than given threshold (see Figure 5-4). In this case, the only 
solution is a contraction of this particular edge.  
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During half-edge collapse one vertex, one edge and two triangles are 
removed from the mesh. After the removal all affected vertices and triangles are 
updated (their importance values, normal vectors and adjacency information) 
and the global priority queue is re-sorted. 

 

Figure 5-4: Spatial angle ϕ of two triangles is given by the angle between their 
normals. 

Because the edge contraction can potentially introduce undesirable 
inconsistencies or degeneracies into the mesh, we must apply some consistency 
checks to a proposed operation. If one of the checks fails, we discard the 
contraction entirely.  

The most common consistency check is related to the problem of mesh 
inversion. Consider the contraction shown in Figure 5-5. One popular approach 
to detecting this situation is to examine the normals of the facets adjoining 
vertices vi and vj before and after contraction [4]. If a face’s normal changes by 
more than some significant threshold, we can regard this face as being 
“flipped”. A contraction is discarded if any of the local faces flip. To prevent 
fold–over we need to pick suitable threshold value. 

We have chosen to use more careful check [10], which appears to perform 
more reliably in practice. For every face around vi, excluding the faces shared 
with vj, there is an edge opposite vi. If we place a plane perpendicular to the 
face through the edge, the vertex vj must lie on the same side of the plane in all 
cases, see Figure 5-5. 



 
 
 

78 

  

 Figure 5-5: The new vertex (vj) must lie on the same half-plane of all oriented  
edges to prevent fold–over. 

This technique can disclose real foldovers and no threshold values are needed 
to be set.  

5.4 Parallel processing 
Our primary aim was to implement an efficient triangle mesh simplification 
algorithm in parallel environment, to obtain faster results for very large 
data sets. We can see that algorithm described in previous two sections works 
in three steps: 

• Vertex topology and importance evaluation. This part can be done in 
parallel, because all vertices are obviously independent to the others.  

• Priority queue creation using Quick Sort algorithm to sort vertices 
according to their importance. Runs sequentially for some reasons 
described later. 

• Decimation. This part of the algorithm could run effectively in parallel, 
but we have to achieve some important restrictions. 

 
A basic idea, which has been used in theoretical work [22], is that decimation 

by deleting an independent set of vertices (no two of which are joined by an 
edge) can be run efficiently in parallel. The vertex removals are independent 
and they leave one hole per one deleted vertex, which can be retriangulated 
independently. This decreases the program complexity and running time 
significantly. Since deletion and retriangulation is related to the degree of 
vertices being removed (O (d2) time in the worst case, where d is the vertex 
degree), [22] has advocated deleting low degree vertices, d < 10, and proved that 
this still allows large independent sets (>1/6 of vertices). However, this 
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approach ignores the preservation of the model shape. Therefore we used 
a technique [21] when we assign an importance value to each vertex and then 
select an independent set to be deleted by greedily choosing vertices of low 
importance relative to their neighbours. 

 To construct an independent set from an assignment of importance values, it 
is natural to use a greedy strategy – go through the vertices in order of their 
importance and take a vertex if none of its neighbours have been taken. That 
means in independent set can be only vertices that do not share an edge with 
the each other.  

5.5 Super-independent Set of Vertices 
After several experiments we found, that the independent set described above 
is not fully adequate. The criterion of no sharing edge between two 
independent vertices is not sufficient for effective parallelisation. Using such an 
independent set of vertices leads to critical sections in parallel code. Since the 
computation is quite fast, critical sections rapidly decrease the efficiency of the 
algorithm.  

 Wherefore we used a super independent set, where every two triangles 
including two independent vertices can not share an edge, see Figure 5-6. 

 

Figure 5-6: Vertices v1, v2, v3 are independent to each other; vertices v1 and v3 
are super independent. 

If we remove one vertex in the independent set, the removal changes the 
properties of the vertex neighbours. That affects neighbourhood of other 
vertices in the set. In the super independent set are independent even vertex 



 
 
 

80 

neighbours, so vertices are completely independent and the parallelisation can 
be done without critical sections in program code. 

Due to data structures used we can create the independent set in O(n) time, 
where n is the number of vertices. Using the independent set of vertices, we can 
split third step of the algorithm (the decimation) in to two parts – making an 
independent set and own decimation (now easy to run parallel). 

To decrease the system service overhead with managing threads, we split 
a set of computed vertices to number of parts equals to the number of free 
processors (used threads) roughly, and each thread computes one part. 

 
Here is a detailed description of our parallel algorithm: 
1. Divide the set of vertices into n parts, where n is equal to the number of 

free processors. 
� Get the number of processors. 
� Divide the set of vertices into n parts of the same number of vertices. 

2. Run n threads to evaluate vertex importance according to its topology. 
Each thread makes a computation on its own set of vertices. 
� Determine a vertex topology. 
� For simple, boundary or interior edge vertices, compute their 

importance. The importance for any other type of vertex is set to any 
high value (“infinite”).  

3. After all threads finish their job, sort (Quick Sort algorithm) all the 
vertices (increasing) according to their importance. 

4. Find an independent set of vertices. For each vertex do: 
� If the vertex is mark as unused in the independent set (initially all 

vertices are marked as unused), check its neighbours. If all the 
neighbours are unused too, put the vertex into the independent set 
and mark the vertex and all its neighbour vertices as used. 

� Used vertices and their neighbours are skipped. 
5. Divide the independent set of vertices into n parts (n is the number of free 

processors). 
6. Run n threads for decimation. Each thread makes the decimation on its 

own set of vertices. 
� For each eliminated vertex, find the shortest edge that includes it. 
� Test the consistency of the mesh if this edge is contracted (removed). 
� If the consistency test is OK, remove the vertex and retriangulate the 

arising hole, otherwise find another short edge and go to the previous 
point. 

7. Repeat steps 1– 6 until the required degree of the mesh reduction is 
reached. 
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The algorithm is assembled from four main tasks. Vertex importance 
evaluation (which can run in parallel), building a priority queue according to 
vertex importance (runs sequentially for the moment), super-independent set 
creation (which has to be sequential) and own parallel simplification process. 
Figure 5-7 shows the time ratio for one and 8 processors used during 
simplification of Happy Buddha model.  

Happy Buddha - time usage
(1 processor - outside,
8 processors - inside)

Vertex Importance Evaluation

35%

Sort (Quick Sort)

41%

Independent Set

19%

Decimation

5%

Vertex Importance Evaluation

49%

Sort (Quick Sort)

25%

Independent Set

11%

Decimation

15%

 

Figure 5-7: The time ratio of various parts of the algorithm for Happy 
Buddha model with one and eight processors used.  

 
As obvious, the most time consuming parts are importance evaluation and 

sequential vertex sorting rapidly decreases the algorithm efficiency. Also the 
creation of super-independent set seems to be limiting as the maximal 
theoretical speedup of this approach is approximately 15. These results were 
subjects of further improvement as discussed in section 5.6 and also in  
Chapter 6. 

5.6 Further Improvement 
Using independent or super-independent sets of vertices, we need to sort 
vertices according to their importance and also to create the independent set 
itself. This appeared to be a critical part of the algorithm as described above. 
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Since we did not want to use sorting algorithms because of their time 
complexity, we used a special function to threshold vertices and let only few 
least important vertices to be considered as candidates for the reduction. 

The initial idea was to divide data set (vertices) according to the number of 
free processors and run decimation as several independent parts. As we already 
mentioned, most of data are produced by 3D scanners or iso-surface extraction 
methods such as Marching Cubes. Considering the principle of both techniques 
as well as some possible rendering optimizations, we can suppose that such 
triangular mesh will be stored as a sequence of potential triangle strips. Thus 
neighbouring vertices may be stored next to each other in data file or memory. 
In other words, if we divide a data set into few groups, according to vertices 
index, there is a good probability that vertices in each group will be close to 
each other and will constitute a continual mesh. Those groups can be processed 
without critical sections except vertices on the boundary of each group. Such 
vertices are post-processed. 

This approach brought surprisingly good results for the real object models in 
the sense of processing time and acceptable quality of approximation. On the 
other hand there were some problems controlling the simplification degree in 
sense of required budget (resulting number of triangles). Also vertices on the 
border of groups had to be handled in a special way. Another problem came up 
with artificially generated datasets or changed on purpose. Such models (e.g. 
Bunny, see Table 6-1) do not fit to the assumption about strips and the 
algorithm may be quite ineffective in this case.  

Instead of such a blind vertex division, we searched for bucketing function 
which would “sort” vertices in O(N), where N is a number of vertices.  
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Figure 5-8: Vertex importance histogram. 

A histogram of vertices importance for tested data sets is shown on Figure 
5-8. It is obvious that over 90% of all vertices have their importance below 1% of 
maximum importance value. Therefore we proposed a simple bucketing 
function y=f(x) (5.5) shown on Figure 5-9. 

kx

x
y

+
=  (5.5) 
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Figure 5-9: Graph of the function used. 

This function is capable to map the interval < 0,∞ ) to < 0,1 ) non-linearly. 
Because we are interested in only 1% of important vertices, the function (5.5) 
must be modified accordingly (see Figure 6) and scaling coefficient C must be 
introduced.  
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From equation (4) we can see that coefficients C and k must be determined 
somehow. In our approach we decided that we will have two parameters a and 
α that will be experimentally determined by large data sets processing (see 
Figure 5-10).  

a b

C
1

α

1%     10%                                                   100%
 

Figure 5-10: Definition of the hash function. 

The coefficient b is equal to the maximal importance in the given data set and 
therefore f(b) must be equal 1. The coefficient a means the boundary for 
maximal importance of vertices to be considered for processing and α 
determines the slope of the curve, actually. Those conditions can be used for 
parameter k and C determination as follows:   
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Solving that we get 
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According to our experiments on large data sets, we have found that the 
optimal values of coefficients are following: a = 2, α = 80. It means that 2 
percents of the least important vertices will be mapped onto 80% of the whole 
hash table. User has to set values of both parameters and. The parameter α has 
a direct influence to the cluster length in the hash data structure, where cluster 
length is equal to number of vertices in the same bucket. 

Thanks to this function we can assign the vertices to clusters of the same 
reasonably small length. Vertices are then removed cluster by cluster from the 
least important clusters to the most important. The clusters are sorted while 
they are created and whole bucketing has O(N) time complexity. 

Having described the specific details of the method, we can present our new 
algorithm now: 

1. Evaluate the importance of all vertices 
2. Make clusters according to the importance of the vertices 
3. Remove vertex from the first cluster, if it is empty continue with the next 

one 
4. Evaluate changed importance of neighbouring vertices and insert 

vertices in the proper cluster 
5. Repeat steps 3 and 4 until desired reduction has been reached 

All details about our simplification approach can be found in publications 
listed in Appendix A. In the following section we present our results and draw 
conclusions.  
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Chapter 6  

Results and limitations 
In this chapter we provide several experimental results and make a conclusion 
at the end. We present tables of running times, graphs of speed and 
approximation quality comparison and also pictures of rendered models. 
Because of some special kind of models used, we have to claim that no animal 
were harmed during following experiments. 

6.1 Experimental Results 
We have used several large data sets but we have drawn up our experimental 
results using only 7 different data sets, see Table 6-1. 

 
 
 
 
 
 
 
 
 

 

Table 6-1: Data sets used. 

Table 6-2 shows time comparison achieved by reducing the models using 
1 to 8 – processor computer (DELL Power Edge 8450 – 8xPentium III, cache 
2MB, 550MHz, 2GB RAM, running on the Windows 2000). 

 

 

model name # triangles # vertices 

Teeth 58,328 29,166 

Bunny 69,451 35,947 

Horse 96,966 48,485 

Bone 137,072 60,537 

Hand 654,666 327,323 

Dragon 871,414 437,645 

Happy Buddha 1,087,716 543,652 

Turbine blade 1,765,388 882,954 
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Time [sec] obtained with different number of 
processors (threads) used 

Model 
name 

1 2 3 4 5 6 7 8 

Horse 8.9 6.3 5.5 4.9 4.7 4.5 4.4 4.3 

Bone 13.5 9.4 8.2 7.6 7.0 6.8 6.6 6.4 

Hand 69.2 51.5 44.8 41.0 39.7 38.4 37.5 36.7 

Dragon 93.6 69.5 61.5 57.6 54.3 52.6 51.3 50.6 

Happy 
Buddha 

118.3 89.1 78.1 73.2 69.3 67.8 65.9 64.5 

Table 6-2: Obtained time (in seconds) for 90% reduction on 1 to 8 processors 
active. 

We investigated the acceleration and the efficiency for different size of 
data sets according to the number of processors used.  

6.2 Speedup comparison 
Figure 6-1 shows a graph of the speedup comparison. The speedup a is 
computed from total times (sequential and parallel parts of the algorithm 
together) using expression (6.1). 

Ntime

time
a 1=  (6.1) 

where N=1..8 is a number of processors used and timeN is the time obtained if N 
processors (threads) are used. Figure 6-2 presents the speed-up of particular 
parts of the simplification process. The vertex importance evaluation, vertices 
sorting, independent set of vertices creation and decimation. 
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Figure 6-1: The speed-up of total computation (total time), parallel and 
sequential parts together; the acceleration is computed for several models of 

different amount of triangles. 
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Figure 6-2: The speed-up of partial phases of the simplification algorithm. 
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6.3 Efficiency comparison 
On Figure 6-3 we can see a comparison of the computational efficiency 

according to the size of data set and number of processors used. The efficiency e 
is defined as a speedup divided by the number of processors used: 

NtimeN

time
e

∗
= 1  (6.2) 

where N=1..8 is a number of processors used and timeN is the computational 
time if N processors are used. 
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Figure 6-3: The efficiency of total computation; the efficiency is computed for 
several models of different amount of triangles. 

6.4 Amdahl‘s law 
The experiments proved that the method is stable according to the number of 
processors used and all the results meet the Amdahl’s law (6.3) perfectly. 

N

p
p

ateor

+−

=

)1(

1
 

(6.3) 

 
 
 



 
 
 

90 

and therefore 
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where p is potentially parallel code and N is the number of processors used. 
 
The value of potentially parallel code is independent from the number of 

processors used, see Table 6-3 and for the large model Happy Buddha the value 
p = 0.51 was reached for the whole algorithm. 

 

Number of processors (threads) used  

1 2 3 4 5 6 7 8 

e 1 0.66 0.5 0.4 0.34 0.29 0.25 0.22 

a 1 1.32 1.51 1.61 1.7 1.74 1.79 1.83 

ateor 1 1.32 1.51 1.61 1.7 1.74 1.79 1.83 

p X 0.49 0.51 0.50 0.51 0.51 0.51 0.52 

Table 6-3: The experimental results and theoretical calculations according to 
Amdahl’s law; computed for the Happy Buddha model. 

Figure 6-4 shows the amount of potentially parallel code according to the 
number of triangles, for different number of processors used. 
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(a) 

Amount of the parralel code in decimation part
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(b) 

Figure 6-4: The amount of the parallel code for the whole algorithm (a) – the 
potentially parallel code according to Amdahl’s law is approx. 51%, the amount 

of the parallel code for the decimation part (b). 

Methods Comparison 

Figure 6-5 shows the running time for 96% reduction for both mentioned 
approaches of vertices ordering. We can see that using the bucketing function 
we obtained the best running time in comparison to Quick Sort. It is necessary 
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to point out that the methods using sorting algorithms were implemented in 
parallel while bucketing was sequential. The run time of “hash” function is 
faster than 8 processors running the method with sort algorithm.  
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Figure 6-5: Achieved time comparison for two mentioned approaches. 
Presented Q-Sort time was achieved running on 8 processors, while bucketing 

function time is valid for sequential run on one processor. 

Unfortunately the results are not comparable with other known algorithms, 
due to the different platforms. To make the results roughly comparable at least, 
we use the official benchmarks presented by SPEC as shown in Table 6-4, where 
η presents the superiority of the DELL computer against the SGI. Table 6-5 
presents our results according to results obtained recently by other algorithms, 
taking the ratio η into the consideration. 

 

benchmark test / machine SGI R10000 DELL 410 Precision η  
(DELL/SGI) 

SPECfp95  8.77 13.1 1.49 

SPECint95 10.1 17.6 1.74 

Table 6-4: Benchmark test presented by Standard Performance Evaluation 
Corporation. 
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algorithm time for a reduction from 69.451 to 1.000 
triangles [sec] 

Proposed algorithm 4,1 * η = 4,1* 1,49 = 6,11 

Garland [10] 10,40 

Lindstrom & Turk [31] 2585,00 

Hoppe [20] 500,00 

JADE [3] 325,00 

Table 6-5: Rough comparison of running-times of reduction of the Bunny 
model. 

It is obvious that our algorithm is really fast. However, to be able to make 
a full comparison of these methods it is important to consider the 
approximation quality as well. Unfortunately, this kind of information is 
usually somehow hidden in majority of papers related to mesh simplification 
problematic. 

 
Approximation quality 

As presented in detail in Chapter 3, several error metrics can be used to 
measure the quality of approximation. The most frequently used approach is to 
compute a geometric error using Eavg metric (6.5, 6.6) derived from Hausdorff 
distance: 
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(6.5, 6.6) 

 

where M1 and M2 are original and reduced model, k1 and k2 are numbers of 
vertices on each model, X1 and X2 are subsets of vertices in M1, M2. 

As our method keeps the subset of original vertices, we use more simple 
formula (6.7): 
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where k1 is original number of vertices, P(M1) is a set of original vertices and 
dv(M2) is the distance between original and reduced set of vertices. 
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Figure 6-6: Approximation error comparison. 

Figure 6-6 presents a comparison of error measurement of the proposed 
algorithm and M. Garland’s method [10]. However, such error evaluation is not 
very accurate, because every two models can act in a completely different way. 

If we compare the two above mentioned methods, we will find that the error 
values are almost the same. It is also hard to say which method gives the best 
results, because for each model we get different behaviour of the error. 
Examples of reduced models are presented on Figure 6-7, Figure 6-8 and Figure 
6-9. 

 

 

Figure 6-7: A teeth model (courtesy Cyberware) at different resolutions; the 
original model with 58,328 triangles on the left, reduced to approx. 29,000 

triangles in the middle and 6,000 triangles approximation on the right. 
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Figure 6-8: The Happy Buddha model (courtesy GaTech) at different 
resolutions; the original model with 1,087,716 triangles (a), reduced to 105,588 

triangles (b), 52,586 triangles (c), 10,974 triangles (d). 

 

Figure 6-9: A bone model (courtesy Cyberware) at different resolutions; the 
original model with 137,072 triangles (a), reduced to13,706 triangles (b), 6,854 

triangles (c), 1,248 triangles (d). 

6.5 Conclusion 
We have described our superior algorithm for the simplification of triangular 
meshes, which is capable of producing good quality approximations of 
polygonal models in uncontested running times. 

The algorithm combines Schroeder’s vertex decimation and edge contraction 
methods. In the outer optimization loop vertex importance is evaluated based 
on decimation criteria, while inner optimization loop uses edge collapse 
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operator to find best fitting contraction, considering even some attribute values, 
and to provide retriangulation in a short time. We have also introduced 
a bucketing function, which can be used instead of expensive vertices sorting. 
Our algorithm has proved its high speed and simplicity. It can be run in parallel 
and is best suitable for fast preview providing satisfactory level of detail. 

However, there are many problems connected with vertex collapse operator 
used in decimation in general. At first, it is necessary to explicitly define the 
sharp edges. Sharp edge is such an edge, where the angle between the two 
adjacent triangles is less than the specific threshold or the edge is required by 
the application. To set the threshold some experience of the user is required and 
such a threshold may be different for different models. The main disadvantage 
of vertex decimation methods is that they are not able to preserve a volume, 
since they produce shrinkage of the reduced model (assuming closed surfaces 
with a majority of convex vertices). Figure 6-10 illustrates the situation in 2D. 
The more the model is reduced, then the smaller is its volume, or 
area respectively. Unfortunately there is no way how to avoid this effect. 
Therefore methods based on edge collapse seem to be more promising from this 
point of view. 

before                                after

v1

v4 v2

v3

 

Figure 6-10: Shrinkage caused by the removal of vertices v1, v2, v3 and v4.  

Moreover, edge contraction methods offer intuitive techniques for 
eliminating approximation error by optimal positioning of a new vertex after 
performing an edge collapse. This issue has been also adressed by Taubin, see 
[50] for details. 
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Chapter 7  

Similarity of Appearance 
At this chapter we will present another approach that looks at the simplification 
problem from a slightly different point of view. Although a geometrical 
distance can tell a lot about model similarity in space, for a similar visual 
appearance we would rather follow some other criteria.  

The human visual system allocates different amounts of processing resources 
to different portions of the visual field which provides a trade-off between 
resources and time. On the one hand, attention can be shifted to a new location 
through a saccadic eye movement. On the other hand, the photoreceptor 
density that decreases between the fovea and the periphery induces no-uniform 
processing capability over the entire field. In fact, the conclusion is still more 
surprising: features will only be perceived if they success in attracting attention 
[8]. A great deal of biological vision research has addressed a problem of 
defining such features. Even thought many biological studies helped shape 
computational models, we focus on feature perception in computer vision.  

The proposed approach is based on detection of the main features of original 
model and applying few heuristic rules tries to keep these features over whole 
simplification process. 

7.1 Vertex estimation – feature detection 
According to the notes in previous section, in the following, we consider as 
a feature either an extreme vertex (a peak) or a sharp edge (two or more 
extreme vertices). Thus features detection is naturally based on vertex 
evaluation. Since a lot of oversampled models that need to be simplified are 
produced by 3D scanners, one can argue that it is the input vertices that are the 
true data to be preserved rather than the input surface. Thus we do not study 
any properties of edges or triangles as they are defined in the model. We 
suppose that these elements (edges and triangles) are derived from original set 
of points anyway. Although we detect feature vertices, we of course mainly 
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search for non-important vertices – vertices to be easily removed with 
a minimal harm on model’s appearance. The best candidates for removal are 
the least important vertices being part of planar regions of the mesh. 

We have studied 4 approaches how to evaluate vertex importance. 
 

Average plane distance 

First method was based on evaluating vertex property according to previously 
used distance from an average plane. The plane is given by vertices adjacent to 
evaluated vertex v. This is the same technique as described in section 5.2. The 
higher the distance is the more important is the vertex in a model. Vertices with 
high values are good candidates to be marked as feature vertices. Vertices with 
near-to-zero distance can be removed. 

 
Gaussian curvature 

Since we mostly search for planar regions, we also did several experiments 
using Gaussian and mean curvature estimation of the surface [47]. Because of 
our focus on flat areas and the fact that we search for vertex pair with the same 
evaluation, the Gaussian curvature only was sufficient.  
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The curvature K is given by the equation (7.1), where i goes over all 
neighbours of evaluated vertex, α is the vertex angle in each of neighbouring 
triangle and A means the area of neighbouring triangles. 

 
Note that we are searching for single vertex property only, thus we do not 

need to classify the mesh geometry exactly.  
 
Volume estimation 

Another widely used criterion in mesh simplification [31] is based on 
underlying condition to keep the volume of the original model. In this approach 
a vertex importance is related to the volume of the mesh below the vertex (part 
of the mesh given by adjacent triangles). For each vertex and its neighbourhood 
we introduce a new vertex vv, given as an average point of all vertices adjacent 
to the vertex in question v0. 



 
 
 

99 

m

v

v

m

i

i

v

∑
== 1

r

r

 

 (7.2) 

Having this virtual vertex vv we compute the a of volumes of tetrahedral 
v0,vv,vi,vj, where vv is the virtual vertex and v0,vi,vj are vertices of triangles in 
our triangulation. See Figure 7-1. 

 

Figure 7-1: Vertex related volume estimation. 

The resulting volume value V is weighted by the longest edge going out from 
vertex v0 to somehow normalize the values over the whole mesh. The volume 
has been evaluated according to following formula (7.3, 7.4). 
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 (7.3, 7.4) 

where Dk is the volume of one tetrahedron and k goes over all tetrahedrons 
related to vertex v0 which is supposed to lay in the origin. 

 
Average normal vector 

The last and in some way straight forward method evaluates vertices by 
estimating a normal vector in vertex v0. The normal vector n is computed as an 
average normal of all triangles adjacent to the vertex v0, see Figure 7-2. 
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Figure 7-2: Average normal vector. 

We used the easiest way of computation, which is not-weighted average, see 
equation (7.5). 

m

n

N

m

i

i∑
== 1  (7.5) 

Note that the normals of triangles have unit length. The importance value is 
the inverse of the length of the normal. The more the normal length is closer to 
1 the more flat area is around the vertex in question. Naturally, if all the 
neighbouring triangles have their normals in the same direction, the area of the 
triangle fan is flat and the length of resulting normal will be equal to 1. The 
more the vertex represents a peak in a mesh the less will be the resulting 
normal length, since each of partial normals points to different direction. 

7.2 Final algorithm 
Evaluation results 

Studying the results of presented evaluation, we have decided to use the 
average normal for vertex importance estimation (feature detection). On Figure 
7-3 you can see the example of cow model with 50% most important vertices 
highlighted according to all methods presented. Since all the pictures show 
exactly 50% most important vertices, it is obvious, that the average normal 
estimation (top left) gives the best results showing the main features of the 
model. As you can see, it is a kind of caricature, where the most important 
contours are highlighted (horns, ears, eyes, neck, and legs). The Gaussian 
curvature estimation (top right) also gives good results which could be even 
better with combination of mean curvature to detect sharp edges too instead of 
peak points only. However, the computation would be too time-consuming. 
Average distance evaluation (bottom left) tends to involve the sharp edges too. 
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On the other hand it misses the details kept by small triangles in areas such as 
eyes and also highlights which could be supposed not to be very important 
such as a belly. Probably the worst result gives the estimation of tetrahedrons 
volume, which was anyway more or less experimental. 

 

 

Figure 7-3: 50% important vertices of cow model according to 4 different 
evaluation used – average normal (top left), Gaussian curvature (top right), 

average plane distance (bottom left), tetrahedral volume (bottom right). 
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The graph on Figure 7-4 shows the rate of vertices and their importance. The 
picture says that from all the number of vertices (approx. 3000) there were 
about 2000 vertices with importance lower then 0.5. It’s obvious, that all the 
importance evaluation methods act in the similar way and the majority of 
vertices have a low importance (tests have been performed on several models 
naturally). Again, the average normal vector evaluation gives the most wanted 
results - declaring the majority of vertices as non-important (the lowest line). 
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Figure 7-4: Vertex evaluation according to the method used in a model of a cow. 

After several experiments with the average normal computation (not 
weighted, weighted by triangle area), we concluded to the evaluation, where 
each normal is weighted by the apical angle of given triangle. The precise 
formula can be seen on equation (7.6). 
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where m is the number of neighbouring triangles and αi is the apical angle of i-
th triangle at the vertex (see Figure 7-5). Note that the resulting normal vector N 
is not normalized. 
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Figure 7-5: Normal vector weighted by apical angle α for each of adjacent 
triangle. 

This approach produces best quality evaluation which is independent on 
tessellation at the vertex (see Figure 7-6). In case of non-weighted normal, the 
resulting normal vector will be different in example on the left (the other two 
will be the same and the normal will have a direction more to the front). If the 
normal vector would be weighted by triangle area, the first two examples will 
have the same normal, but the third one will be different (since the area is 
smaller). Only the apical angle weight will give us the same results for all three 
cases. 

 

Figure 7-6: Three examples of vertex neighbourhood. 

Having evaluated all the vertices we can sort them into priority queue 
according to their importance. The least important vertices are the best 
candidates for removal. Since vertex removal followed by re-triangulation is 
neither trivial in 3D nor natural when ignoring original edges, we perform and 
edge contraction instead. For a given vertex the adjacent edges are investigated 
and the best-fitting one is replaced by a new vertex. By this step we get a correct 
triangulation and are able to follow some other criteria on a quality of resulting 
mesh. 
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Best-fitting edge estimation 

As already said, once we have a vertex candidate for the removal, we need to 
search for the best edge to perform the contraction. The chosen edge will be 
replaced by a new vertex of a specific position. Before we describe the edge 
estimation, we must first introduce an evaluation of new vertex position. 

 
Since the aim of the method is to find a simplified approximation of the 

model with respect to the similarity of appearance, we do not subordinate the 
vertex position to any error estimation. We try to find such a vertex which 
would approximate the suppositional surface in between the two end-points of 
the edge, see Figure 7-7. 

 

Figure 7-7: The new vertex should lie somewhere on the dashed line (in 2D). 

Let’s consider 2D case for clearer explanation. To determine a new vertex 
position we use a curve which approximates surface the way we show on 
Figure 7-7. At the beginning we have only two endpoints and non-normalized 
normals which determine vertices importance. We used a quadric curve with 
near least square acceleration, introduced originally to smooth the model 
contour by [2]. The nice thing about this curve is its invariance to tangent 
lengths. The tangents corresponding to a pair of normals at the vertices can be 
obtained by using the so-called Gram-Schmidt orthogonalization algorithm. 

T1 =N2−N1 (N1 ·N2), (7.7) 

T2 =−N1+N2(N1 ·N2). (7.8) 

Note, that the normals are assumed to be normalized. It should also be 
pointed out that when the angle between the normals, is zero or very close to 
zero, then we can not compute the tangent in this way. We use a linear 
interpolation on the edge instead. Let’s have  

P = P2 – P1 (7.9) 

and coefficients βαβα ′′,,, , where 
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Thus the only question is how to choose the parameter t, which means, to 
where to put a new vertex on the curve. Since the curve itself is given by 
normals as well as the vertex importance, the natural way is to use a linear 
interpolation on the importance (length of the normal vectors). Thus, if the 
importance of vertices will be equal, the parameter t will be set to 0.5 (the new 
vertex will be placed in the middle of the curve). 

 
Switching to 2.5D, we have a tool now how to place a new vertex somewhere 

“above” the contracted edge, instead of just somewhere in between the 
endpoints of the edge. In full 3D space we can also influence the vertex position 
by the properties of triangles adjacent to the edge, or their opposite corners 
respectively. We can use the quadric curve again and the only condition is that 
the area is not arrow-shaped, see Figure 7-8. In case of arrow-shaped quads we 
use only one curve constructed over the edge. 

 

Figure 7-8: The arrow-shaped quad (left), the non-problematic case (right). 

The parameter t’ of the second curve (between opposite corners of two 
triangles adjacent to the edge) is again given by the importance of opposite 
corner vertices, but this time it is weighted by the inverse value of the distance 
of each vertex to the point estimated on the first curve. So, if the distance is 
equal, then only the importance matters. If the distance of one vertex is higher 
the less of its importance is considered. This condition forces to place the vertex 



 
 
 

106 

in the position given by the importance of surrounding vertices and not the 
exact topology of the mesh. The final vertex rv is placed just in the middle of the 
two vertices on both curves, see Figure 7-9. 

 

Figure 7-9: The construction of new vertex position. 

Having described the new vertex position evaluation, we can get back to the 
procedure of choosing the best-fitting edge for the contraction. In our algorithm 
we take all the edges adjacent to given vertex (candidate for removal), and 
compute new vertex position for each edge. For every new vertex we examine 
affected mesh property like the difference between area of original and 
resulting triangles, or inconsistencies such as mesh folding or triangle 
degeneration caused. Since we primarily remove vertices on flat regions, we 
force the resulting mesh to be as flat as possible, thus minimal area of resulting 
triangles is prioritized. The edge with such a best evaluation is contracted for 
real. If there is no suitable edge to process, the removal is forbidden. 

 
Upon a framework described above, we can present the proposed algorithm 

as follows 
 
Init:  
• go over all the vertices and compute their importance 
• sort vertices according to the importance 

 
Main loop: 
• take the least important vertex 
• for every adjacent edge 

• compute new vertex position for case of contraction 
 
• simulate the contraction and evaluate the quality of  

resulting mesh 
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• perform the contraction of best-fitting edge  
• re-evaluate affected area 

• compute vertex importance 
• insert into a priority queue 

• continue the main loop 
 
The real implementation uses three magic parameters which are important for 

the resulting mesh and can be changed by user. The first parameter is an 
importance threshold. If vertex importance exceeds the value of the threshold, it 
is marked as extremely important one. These (feature) vertices are processed 
a bit different way than described above. The main difference is in estimation of 
parameter t, which is set either to 0 or 1 depending on which endpoint of an 
edge is extreme. If both of them are extreme, the more important vertex wins 
and its position is kept. This strategy leads to simplification which keeps the 
most important features represented by extreme vertices without any change 
from the original mesh. Such extreme vertices can be seen on Figure 7-10, for 
example at the neck. The lower is the threshold value the more features of the 
model will be kept and less simplification will be performed. 

 

 

Figure 7-10: Model feature detection for (left) 50%, (middle) 75% and (righ) 90% 
simplification. 

The second parameter is the maximal allowed angle between normals of 
triangles before and after edge contraction. This value helps to detect triangle 
folding and also controls the smoothness of the resulting mesh. The smaller is 
the angle the smoother is the resulting mesh – contractions producing not-wavy 
surfaces are preferred.  

 
Third parameter is an angle between two adjacent triangles and helps to 

define so called flat edge. In general if the vertex selected for removal is extreme 
and one of its neighbourhood vertices is extreme as well, only the edge between 



 
 
 

108 

these two vertices can be considered for removal. Applying this rule we can 
preserve sharp3 edges. In this case a sharp edge is every edge that has extreme 
endpoints and is not a flat edge. In other words, we do not detect sharp edges 
studying the sharp angle between adjacent triangles. The algorithm marks the 
edge as sharp if both of its endpoints are extreme and the angle between 
adjacent triangles is less than the value given by our third magic parameter. If 
such angle is bigger (at most 180 degrees) the edge is marked as a flat edge and 
is prohibited from contraction, since it could dramatically change the shape 
represented by the mesh, see Figure 7-11. 

 

Figure 7-11: An example of sharp edge (E1-E5) and flat edge (E6). 

In general two strategies can be used for simplification process - with or 
without memory of reduced vertex and affected area. The approach with 
memory initializes a counter of affected vertex during reduction and every time 
the vertex is marked as a candidate for removal the counter is decreased. The 
only vertices with a counter equal to zero can be considered for the reduction. 
Such a use of affected-vertices memory helps to distribute reduction process 
over whole surface and the resulting mesh has nicely shaped triangles. If the 
simplification runs without memory it can easily produce rapid-flat models, 
where flat regions are simplified in prior, see Figure 7-12. 

 
 

                                                 
 
 
3 An edge, where the angle between its two adjacent triangles is lower than some specific 

value. 
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Figure 7-12: Points distribution (density of vertices from top-view) during 
simplification of a terrain model (left) with (middle) and without (right) vertex 

memory. The middle and left picture shows model after 80% simplification 
(20% of original data). 

7.3 Results 
The proposed method has been tested on several models, mostly from GaTech, 
Cyberware and Avalon depositories. Table 7-1 shows some fundamental 
information about models on which we will present obtained results. All the 
experiments were performed on Intergraph TDZ2000 400MHz Pentium II with 
512MB RAM, running on WindowsXP. 

 

name cow fandisk teeth bunny horse bone terrain dragon 

# 
vertices 

2,905 6,475 29,166 35,947 48,485 60,537 65,829 437,645 

# 
triangles 

5,804 12,946 58,328 69,451 96,966 137,072 130,630 871,414 

picture 
 

 
 

     

Table 7-1: Models used for presented results. 

Table 7-2 shows the running times of 80% reduction. It is obvious that rapid-
flat method (approach without vertex memory) is faster but the resulting mesh 
contains long and thin triangles. On the other hand the approach with vertex 
memory produces nicely shaped triangles but the running times are slightly 
worse.  
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name cow fandisk teeth bunny horse bone terrain dragon 

mem 1.244 4.604 11.700 13.304 21.032 26.116 31.728 141.980 

no mem 1.160 4.116 10.120 12.320 19.848 24.008 28.872 131.804 

Table 7-2: Obtained timing [sec] for 80% reduction. Thresholds have been set to 
mark 15% vertices as extreme. 

On Figure 7-13 you can see the resulting meshes of both methods for fandisk 
model. However, at the most drastical reduction (99% and more) the resulting 
meshes are similar for both, with and without memory, approaches. 

 

Figure 7-13: Example of reduced model. The original mesh (left), 90% reduction 
with and without vertex memory (two in the middle) and drastical 99% 

reduction (right). 

On Figure 7-14 you can see graphs of error estimation for several models 
during simplification process. The models have been simplified from 0% up to 
90%. The results are taken from METRO ver. 4.05 [5], using default values 
(vertex, edge and face sampling enabled, Monte Carlo sampling, 10times more 
samples than triangles in a mesh). To have all the values comparable, the 
METRO results were taken with respect to Dragon model, thus re-computed 
using following formula (7.15): 

maxV

V
EE c

Mr =

 
 (7.15) 

where EM is the value evaluated by METRO, Vc is the number of vertices of 
current model in certain level of detail and Vmax is the number of vertices of 
Dragon model, which is the maximum number of vertices for certain LOD. 
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METRO error estimation
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Figure 7-14: Approximation error for certain LOD for approaches with (upper) 
and without (lower) memory. 

It is obvious that memoryless approach gives worse result in meaning of the 
Hausdorff distance. However, vertices distribution follows ones assumption 
that flat regions needs to be built from much less number of vertices than 
rugged surface. Here is noticeable difference between geometrical and 
perceptive evaluation of the approximation quality. 
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Also the oversampled models such as dragon, bunny and bone have error 
values higher than other datasets. Although, the values are higher than other 
simplification methods, it must be pointed out that METRO computes the error 
based on the Hausdorff distance which is not considered during 
a simplification in this case. The main goal of presented algorithm is to keep the 
similarity of appearance. However, the geometrical error is also important in 
mesh simplification to be able to compare the results with other methods. In 
Table 7-3 there are outputs of METRO in detail for cow, bunny and dragon 
models. 

 

name reduction vertices faces area bbox diag. H-dist 

0% 437645 871414 0.1452 0.266905 dragon 

90% 41603 81808 0.1446 0.266801 
0.005964 

0% 35947 69451 0.1143 0.250246 bunny 

90% 3824 5368 0.1125 0.249250 
0.022444 

0% 2905 5804 2.1802 1.271114 Cow 

90% 391 776 2.0851 1.267350 
0.032040 

Table 7-3: METRO details for chosen models. 

7.4 Conclusion 
A new approach for triangular mesh simplification with respect to similarity of 
appearance was presented. This original method is based on vertex importance 
evaluation to select the least important vertex to be removed from the mesh. 
This evaluation uses vertex average normal vector which lowest values concern 
specific model features to be kept in approximations. Simplification itself is 
performed as an edge collapse where a new vertex position is evaluated with 
respect to supposed surface of the original object given by the endpoints of the 
edge, the normal vector at these points and opposite corners of adjacent 
triangles. 

We showed that geometrical error does not have to be the only criterion of 
approximation quality and that a visual appearance can lead to opposite 
observation. This could be quite important in application such as computer 
games, 3DTV and other multimedia where mathematical precision is not 
a principal value. Conversely, preserving main visual features is more relevant. 
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Chapter 8  

Conclusion 
We have described a method for the automatic simplification of highly detailed 
polygonal surface models into faithful approximations containing fewer 
polygons. The empirical tests demonstrate that presented simplification 
methods are of very high speed while keeping a reasonable quality of the 
resulting approximations, see Figure 8-1.  

We have also shown how to run simplification algorithm in parallel without 
a need of critical sections.  

An original approach for triangular mesh simplification with respect to 
similarity of appearance was presented. Based on edge collapse operator this 
algorithm introduces the way how to compute an optimal position of resulting 
vertex after each edge contraction. 

 

Figure 8-1: A dragon model (courtesy GaTech) at different resolutions; the 
original model with 871,414 triangles on the left, reduced to approx. 430,000 

triangles in the middle and 87,000 triangles approximation on the right. 

8.1 Summary of Contributions 
To review, the primary contributions of my work as described in this 
dissertation are: 

• Super-independent set of vertices. We have defined a new criterion 
how to choose vertices as candidates for removal during simplification 
process. It is based on independent set of vertices [21] with more strict 
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constraints to vertices neighbourhood. The use of super-independent set 
of vertices leads to ability to have a parallel code without critical sections 
in simplification process. 

• Surface Simplification Algorithm. By combining several approaches of 
mesh simplification and principles of super-independent set of vertices, 
we have developed a fast parallel algorithm capable to produce high-
quality approximations of polygonal surfaces. This algorithm can 
simplify both manifold and non-manifold models. It's robust, very fast 
and accurate while preserving a mesh topology. Since the algorithm 
keeps the subset of original vertices, in addition to producing single 
approximations, it can be also used to generate multiresolution 
representations such as progressive meshes and vertex hierarchies for 
view-dependent refinement.  

• Edge classification and introduction of new vertex position. Finally, we 
have introduced an original approach of edge evaluation and 
classification, which results in a new simplification algorithm. This 
algorithm mainly preserves the visual appearance by detecting and 
keeping important features of the original model such as sharp edges or 
high detail regions during even drastic simplification. While we suppose 
that original surface tends to be curved according to its vertex normals, 
a new vertex position is determined to lay on such supposed surface 
using near least-square curvatures. 

8.2 Future Work 
As we have a simplified model we are still able to compute back the curves on 
which approximately original vertices lied. This is very interesting and leads to 
an idea of mesh refinement. With some effort we should be able to refine 
simplified model even without the knowledge of simplification process or exact 
position of original vertices. A future work is to design such refinement method 
which would be capable of displaying a complex model just from a base mesh. 
Along a base mesh it will be necessary to provide some additional information 
as well, which will be the main subject of the further research.  

Such method would provide an easy way of transferring simplified 
triangular meshes through the network and fine rendering on client’s side using 
several mathematical operations.  
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Appendix A 
Coloured pictures 
 

      

Figure 1-3, page 11.   Figure 2-6, page 21. 

 

Figure 2-11, page 28. 

 

Figure 3-3, page 46. 
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Figure 4-5, page 56. 

 

Figure 6-7, page 94. 

 

Figure 6-8, page 95. 
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Figure 6-9, page 95. 

 

Figure 7-10, page 107. 

 

Figure 7-13, page 110. 

 

Figure 8-1, page 113. 
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[ii] Franc M., Skala V.: Fast Algorithm for Triangular Mesh Simplification 
Based on Vertex Decimation. Springer-Verlag Lecture Notes, 
CG&GM2002 Proceedings, Amsterdam, The Netherlands, April 2002. 
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Sorting. In SCCG 2001 Conference Proceedings, Comenius University 
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Appendix C 
Stays and Lectures Abroad 
 

Stays: 

12.2.1999 – 28.5.1999  University of Girona, Spain 
19.5.2001 – 27.5.2001 Univesity of Maribor, Slovenia 
15.6.2001 – 28.6.2001 University of Ioannina, Greece 
 
Lectures: 
24.5.2001 Trinagular Mesh Decimation - University of Maribor, Slovenia 
27.6.2001  Parallel Triangular Mesh Simplification – University of Ioannina, 

Greece 
 

Conferences: 

24.4.2000 – 25.4.2000 CESCG 2000, Budmerice, Slovakia 

26.4.2000 – 29.4.2000 SCCG 2000, Budmerice, Slovakia 
10.9.2000 – 15.9.2000 Algoritmy 2000 – Conference on Scientific 

Computing, Vysoke Tatry, Slovakia 
28.9.2000 – 29.9.2000  3rd EUROGRAPHICS Workshop on Parallel Graphics 

& Visualization, Girona, Spain 
25.4.2001 – 28.4.2001 SCCG 2001, Budmerice, Slovakia 
21.4.2002 – 24.4.2002 CG&GM2002, Amsterdam, The Netherlands 
21.4.2006 – 24.4.2006 SCCG 2006, Ciasta Papiernicka, Slovakia 
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Appendix D 
Project work 
Member of solving team of following projects: 

• MSM235200005 and LC06008 Ministry of Education CR 
• 3DTV FP6-2003-IST-2 project Network of Excellence, No:511568 
• Computer Graphics and Visualization in Parallel and Distributed 

Environment, MSMT CR - VS 97 155 
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