
Západočeská univerzita v Plzni
Fakulta aplikovaných věd

Methods for Polygonal Mesh Simplification

Ing. Martin Franc

disertační práce
k získání akademického titulu

v oboru Informatika a výpočetní technika

Školitel: Prof. Ing. Václav Skala, CSc.

Katedra: Katedra informatiky a výpočetní techniky

Plzeň 2007

2

Abstract
A common task in computer graphics is to visualise models of real-world
objects. The visualisation of large and complex models is required more and
more frequently. This is followed by number of operations which must be done
before the own visualisation, whether it be an analysis of input data (e.g.
searching for an iso-surface) or a model simplification. Surfaces of such models
are usually represented by triangular meshes and often contain thousands or
millions of triangles. Since a fast interaction with these models is desired, such
as real time visualization, we need either to improve our graphics hardware or
to simplify somehow the complexity of the mesh. In spite of huge progress
made in graphics hardware field in last years, we still need to increase
a performance using optimal algorithms and programming techniques. One of
the techniques that enhance the power is parallel computation.

In this work we present an original efficient and stable algorithm for triangle
mesh simplification also in parallel environment. We use a method based on
our original super independent set of vertices to avoid critical sections. The
advantage of this algorithm is its high speed even in sequential run and
reasonable quality of resulting approximation.

Since more than just geometrical error matters in estimation of simplification
algorithms, we present a new algorithm for triangular mesh simplification with
respect to the similarity of appearance of the original model and resulting
approximation. We introduce an approach how to estimate a new vertex
position during an edge collapse algorithm based on supposed surface
curvature.

3

Abstrakt
Jedním z hlavních úkolů počítačové grafiky je vizualizace modelů objektů z
reálného světa. Stále častěji je požadováno zobrazování rozsáhlých modelů. To
jde ruku v ruce s počtem a složitostí operací, které musí být provedeny ještě
před samotným zobrazením, ať už se jedná o transformaci vstupních dat (např.
hledání iso-plochy), nebo třeba zjednodušení daného modelu. Výsledné
povrchy těchto modelů jsou obvykle reprezentovány trojúhelníkovou sítí
obsahující často tisíce až miliony trojúhelníků. Jelikož požadujeme rychlou
interakci s těmito modely (např. zobrazování v reálném čase), je třeba buď
zdokonalovat grafický hardware, nebo automatizovaně zjednodušovat jejich
narůstající složitost. Navzdory obrovskému vývoji na poli grafických karet
a akcelerátorů, stále potřebujeme zvyšovat výkon využíváním optimálních
algoritmů a programovacích technik. Jednou z takových technik může být
například paralelizace.

V této práci je prezentován původní algoritmus pro redukci trojúhelníkových
sítí, který je efektivní, stabilní a pracuje i v paralelním prostředí. Jedná se o
postup založený na tzv. super-nezávislé množině vrcholů, díky které zamezíme
kritickým sekcím v paralelním kódu. Předností tohoto algoritmu je vysoká
rychlost i při sekvenčním běhu a přiměřená kvalita výsledné aproximace.

Jelikož geometrická chyba nemusí být jediným kritériem při posuzování
výsledků simplifikačního algoritmu, představujeme novou metodu, která je
založena na zachování podobnosti vzhledu mezi původním modelem
a výslednou aproximací. Představujeme zde nový přístup jak určit novou pozici
vrcholu při kontrakci hran, založený na předpokládané křivosti povrchu
v daném místě.

4

Acknowledgement
I would like to thank my supervisor, prof. Václav Skala, for his support and
guidance during my PhD study.
Many special thanks go to the other members of our computer graphics group
at University of West Bohemia in Pilsen.
Not least, I would like to thank my family and my wife for their patience and
encouragement throughout my studies.

This work has been supported by the following projects:

• MSM235200005 and LC06008 Ministry of Education CR
• 3DTV FP6-2003-IST-2 project Network of Excellence, No:511568
• Computer Graphics and Visualization in Parallel and Distributed

Environment, MSMT CR - VS 97 155

5

Contents
Abstract ... 2

Abstrakt ... 3

Acknowledgement... 4

Contents... 5

Chapter 1 ... 7

Introduction .. 7

1.1 Motivation... 8

1.2 Simplification in Computer Graphics ... 9

1.3 Contributions.. 11

1.4 Used terms .. 12

1.5 Overview of Material .. 13

Chapter 2 ... 15

Background & Related Work ... 15

2.1 Surface Representation.. 15

2.2 Topology ... 20

2.3 Simplification Conditions ... 24

2.4 Operation .. 25

2.5 Data Structure... 31

Chapter 3 ... 34

Error Estimation ... 34

3.1 Fidelity Metrics... 34

3.2 Similarity of Appearance .. 35

3.3 Geometric Error.. 36

3.4 Attribute Error.. 39

3.5 Combining Errors .. 41

3.6 Measurement Methods ... 41

3.7 METRO.. 45

Chapter 4 ... 47

Algorithms survey ... 47

4.1 High level frameworks.. 47

4.2 Volume methods.. 49

4.3 Simplification envelopes... 51

4.4 Wavelet surfaces .. 52

4.5 Vertex Clustering ... 54

4.6 Region Merging.. 55

6

4.7 Vertex decimation .. 57

4.8 Edge Contraction ... 60

4.9 Multiresolution Models... 65

4.10 Post-processing techniques .. 68

4.11 Conclusion .. 71

Chapter 5 ... 73

Simplification Algorithm .. 73

5.1 Design goals.. 73

5.2 Importance evaluation .. 74

5.3 Local edge contraction .. 76

5.4 Parallel processing ... 78

5.5 Super-independent Set of Vertices .. 79

5.6 Further Improvement.. 81

Chapter 6 ... 86

Results and limitations.. 86

6.1 Experimental Results... 86

6.2 Speedup comparison ... 87

6.3 Efficiency comparison ... 89

6.4 Amdahl‘s law.. 89

6.5 Conclusion .. 95

Chapter 7 ... 97

Similarity of Appearance .. 97

7.1 Vertex estimation – feature detection ... 97

7.2 Final algorithm ... 100

7.3 Results.. 109

7.4 Conclusion .. 112

Chapter 8 ... 113

Conclusion .. 113

8.1 Summary of Contributions... 113

8.2 Future Work.. 114

Appendix A .. 115

Appendix B ... 118

Appendix C... 119

Appendix D... 120

Project work.. 120

Appendix E ... 121

References ... 122

7

Chapter 1

Introduction
In all areas, which employ complex models, there is a trade off between the
accuracy with which the surface is modelled and the time needed to process it.
To achieve acceptable running times, we must often substitute simpler
approximations of the original model. A model, which captures very fine
surface detail, may in fact be desirable when creating archival datasets; it helps
ensure that applications that later process the model have sufficient accurate
data. However, many applications will require far less detail than is present in
the full dataset. Therefore, techniques for the simplification of large and highly
detailed polygonal meshes have been developed.

This work is focused on the automatic simplification of highly detailed
polygonal models to get an approximation containing fewer polygons making
its surface (see Figure 1-1).

Figure 1-1: Automatic simplification of polygonal model (courtesy Cyberware).
From left: original, 50% fewer polygons, 90% fewer polygons.

We will describe the simplification algorithm which has been developed to
meet criteria such as high speed, large input capability and good approximation
quality. In addition a super-independent set is introduced as a special vertices
selection for removal during simplification process. Using such a set we can
benefit from a parallel implementation without critical sections.

8

1.1 Motivation
One of the main tasks in computer graphics is a visualization of scientific data.
Due to the wide technological advances in the field of computer graphics
during the last few years, there has been an expansion of applications dealing
with models of real world objects. Advances in technology have provided vast
databases of polygonal (typically triangular) surface models, but these models
are often very complex. With growing demands on quality, the complexity of
the computations we have to handle models having hundreds thousands or
perhaps even millions of triangles (for example well known model of
Michelangelo’s David [30] contains 2*109 triangles, see Figure 1-2). The sources
of such models are usually:

• Laser range scanners, computer vision systems, and medical imaging
devices, which can produce models of real world objects.

• CAD systems, which commonly produce complex and high detailed
models.

• Surface reconstruction or iso-surface extraction methods such as
Marching Cubes algorithm [34] that produce models with a very high
density of polygonal meshes displaying almost regular arrangement of
vertices.

Figure 1-2: The digital Michelangelo scan of David (taken from [30]).

Since a fast interaction with the models is desired, such as real time
visualization, we need either to improve our graphics hardware or to simplify
somehow the complexity of the mesh. In recent years, many of mesh
simplification algorithms has been developed. The aim of such techniques is to
reduce the complexity of the model whilst preserving its important details.

9

Although, the first methods were focused on terrain or height field
simplification, techniques for simplification of general 3D polygonal surfaces
have been proposed relatively recently. At Siggraph ’92 Shroeder et al. [46]
presented algorithm called triangle decimation based on local vertex deletion
followed by re-triangulation. Since that time other notable algorithms have
been presented including methods that are guaranteed accurate within global
error bounds [23] or within a simplification envelope [6].

Many algorithms are designed to preserve the original topology of the mesh.
While this may be important for many applications (e.g. analysis or
computational geometry), preserving topology introduces constraints into the
reduction process. Mesh reduction is typically used to improve rendering speed
or to minimize data size or compression requirements. In such applications
topology-preserving reduction schemes could be incapable of achieving desired
reduction levels. Removing topological constraint can create large gains in
reduction factors.

Our goal has been to produce a simple and fast simplification algorithm that
produces high quality results.

1.2 Simplification in Computer Graphics
At the beginning it is important to mention, that there are several forms of
simplification in computer graphics. Some processes are so routine nowadays
that we tend to disregard them, e.g. the quantization of colour to 24 bits or the
use of three-color channels (red, green, and blue) to represent the spectral
response of the virtual scene. Even storing a polygonal mesh may involve
simplification, since we usually use limited precision of the coordinates
(typically to 32 bits). Also the quantization of colour and geometric attributes,
especially in interactive graphics, is indeed a simplification. This also implies
a lot of benefits, for example use of fixed-point arithmetic, fewer bits of
precision for vertex coordinates, etc. In general the line between simplification
and losing compression techniques, which include quantization in its various
forms, can be blurry. However, we will define a simplification throughout this
work as processes that reduce the complexity of polygonal meshes, not their
precision or storage size.

The thought of polygonal model simplification is not new. Proposals of some
procedures are over 25 years old. The need of models with several levels of
detail (LOD) arouse in military flight simulators and later in computer games

10

industry in general. In order to manage the level of detail of an object, we need
to represent it as a multiresolution model – a surface representation that
supports the reconstruction of various approximations, which can
accommodate a wide range of viewing contexts.
We briefly describe three main frameworks of simplification algorithms:
discrete, continuous, and view-dependent LOD [36].

A discrete LOD is used in most 3D graphics applications today and we are
mainly focused on it in this work as well. The main philosophy is to create
multiple versions of every object, each at a different level of detail, during an
offline pre-process. At run-time the appropriate level of detail, or LOD, is
chosen to represent the object. Since long-distance objects use coarser LODs, the
total number of polygons is reduced and rendering speed increased. Because
individual approximations are computed offline during pre-processing, the
simplification process cannot predict from what direction the object will be
viewed. The simplification therefore typically reduces detail uniformly across
the object, and for this reason we sometimes refer to discrete LOD as isotropic
or view-independent LOD. This approach has many advantages. Since the
simplification algorithm runs offline, it can take as long as it needs and run-time
program simply choose which approximation to use. Furthermore, modern
graphics hardware leads itself to the multiple model versions created by static
level of detail. Individual approximations can be compiled during pre-
processing to an optimal rendering format and use features such as triangle
strips, display lists, and vertex arrays. These will be obviously rendered much
faster than just an unordered list of polygons.

In continuous LOD (also called a progressive LOD [20]), rather than creating
individual approximations during the pre-processing stage, we create
a data structure encoding a continuous spectrum of detail. The desired level of
detail is then extracted from this structure at run-time. A major advantage of
this approach is better granularity: since the level of detail for each object is
specified exactly rather than selected from a few pre-created options, no more
polygons than necessary are used. This frees up more polygons for rendering
other objects, which in turn use only as many polygons as needed for the
desired level of detail, freeing up more polygons for other objects, and so on.
Better granularity thus leads to better use of resources and higher overall
fidelity for a given polygon count. Continuous LOD also supports streaming of
polygonal models, in which a simple base model is followed by a stream of
refinements to be integrated dynamically.

11

View-dependent LOD extends continuous LOD, using view-dependent
simplification criteria to dynamically select the most appropriate level of detail
for the current view. Nearby portions, or the silhouette regions of the object are
shown at higher resolution than distant portions, or interior regions
respectively. This leads to better fidelity for a given polygon count (see Figure
1-3).

Figure 1-3: Example of view-dependent simplification (taken from [38]).

These methods are fairly necessary in visualisation of large objects, such as
terrains or scientific data, which are represented by extremely large data sets
and can not be adequately simplified in any other way.

It this work we will focus on a process of making discrete approximations

driven by rules of budget-based simplification. However, algorithms presented
here can be modified and used in continuous or view-dependent
simplifications.

1.3 Contributions
The primary contributions of this work as described in this dissertation are:

• Super-independent set of vertices. We have defined a new criterion
how to choose vertices as candidates for removal during simplification
process. It is based on independent set of vertices [21] with more strict
constraints to vertices neighbourhood. The use of super-independent set
of vertices leads to ability to have a parallel code without critical sections
in simplification process.

• Surface Simplification Algorithm. By combining several approaches of
mesh simplification and principles of super-independent set of vertices,

12

we have developed a fast parallel algorithm capable to produce high-
quality approximations of polygonal surfaces. This algorithm can
simplify both manifold and non-manifold models. It's robust, very fast
and accurate while preserving a mesh topology. Since the algorithm
keeps the subset of original vertices, in addition to producing single
approximations, it can be also used to generate multiresolution
representations such as progressive meshes and vertex hierarchies for
view-dependent refinement.

• Edge classification and introduction of new vertex position. Finally, we
have introduced an original approach of edge evaluation and
classification, which results in a new simplification algorithm. This
algorithm mainly preserves the visual appearance by detecting and
keeping important features of the original model such as sharp edges or
high detail regions during even drastic simplification. While we suppose
that original surface tends to be curved according to its vertex normals,
a new vertex position is determined to lay on such supposed surface
using near least-square curvatures.

1.4 Used terms
To streamline all the discussion and explanation, we present here a list of terms,
abbreviations and symbols used later in this thesis.

By convention, all vectors in this text are assumed to be column vectors and
are set in lowercase bold type. Therefore, uTv = u.v denotes the inner product of
two column vectors u and v. However, in more complicated equations
transposition notation will be used for better readability. Matrices are set in
uppercase bold type, thus A = uvT denotes the outer product matrix aij = uivj.
Also instead of vertex coordinates in space V=[x,y,z], we will use its radius
vector (vector from origin to given coordinates v = (x-0,y-0,z-0) and will be
typed in lowercase bold as a common vector.

Other terms are used as follows:
polygon

- usually triangular polygon since all general polygons can be
transformed into a set of triangles

triangulation, polygonisation

- a triangular/polygonal mesh
mesh, polygonal mesh, triangular mesh (surface)

- input/output polygonal mesh as described in 2.1

13

reduction, simplification, decimation

- iterative process of decreasing number of vertices/edges/triangles in
a mesh

LOD, multiresolution

- level of detail (one or more approximations of specific detail)
sharp edge

- an edge in triangulation whose adjacent triangles contains less angle
than some specific threshold

In equations and formal text following symbols and their meaning are used:
N number of vertices
i,j,k iteration symbols
M polygonal mesh
n norm vector
x vector

For a set of vertices will be used notation V = (v1,v2,v3,…,vn). Analogously, for

a set of polygons (triangles, faces) is used F = (f1,f2,f3,…,fn). Polygonal model is
then referenced as a pair of M=(V,F).

As a preface of next chapters it must be explained that for readability we

have decided to use loose informal language when discussing topology, and in
particular have avoided the use of simplicial complex notation. For example, we
use expression such as "the set of triangles surrounding edge e" instead of the
comprehensive notation e . However, for completeness, these formal

definitions are mentioned in Chapter 2.

1.5 Overview of Material
This work is structured as follows. In Chapter 2 theoretical background and
related work is presented. We define terms such as polygonal mesh and mesh
topology. Also some base conditions and simplification operators are discussed
and frequently used data structures are mentioned. Chapter 3 provides
information about error estimation. Several metrics are described for different
simplification approaches and METRO tool is presented. Having established
the background information, we walk through state-of-the-art algorithms
divided into lucid categories in Chapter 4. After methods survey Chapter 5
introduces our original algorithm based on some conclusions made in previous

14

sections. Besides original simplification technique also a parallel processing is
considered and super-independent set of vertices is presented. In Chapter 6 we
show experimental results and discuss shortcomings of presented approach.
Chapter 7 introduces a heuristic for mesh simplification with respect to a model
appearance. Finally Chapter 8 concludes the work, recalls the main
contributions and briefly suggests a possible future work.

15

Chapter 2

Background & Related Work
This chapter provides an overview of background material used throughout the
rest of this dissertation. We describe mesh simplification as an optimization
process under given conditions. Before we review some simplification
approaches developed by others, we need to define a polygonal (triangular)
surface as well as terms like a topology, manifold, or a non-manifold
respectively.

After describing the range of mesh simplification operators available, we
conclude with a discussion of the data structure and present some commonly
used approaches to store the data introduced in last few years.

2.1 Surface Representation
The aim of polygonal surface simplification is to provide a mechanism for
controlling the complexity of polygonal surface models, but these are not the
only available surface representation. Various alternatives exist, and they each
provide certain benefits and drawbacks as compared with polygonal models.
However, none of these alternatives provide a solution which would obviate
the need for simplification. In fact, they suffer from some of the same problems
addressed by polygonal surface simplification.

The most important reason to focus on polygonal models is purely pragmatic:
polygonal models are both flexible and ubiquitous. They are supported by the
vast majority of rendering and modelling packages, and polygonal surface
data is widely available. Hardware acceleration of polygon rendering is also
becoming much more widely available; affordable yet reasonably powerful
accelerator cards are now available in consumer-level computers. Currently, no
other single type of model enjoys the same level of support. In fact, it is
common practice in various situations to convert other model types into
polygonal surfaces prior to processing.

16

In the most general sense, a polygonal surface model is simply a set of planar
polygons in the three-dimensional Euclidean space R3. Without loss of
generality, we can assume that the model consists entirely of triangular faces,
since any non-triangular polygons may be triangulated in a pre-processing
phase. The example of triangular surface model can be seen on Figure 2-1.

To streamline the discussion, we will assume that the models do not contain
isolated vertices and edges, thus all vertices and edges are part of any triangle.
Although the underlying algorithm stays the same, to handle such vertices and
edges the implementation becomes more complicated. We also do not alter the
mesh connectivity - if the corners of two triangles coincident in the space, then
these triangles do not need to share a common vertex. Given these assumptions,
we use a definition according to [11]. A polygonal surface model M = (V,F) is
a pair containing list of vertices V and a list of triangles F. The vertex list V = (v1,
v2,…, vr) is an ordered sequence, each vertex may be identified by a unique
integer i. The face list F = (f1, f2,…, fn) is also ordered, assigning a unique integer
to each face. Every vertex vi = [xi yi zi]T is a column vector in the Euclidean space
R3. Each triangle fi = (j, k, l) is an ordered list of three indices identifying the
corners (vj , vk, vl) of fi.

By design, this definition of a polygonal model corresponds to a form of
simplicial complex. For our purposes here, a simplex σ is either a vertex (or 0-
simplex), a line segment (1-simplex), or a triangle (2-simplex). In general,
a k-simplex σ k is the smallest closed convex set1 defined by k+1 linearly
independent points σ k = a0a1…ak which are called its vertices. We can express
any point p within this set as a convex combination of the vertices

∑=
i iiatp where 1=∑i it and []1,0∈it . Any simplex defined by a subset of the

points a0a1…ak is a subsimplex of the simplex σ k. A two-dimensional simplicial
complex K is a collection of vertices, edges, and triangles satisfying the
conditions:

1. If Kji ∈σσ , , then they are either disjoint or intersect only at a common

subsimplex. Specifically, two edges can only intersect at a common
vertex, and two faces can only intersect at a shared edge or vertex.
2. If Ki ∈σ , then all of its subsimplices are in K. For instance, if a triangle

f is in K, then its vertices and edges must also be in K.

1 In other words, the convex hull

17

Figure 2-1: The example of polygonal surface model (courtesy Cyberware). This
original model contains 40117 vertices and 80354 triangles.

The surface defined by this complex is the union of the point sets defined by
its constituent simplices. Our definition of a polygonal model is slightly
different and it is only explicitly a collection of vertices and faces. The only
allowable edges are those which are implied by the intersection of neighbouring
faces.

Manifold and Non-manifold Surfaces

Surfaces, in the mathematical sense, are often assumed to be manifolds.
A manifold is a topological space that is locally Euclidean (i.e. around every
point, there is a neighbourhood that is topologically the same as the open unit

18

ball in Rn). In other words, a manifold surface is, everywhere, locally
homomorphic (that is, of comparable structure) to a two-dimensional disk
(manifold surfaces with boundary are everywhere homomorphic to a disk or
a half-disk).

For example, a disk may be fully applied to any portion of the torus, but the
disk does not fully apply to all points of a pot (see Figure 2-2). In particular, the
disk is truncated along the upper boundary of the pot bowl.

Figure 2-2: Manifold and manifold-with-boundary surfaces.

Any tessellation (e.g. triangulation) of a manifold surface will produce edges
that are of degree two, which means that all edges are shared by exactly two
faces. Tessellations of non-manifold surfaces produce edges of degree 1, 2, 3, or
more. A polygonal surface is a manifold (with boundary) if every edge has
exactly two incident faces (except edges on the boundary which must have
exactly one), and the neighbourhood of every vertex consists of a closed loop of
faces (or a single fan of faces on the boundary). Figure 2-3 illustrates four kinds
of vertex neighbourhoods in a polygonal model.

Figure 2-3: Neighbourhoods of a given vertex vi.

Many surfaces encountered in practice tend to be manifolds, and many
surface-based algorithms require manifold input. It is possible to apply such

19

algorithms to non-manifold surfaces by cutting the surface into manifold
components and subsequently stitching them back together. However, it can be
advantageous for simplification algorithms to explicitly allow non-manifold
surfaces. Not only does this broaden the class of permissible input models, but
it provides more flexibility during simplification. Many simplification
algorithms proceed by repeatedly making local simplifications to the model.
These local transformations can easily result in non-manifold regions. Consider
the example shown in Figure 2-4. The same local simplification, namely edge
contraction, is applied in two different ways.

Figure 2-4: Two approximations of the same surface, both constructed by
contracting a single edge (top – original, middle – manifold, bottom – non-

manifold).

Depending on the choice of edge, contraction may result in either a manifold
or non-manifold result. By allowing non-manifold surfaces, we allow the
simplification algorithm to select the better choice based on criteria such as
geometric fidelity rather than artificially limiting it to only apply operations
which produce manifold surfaces.

Figure 2-5: Preserving genus limits drastic simplification (taken from [36]).

20

This issue is of particular relevance in algorithms which seek to simplify the
topology of the model. Imagine a model of a metal plate with many small holes
drilled in it. The common contraction-based approach for removing a hole from
this model would begin by collapsing one end of the hold into a single point,
resulting in a non-manifold vertex neighbourhood. While it is possible to
explicitly cut and re-stitch the surface during simplification, this can add
substantial complexity to the algorithm. Figure 2-5 shows an example of two
approximations with and without preserving object topology. The topology
problem is more discussed in section 2.2.

2.2 Topology
A very important factor in advising particular algorithms is their relationship
and behaviour regarding mesh topology. Topology studies the properties of
a geometric object that remains unchanged by deformations such as bending,
stretching, or squeezing but not breaking. In this concept a sphere is
topologically equivalent, or homomorphic, to a cube because, without breaking
them, each can be deformed into the other as if they were made of modelling
clay. A sphere is not equivalent to a doughnut, because the former would have
to be broken to put a hole in it. Such a definition of topology leads to the
following mathematical joke [41]:
Q: What is a topologist? A: Someone who cannot distinguish between
a doughnut and a coffee cup.

In this work a term topology refers to the structure of the connected

polygonal mesh.
An important topological property of a surface is its Euler-Poincaré

characteristic, a number which can be calculated from any polyhedral
decomposition of the surface. If V is the number of points (vertices) in the
decomposition, E is the number of line segments (edges), and F is the number of
regions (faces), then the characteristic is given by χ=V−E+F and is the same for
all possible polyhedral decomposition of the given surface. For a sphere, χ=2,
and the formula is identical with Euler's formula for the vertices, edges, and
faces of a spherical polyhedron, to which the sphere is topologically equivalent.
For a torus, χ=0. The Euler-Poincaré characteristic for an orientable surface is
χ=2−2g, where g is called the genus of the surface.

21

Genus is a topologically invariant property of a surface defined as the largest
number of nonintersecting simple closed curves that can be drawn on the
surface without separating it [53]. Roughly speaking, it is the number of holes
in a surface. For example, a sphere and a cube have a genus of zero, while
a doughnut and a coffee cup have a genus of one.

Any orientable closed surface is topologically equivalent to a sphere with g
handles attached to it; e.g., the torus, having χ=0, is of genus 1 and is equivalent
to a sphere with one handle, and a double torus (two-hole doughnut),
equivalent to a sphere with two handles, is of genus 2 and has χ=−2. For
a nonorientable surface, χ=2−q, where q is the number of cross-caps that must be
added to a sphere to make it equivalent to the surface. (A cross-cap is a cap with
a twist like a Möbius strip in it, see).

Figure 2-6: Möbius strip (taken from Wikipedia.org).

Closely related to the Euler-Poincaré characteristic is the connectivity number
of a surface, which is equal to the largest number of closed cuts (or cuts
connecting points on boundaries or on previous cuts) that can be made on the
surface without separating it into two or more parts. The connectivity number
is equal to 3−χ for a closed surface and to 2−χ for a surface with boundaries
(e.g., a disk). A surface with a connectivity number of 1, 2, or 3 is said to be
simply connected, doubly connected, or triply connected, respectively, and
similarly for more complex surfaces; a sphere is simply connected, while a torus
is triply connected. Thus, any surface can be classified by its boundary curves
(if any), its orientability, and its Euler-Poincaré characteristic or connectivity
number; and any surface is topologically equivalent to a sphere with an
appropriate number of handles, cross-caps, or holes.

22

A surface is a simple example of a topological space, the basic entity studied
in topology. The local topology of a face, edge, or vertex refers to the
connectivity of that feature's immediate neighbourhood. As already said the
mesh forms a 2-manifold if the local topology is everywhere equivalent to
a disc, that is, if the neighbourhood of every feature consists of a connected ring
of polygons forming a single surface. In a triangulated mesh displaying
manifold topology, every edge is shared by exactly two triangles2, and every
triangle shares an edge with exactly three neighbouring triangles.

In simplification we recognize two approaches based on their relation to the

topology: topology-preserving and topology-modifying algorithms.

Topology-preserving algorithms preserve manifold connectivity at every

step. Such algorithms do not close holes in the mesh or join previously
unconnected areas, and therefore preserve the overall genus. Since no holes are
appearing or disappearing during simplification, the visual fidelity of the
simplified object tends to be relatively good. This constraint limits the
simplification possible, however, since objects of high genus cannot be sim-
plified below a certain number of polygons without closing holes in the model
(see Figure 2-7). Algorithms that preserve topology also require the initial mesh
to be manifold. They either ignore non-manifold regions or faced to them
simply fail.

There are plenty of areas where topology-preserving algorithms only are
acceptable. For example study of tolerances in mechanical CAD requires that
the topology of the models is not simplified. Similarly, in medical imaging the
data collected from computer-aided tomography (CT) or magnetic resonance
imaging (MRI) scans often have important topological structures that are better
left in the data, rather than simplified away.

Topology-modifying algorithms have no limitations preserving a manifold

topology and therefore can close up holes in the model and join separate
elements such as vertices, triangles or even whole objects during simplification
process, permitting drastic simplification beyond the scope of topology-

2 A 2D manifold with boundary permits boundary edges, which belong to only one triangle.

23

preserving schemes. Most topology-modifying algorithms do not require valid
topology in the initial mesh, which greatly increases their utility in real-world
CAD applications.

Since topological simplification refers the capability of gradually simplifying
any given mesh to a simplest surface with decreasing genus, it is often used for
interactive visualization applications. In Figure 2-7 we can see several topology-
preserving levels of detail of the brake rotor created by the simplification
envelopes approach [6]. The closest rotor has 4700 triangles and the farthest
rotor has about 1000 triangles. Most of the triangles in the farthest rotor are
used for representing the 21 holes in the rotor even though barely one hole is
visible. For this example, if the topology for the farthest rotor were simplified to
a single hole, it will permit a much more aggressive geometric simplification
without sacrificing visual realism (see Figure 2-5). Topology simplifications of
sub-pixel holes may also help reduce aliasing artefacts, effectively removing
details that will be undersampled.

Figure 2-7: A level-of-detail hierarchy for the rotor from a brake assembly
(taken from [6]).

In general, algorithms preserving topology are the most suitable when visual
fidelity is crucial, or with an application such as finite element analysis, in
which surface topology can affect results. Preserving topology also simplifies
some applications, such as multiresolution surface editing, which require

24

a correspondence between high- and low-detail representations of an object.
When drastic simplification is required, topology-modifying algorithms do the
best work. On the other hand this drastic simplification often comes at the price
of poor visual fidelity.

New algorithms presented in this work have been developed to preserve the
original mesh as much as possible, thus they are strictly topology-preserving.

2.3 Simplification Conditions
We can also look at the simplification process from the view of desired result. In
some application it is required to have a specific number of triangles at the
output rather than the exact value of approximation error reached. Different
algorithms thus can be divided into two sets providing either budget-based or
fidelity-based simplification [36].

Budget-based simplification

As already said, in budget-based simplification the user specifies the maximum
number of resulting triangles, and the algorithm attempts to minimize the error
E without exceeding given constraint. Since these algorithms generates a fixed
number of triangles (given by the user at the beginning of simplification
process), it is appropriate for time-critical applications where a desired frame
rate dictates the per-frame triangle budget. Thus, this approach is often used for
applications where interactivity is paramount. Since the error E is not
controllable by the end user, this approach does not guarantee visual fidelity.
This implies that solving the budget-based simplification problem optimally is
difficult.

Fidelity-based simplification

In fidelity-based simplification user provides a fidelity constraint that the
simplified mesh must satisfy with respect to the original input mesh. The
simplification algorithm then generates a simplified mesh, attempting to
minimize the number of triangles while respecting the fidelity constraint. The
constraint is usually specified as some measure of the difference between the
simplified mesh and the input mesh, denoted by the simplification error E. This
error can be measured many ways; Chapter 3 discusses various error metrics in
detail. Solving this minimization problem optimally is suspected to be NP-hard.
Fidelity-based simplifications are typically best suited for applications in which
visual fidelity is more important than interactivity.

25

The algorithms introduced in Chapter 5 and Chapter 7 fall into the category
of budget-based simplification. As presented before, the main requirements
motivated this work were capability of processing large datasets in critical time
demands. Comparisons across different budget-based algorithms are often
based on empirical observations on a few data sets that have become de facto
benchmarks in the field. However, there are also measurement standards such
as METRO which can be used as objective comparator (see Chapter 3).

2.4 Operation
This section provides a brief overview of various mesh simplification
algorithms. We describe mesh simplification as an optimization process to be
achieved by the application of local and global mesh simplification operators.
Local operators simplify the geometry and connectivity in a local region of the
mesh, reducing the number of polygons, while global operators operate over
much larger regions and help simplify the mesh topology.

Local simplification operator

In this section we discuss the various low-level local operators that have been
used for simplification of meshes. Each of these operators reduces the
complexity of a mesh by some small amount.

First and probably most common is a collapse operator. Depending on
a context used we recognize edge collapse, vertex pair collapse, triangle
collapse and cell collapse operator.

Edge collapse
This operator collapses an edge (vi, vj) to a single vertex vn. This causes the
removal of the edge (vi, vj) as well as the triangles sharing that edge. There is
also an inverse operator called a vertex split, which adds the edge and the
triangles adjacent to it. Thus, the edge collapse operator simplifies a mesh and
the vertex split operator adds detail to the mesh.

There are two kinds of the edge collapse operator: half-edge collapse and full-
edge collapse. In the half-edge collapse (see Figure 2-8), the vertex to which the
edge collapses to is one of its end points. In the more general full-edge collapse
or just edge collapse the resulting vertex vn has a newly computed position.

26

Figure 2-8: Edge collapse operator; original mesh (left), half-edge collapse
(middle), full-edge collapse (right).

Although the edge collapse operator is simple to implement in some
circumstances it would cause a mesh foldover or a topological inconsistency.

Mesh foldovers are an undesirable side effect of a special case of edge

collapses. In Figure 2-9 you can see an example of half-edge collapse which will
cause a triangle foldover. This can be detected by measuring the change in the
normals of the corresponding triangles before and after an edge collapse:
a mesh foldover is characterized by a large change in the angle of the normal,
usually greater than 90°. Another solution of this phenomenon is described in
section 5.6. Mesh foldovers result in visual artefacts, such as shading
discontinuities.

folding triangle

Vj

Vi

V=Vj

Figure 2-9: An edge contraction, which causes the mesh to fold over on itself.

If the neighbourhoods of two vertices vi and vj share more than two vertices,
the collapse of the edge (vi, vj) will create a nonmanifold areas in a mesh, where
none has been before (see Figure 2-10). Non-manifold edges have one, three, or
more adjacent triangles; since many algorithms rely on manifold connectivity,
introducing such edges can create problems later in the simplification process.

27

Figure 2-10: Edge collapse leading to nonmanifold mesh.

Vertex-pair collapse
A vertex-pair collapse is a special case of collapse where two unconnected
vertices are joined. Since these vertices do not share an edge, no edges or
triangles are removed. However, triangles surrounding collapsed vertices are
updated as if the edge was present. For this reason, the vertex-pair collapse
operator has also been referred to as a virtual-edge collapse. Collapsing
unconnected vertices enables connection of unconnected components as well as
closing of holes and tunnels, thus topology is changed. The virtual-edge
collapse algorithms use some heuristic to limit the candidate virtual edges to
a small number – usually virtual edge is constructed between vertices within
some small distance δ.

Triangle collapse
A triangle collapse operator simplifies a mesh by collapsing a triangle (vi, vj, vk)

to a single vertex vn. The vertex vn can be either one of original vertices or
a newly computed vertex. A triangle collapse is equivalent to two edge
collapses. In general this operation requires less memory than an equivalent
edge collapses, but is less fine-grained than an edge collapse.

Cell collapse
The cell collapse operator simplifies the input mesh by collapsing all the
vertices in a certain volume, or cell to a single vertex. In [43] the vertices of the
mesh are placed in a regular grid. All the vertices that fall in the same grid cell
are then unified into a single vertex. All triangles of the original mesh that have
two or three of their vertices in a single cell are either simplified to a single edge
or a single vertex. Note that such a simplification does not preserve the
topology and that the level of simplification depends on the resolution of the
grid.

28

Besides collapse operators there are also removal operators used in
simplification algorithms. One of the first ever used was vertex removal [46],
followed by polygon merging and general region replacement.

Vertex removal
The vertex removal operator removes a vertex, along with its adjacent edges
and triangles, and triangulates the resulting hole. Triangulation of the hole can
be accomplished in several ways. One of these triangulations can be the same as
a half-edge collapse. In this respect the vertex removal operator may be
considered to be a generalization of the half-edge collapse operator. On the
other hand, in general, the triangulation in 3D is non trivial optimization
problem.

Polygon merging
In polygon merging nearly coplanar and adjacent polygons are merged into
larger polygons, which are then triangulated. Polygon merging is more general
than vertex removal since it can combine polygons (not just triangles). Since
several vertices can be removed at once, it may even result in merged polygons
with holes. Polygon merging as a simplification operator has been used in
different applications under different names, such as superfaces or face
clustering (see Figure 2-11).

Figure 2-11: Face cluster partitions produced by iterative pair-wise merging
(taken from [12]); original 11,036 clusters (left), 6000 clusters (middle), 1000

clusters (right).

If we go a step further in generalization we will get the general geometric
replacement operator, which is the most general of the mesh simplification
operators. It proceeds by replacing a subset of adjacent triangles by another set
of (simplified) triangles, while their boundaries are the same. In addition to
edge collapses and vertex removals, it can also encode an edge flip, where the

29

common edge between two triangles is replaced by another edge that joins the
two other opposite vertices. This general operator can be used to replace
geometry of one primitive type with geometry of another primitive type.

The algorithms presented later in Chapter 5 will mainly gain from edge
collapse operator combined with vertex removal. It is interesting to note that
there is a subset of the possible edge collapse operations that are equivalent to
a subset of the possible vertex removal operations. This common subset is the
set of half-edge collapses, which share some of the properties of each of the
other two operation types as will be shown.

Global simplification operators

The global simplification operators modify the topology of the mesh in
a controlled fashion. They tend to be more complex than the local simplification
operators, which only consider a small portion of the model. Before these
operators can be applied, first the input model has to be voxelized. In the
volumetric domain the topology modifiers are applied and the model is
converted back into a triangular mesh using an iso-surface extraction method.
The topology simplifying operators used in the middle stage are low-pass
filtering [14] and morphological operations of dilation and erosion [37].

Low-Pass Filtering
Ten years ago first algorithms were introduced to simplify the topology of an
input model in the volumetric domain. The input model is first converted to
a volumetric data set. The straightforward approach is to build a spatial grid
over the model and estimate a voxel density in each cell as a value of inclusion
of the object in a cell. This enables data sets derived from polygonal meshes to
be treated in the same manner as native volumetric data sets such as CT or MRI
scans.

After that a low-pass filter to each of the grid values of the volumetric buffer
is applied. Low-pass filtering eliminates fine details in the volumetric model,
including topological features such as small holes and tunnels. This is followed
by iso-surface reconstruction using a method such marching cubes algorithm
[34]. Figure 2-12 shows the results of volume-domain topology simplification.

30

Figure 2-12: Medical iso-surface using volume-domain topology simplification
(taken from [14]).

Morphological Operators
The basic idea behind using morphological operators is the voxelization of the
input model into a volumetric data set using a parity-count scheme for a single
component polygonal model, or a ray stabbing method for polygonal models
with multiple intersecting components. In volumetric domain a distance field is
built and erosion and dilatation are applied on it (see Figure 2-13). The distance
field contains a distance of each inside/outside voxel to the nearest
outside/inside voxel. In the dilatation operator with threshold T, every outside
voxel with a distance value less than T is reclassified as being inside. Thus this
process enlarges the object, fills the holes and connects unconnected
components that lie within the distance T. The erosion operator is the
complement of the dilation operator and ends up shrinking the object.
A dilation operator followed by an erosion operator will result in
a topologically simplified object with the same dimensions as the original.

31

Figure 2-13: Erosion and dilatation in 2D.

After such simplification process in volumetric domain, the iso-surface is
extracted using marching cubes algorithm. Resulting surface is then simplified
using any above mentioned approach for geometry simplification. The
advantage of this technique is that the dilatation and erosion operators are very
precise and can be used to control very finely the level of topological
simplification of the object.

2.5 Data Structure
Just before we introduce several state-of-the-art algorithms a note about
data structure should be mentioned here. To construct a polygonal mesh it is
needed to have a data structure consisting of at least two pieces of information:
the geometry, or coordinates, of vertices, and the definition of each triangle in
terms of its three vertices. Since ordered lists of triangles surrounding a vertex
are frequently required, it is desirable to maintain a list of the triangles adjacent
to each vertex.

Although data structures such as a radial or a winged edge can represent this

information, many implementations use a space-efficient vertex-triangle
hierarchical ring structure [46]. This data structure contains hierarchical
pointers from the triangles down to the vertices, and pointers from the vertices
back up to the triangles sharing the vertex. These pointers essentially form
a ring relationship. There are usually three lists: a list of vertex coordinates a list
of triangle definitions and another list of lists of triangles containing each
vertex. Edges are not explicitly defined but they can be defined as ordered
vertex pairs in the triangle definition.

32

Another original approach is so called corner-table proposed by [42]. It is
a simple data structure consisting of nothing more than two arrays of integers
(the V and O tables). Similar to other structures, vertices are identified using
positive integers and their location is stored in an array called G for
“geometry”. V and O have 3 times as many entries as there are triangles and
hold the integer references to vertices and to opposite corners. In real
implementation the object oriented approach is suggested to use. A corner c is
the association of a triangle c.t with one of its bounding vertices c.v. The entries
in V and O are consecutive for the 3 corners (c.p==c.n.n, c, c.n) of each triangle.
Thus, c.t returns the integer division of c by 3 and the corner-triangle relation
needs not be stored explicitly. For example, when c is 4, c.t is 1 and thus c is
a corner of the second triangle. Figure 2-14 illustrates the example.

c V O

triangle 0 corner 0 1 7

triangle 0 corner 1 2 8

triangle 0 corner 2 3 5

triangle 1 corner 3 2 9

triangle 1 corner 4 1 6

triangle 1 corner 5 4 2

Figure 2-14: Vertices and corners in corner-table scheme.

The main advantage of such data structure is quite fast evaluation of triangle
neighbours and it is extensible for edges as well. However it is not very
practical for traversing the mesh or search for vertex neighbours. It also has
some limitations like the need of oriented triangles or enclosed surfaces.

In our algorithms we use a modified ring structure. Figure 2-15 shows how
information is stored.

33

Figure 2-15: Scheme of data structure used.

We have list of vertex coordinates, where each vertex has its own unique id.

The list of triangles consists again from triangle id and three indices of its
corner vertices. In addition to vertex coordinates in vertex list we store there
also a list of neighbouring triangles, which facilitates vertex importance
evaluation and whole simplification process.

Triangle list for vn: (1,5,4,7,3,2,6)

34

Chapter 3

Error Estimation

So far we have studied approaches to mesh simplification but we did not
mention a crucial question – the measurement of the output quality. The way
we measure error both during and after the simplification process can have
a dramatic impact on the visual appeal and usefulness of resulting models.
However, there are plenty of techniques describing how to compute the
approximation quality, and each follows the specific property of the desired
surface. In some applications it is important to preserve a volume or area, in
others, for example, the geometric distance between the original and resulting
model. Error measurement often involves complex geometrical constructs and
error minimization may rely on solving nontrivial algebraic problems.

In this chapter we present some key elements of measuring simplification
quality at a high level. Most simplification error metrics incorporate some form
of object-space geometric error measure. Moreover, some algorithms also
incorporate a measure of attribute errors such as colour, normal, and texture
coordinate attributes. These geometric and attribute errors may be combined in
a number of ways during the simplification process and later in the run-time
rendering system. Several of the published algorithms will be referred to see the
range of possible approaches to the problem.

3.1 Fidelity Metrics
As already mentioned, many simplification algorithms work on base of

nested optimizations. The outer optimization process finds the best available
simplification operation to perform, while the inner optimization makes each
operation work as well as possible. The best available operation is usually
defined with respect to some simplification error metric. The better the metric is
the better choices are made during simplification process. Since optimizing an
error metric in the inner optimization process improves the quality of

35

performed outer operation, a consistent, quantitative error metric is useful for
both of these optimization problems.

There are also situations when we want to know the exact quality of final
approximation, separately metric used to guide the simplification process. For
example if we want to compare results of several different algorithms, or just
measure the final error of budget-based approaches. In such cases a general tool
like METRO is reasonable (see section 3.7).

3.2 Similarity of Appearance
Although, most of simplification methods rely on purely geometrical basis, the
similarity of appearance is often the crucial requirement and needs to be
properly defined.

An appearance of model M regarding observer conditions ξ (viewpoint) is
determined by raster image Iξ, produced by a renderer. Assuming that and
having given conditionsξ, we can consider models M1 and M2 as identical if
their images ξ

1I and ξ
2I are alike.

All common error measures quantify the error present in input image making
use of residue, that is, the input image subtracted from the original. In such way
the mean square error averages the square of pixel differences:

() ()∑∑
= =

−
⋅

=−=
K

x

L

y

yxIyxI
LK

IImse
1

2

1

2121 ,,
1 ξξξξξ (3.1)

where K and L defines a size of image raster and),(),(21 yxIyxI ξξ − is Euclidean

distance (see section 3.3) between two RGB values (represented as they were
vectors in 3D space) at I1(x,y) a I2(x,y).

Taking the square root is one way of reducing the range of values. Using
equation (3.2), large pixel errors have a greater contribution in the error.

() ()∑∑
= =

−
⋅

=
K

x

L

y

yxIyxI
LK

rmse
1

2

1

21 ,,
1

 (3.2)

The better M2 approximates M1 for given ξ, the smaller the values mse or rmse
is. Having such formula we can measure a similarity of two models using
integration of ξξ

21 II − over all ξ. We assume the finite number of viewpointsξ.

The main advantage of this approach is the fact that we measure the real
fidelity of resulting image, which is what we desire. On the other hand such

36

measure is closely coupled with the viewpoints ξ, which must be identical for
original and resulting model. Also, the more viewpoint we have the precise
error measurement we get, which makes the comparison computationally very
expensive. However, this approach is used by several simplification algorithms
which are discussed in section 4.10

3.3 Geometric Error
Simplification of a polygonal mesh reduces the number of vertices and
therefore changes the shape of the surface as a result. Measuring and
minimizing a 3D geometric error as we perform the simplification allows us to
preserve the original shape as best we can.

Euclidean geometry defines a measure of the distance between two points.
For two points p1= (x1,y1,z1) and p2= (x2,y2,z2), the distance d between them is

() () ()2

21

2

21

2

21 zzyyxxd −+−+−= (3.3)

However, finding the distance between two surfaces is more involved than
presented in previous section. We can think of each surface as an infinite set of
infinitesimal points. Then conceptually, finding the distance between the two
surfaces involves matching up pairs of points, computing their distances, and
tabulating all the results. In practice, we may exploit the polygonal nature of
our surfaces to allow us to use small, finite sets of points, or we can compute
conservative bounds or estimates on these distances rather than taking many
point-wise measurements.

The Hausdorff distance is a well-known concept from topology, used in

image processing, surface modelling, and a variety of other application areas.
The Hausdorff distance is defined on point sets, but because a surface may be
described as a form of a continuous point set, it applies to surfaces as well. The
Hausdorff distance is the maximum of minimum distances between points in
the two point sets (M1 and M2). In other words, for every point in set M1, the
closest point in set M2 is found, and vice versa. Following formula expresses the
definition above:

() () ()()122121 ,,,max, MMhMMhMMH = (3.4)

37

where

() wvMMh
MwMv

−=
∈∈ 21

minmax, 21 (3.5)

The function h(M1, M2) is called one-sided Hausdorff distance and finds for
each point in M1 the closest point in M2 and takes the maximum. This function
is not symmetric. Every point in M1 is paired with a single point in M2, but there
may be unpaired (and multiply paired) points in M2. Thus, h(M1,M2) ≠ h(M2,M1).
The two-sided Hausdorff distance (or just Hausdorff distance) is constructed to
be symmetric by considering both of the one-sided Hausdorff distances and
reporting the maximum. This is illustrated in Figure 3.1, where d12=h(M1,M2) and

d21=h(M2,M1). The two-sided Hausdorff distance is then:

() ()
12211221 ,max, dddMMH == (3.6)

Figure 3-1: The Hausdorff distance between two surfaces M1 and M2.

Although Hausdorff distance is the tightest possible bound on the maximum
distance between two surfaces, it has some shortcomings for polygon simplifi-
cation. The problem is that it does not provide a correspondence mapping
between the surfaces, which make it difficult to carry attribute values from the
original surface to the simplified surfaces in a continuous fashion.

As an alternative to the Hausdorff distance a continuous bijection (one-to-one
and onto mapping) between the two surfaces is considered, and the distance
with respect to this mapping is measured [36].

38

Given such a continuous mapping BAF →: , we define mapping distance

() ()aFaFD
Aa

−=
∈

max (3.7)

Thus D is the distance between corresponding points in A and B, where the
correspondence is defined by the mapping function F. If this mapping is
accomplished via correspondences in a 2D parametric domain, such as a texture
map, we call this a parametric distance, which can be expressed as

() () ()xFxFFD ii
Px

11

1max
−−

−
∈

−= (3.8)

where x is a point in the 2D parametric domain and each of the F-1 functions
maps this 2D point onto a 3D mesh, either before or after a particular
simplification operation.

Because there can be a lot of such mappings and therefore many possible
mapping distances, we simply search for minimum possible mapping distance
as shows equation (3.9).

()FDD
SF∈

= minmin (3.9)

Here S is the set of all such continuous mapping functions. Note that although
Dmin and its associated mapping function may be impossible to explicitly
compute, any continuous mapping function F provides an upper bound on Dmin
as well as on the Hausdorff distance. If our simplification goal is to provide
a guaranteed bound on the maximum error, any such function will accomplish
this. However, if the bound is very loose, we might use much more polygons
than necessary to provide a specified quality. Similarly, if our goal is to
optimize the quality for a fixed polygon budget we would like the bound to be
as tight as possible to ensure the best real quality in our rendered scene.

As specified above, both the Hausdorff distance (often presented as Emax) and
the general mapping distance are evaluated as s the error compute the final
distance between two surfaces as the maximum of all the point-wise distances.
Although it is a valid choice, there are other reasonable choices as well. In some
cases we are interested more in average or mean square distance rather than
taking the maximum of the point-wise.

39

The average error Eavg is defined as follows:

() () ()∫ ∫∈ ∈
+=

1 2
1

2

2

2

2

1

21

11
,

Mv Mv
vvavg Md

w
Md

w
MME (3.10)

where w1,w2 are the surface areas of M1, M2. In practice we approximate this
exact metric using discrete set of points X1, X2. These sets should contain at least
all the vertices of their models M1, M2.

() () ()

+

+
= ∑∑

∈∈ 21

1

2

2

2

21

21

1
,

Xv

v

Xv

vavg MdMd
kk

MME (3.11)

where M1 and M2 are original and reduced model and k1 and k2 are numbers of
vertices on each model. The distance dv(M) is defined as

()
wv

MPw
−

∈
min .

The maximum error is often referred to a guaranteed error bound. For some
applications such as medical and scientific visualizations is quite desirable to
know that error is never higher than some specified tolerance.

The average error, on the other hand, can be an indication of the error across
the entire surface as opposed to a few particularly bad locations. The maximum
error can be even ten times larger than the average error for a particular model.
This observation implies that algorithms minimizing the maximum error may
ignore large increases in the average error. Similarly, heuristics that focus on
minimalization the average error may introduce several regions with extremely
high maximum error values.

3.4 Attribute Error
Today’s polygonal models consist not only of vertex coordinates but also other
attributes such as normals, colours or even texture coordinates. These attributes
may be specified on faces or vertices. This allows vertices to have multiple
attribute values, describing attribute discontinuities across adjacent faces when
desired. For example, vertices on sharp edges can have two normals.

The earlier algorithms took exclusively geometric input and had o support
for these attributes. Properties such as normals were computed as a cross
product of the triangle edges if flat or smooth shading was desired.

Some present algorithms carry the attribute values and also to measure the
attribute error incurred by the simplification operation. This allows to actually
reduce the attribute error for a given simplification operation as part

40

of the inner optimization by carefully choosing the attribute values for the
newly created or modified vertices.

The natural space for normals is on the Gaussian sphere (a unit sphere with
centre at the origin), on which each point represents a normal vector. The
proper measure for distance between two normal vectors is an angular distance:

() ()()
zyxzyxn nnnnnnd 222111 ,,,,arccos ⋅= (3.12)

Normals optimization us often used to prevent foldovers, comparing normal
of triangle before and after proposed operation. If the angle between normals is
greater than some given threshold, the operation may be disallowed. It is also
possible to minimize the normal error by choosing the best normal vector at
newly created vertices. A common approach is to optimize the normals as if
they were in a standard Euclidean space, considering them as standard 3D
points. However, optimizing normals in a Euclidean normal space generally
requires renormalizing the resulting normal, which projects it back onto the
Gaussian sphere.

The colours in computer graphics are usually stored as a triple of [R,G,B] in
the range [0,1] for each value. The most straightforward way to measure colour
error is to treat the RGB space as a Euclidean space and compute the RGB
distance between corresponding points as

() () ()2

21

2

21

2

21 bbggrrd c −+−+−= (3.13)

The RGB values are treated as three independent values and are optimized
separately. A frequently ignored problem with this approach is that this RGB
space is perceptually nonlinear. That means that equal distances between
different portions of RGB appear to the human eye as different distances. The
solution is to evaluate the error in some more perceptually linear space, such as
CIE-L*u*v*. Another problem to solve is the case when a colour value of
resulting exceeds [0,1] range. The colour component is usually set to one of the
border values.

Texture coordinates are represented as (u,v) coordinate pairs that define
a mapping of vertices to points in a 2D texture space. Analogously to the colour
space, the texture space uses values in the range [0,1]. Thus, similar issues to the
colour optimization have to be solved. However, unlike the colour space, the u

41

and v values should not be considered as totally independent. The texture
coordinates are intended to describe a bijection between the polygonal surface
and the texture space, thus the simplification process should avoid creating
folds in the texture space. Such folds would cause that the same texture space
location is mapped to multiple locations on the surface.

Another kind of attributes which are not included in input models, but are of

particular importance are volume and surface area of the model. Many
algorithms preserve these attributes as the main optimization principle and the
overall error bound is determined by the amount of volume or surface
area changed. Although, such metrics can improve a lot resulting
approximation, the computation cost is also noticeable. Therefore these
optimizations are used mostly as a part of the inner optimization process, while
in the outer another metrics is used.

3.5 Combining Errors
As presented above, a simplification algorithm can measure not only the
geometry error, but can consider other attribute errors during the process of
evaluation of a potential simplification operation. This is also the case of our
algorithm. The geometry error is used in outer optimization process (namely
vertex-to-plane distance, see section 3.6), however in inner process of vertex
removal the impact on normal vectors and area of resulting mesh guides the
simplification.

The majority of simplification algorithms are iterative simplifying processes.
Triangles that are simplified in further steps can already be a result of some
previous simplification operation. This leads to an important consideration
whether to measure and optimize the total error (with respect to initial state) or
just increment some error value while triangles are modified during the
simplification (error value then reflect only the difference of the error before
and after some operation is applied).

In many cases, the incremental error is more efficient to measure and
optimize. However, the total error is the more useful measure as part of the
simplification output.

3.6 Measurement Methods
Regarding previous section we can divide algorithms into categories according
to the method they use to measure the error. Those categories are vertex-to-

42

vertex, vertex-to-plane, vertex-to-surface, surface-to-surface approaches.
Finally, we discuss the use of image-space metrics as opposed to object- and
attribute-space metrics. The algorithms referenced in this section will be
described more in detail in Chapter 4.

Vertex-to-vertex distance

The most straightforward approach to measure the approximation error is
based on measuring distances between the original vertices and vertices of
simplified model. The quality of such results is determined by the choice of
correspondences of vertices. It is easy to imagine that few vertices on the same
position in space can define different surface and therefore this method will be
useful only on some particular cases. For example vertex merging operations
such as edge collapse or cell collapse where clustering of two or more vertices
gives exact mapping between original and resulting meshes (see Figure 3-2).

Figure 3-2: Several examples of vertex mapping while clustering one triangle.

In algorithms from grid-based vertex clustering family the maximal error
bound is given by the diagonal of one cell. The floating-cell approach proposed
by [35] does not use a regular grid for clustering. Instead of choosing vertices
according to the cells, the cells are chosen to surround so called representative
vertices (see Chapter 4 for more details). These cells are cubes or spheres of
radius corresponding to vertex grade. During simplification all vertices in given
cell are merged to chosen vertex and therefore the error bound is determined by
the cell radius (and is halved compared to regular grid approach while
supporting similar number of resulting vertices).

43

Vertex-to-plane distance

Even more computationally efficient than distance between two points is the
distance between a point and a plane. Given a plane with unit normal n, and
signed distance from the origin D, the shortest distance from point p = (x,y,z) to
the plane is

DznynxnDpnd zyx +++=+⋅= (3.14)

Since the models are composed of planar polygons rather than infinite planes,
the vertex-to-plane distance methods do not really provide a bound on the
maximum or average distance between models. Measuring the error of
a simplified mesh thus requires another metric or a tool such as Metro (see
section 3.7). However, simplification methods based on vertex-to-plane distance
are fast and moderately accurate, tending to produce approximations with low
error for a given polygon count.

These methods usually work on a following basis. For each simplified vertex
the maximum distance between the vertex and supporting planes is measured.
Each adjacent triangle defines one supporting plane. When two vertices are
merged, the set of supporting planes of resulting vertex will contain supporting
planes of both vertices. The error metric is defined as

()
()vplanesp

v vpE
∈

⋅=
2

max (3.15)

where v = (x,y,z,1) and p = (nx,ny,nz,D). This measure can either overestimate or
underestimate the maximum distance because the vertex distance can be
different for the plane and the actual polygon.

Probably most famous mesh simplification method [10] uses error quadrics. It
replaces the maximum of squared vertex-to-plane distances, shown above, with
the sum of squared distances as follows:

() ()()
()

∑ ∑∑ ∑
∈

==

⋅=⋅⋅=⋅=

vplanesp

v

p

p

p p

v vvQvQvvppvvppvvpE
2 (3.16)

Qp is called error quadric and it is 4x4 symmetric matrix. It represents
a contribution to Ev by plane p. The contribution of all planes surrounding
vertex v is computed as a sum of all Qps. Thus when an edge is collapsed,
the resulting quadric will be the sum of quadric of original vertices. As obvious,
neither storage nor computation requirements grow during simplification
process.

44

Vertex-to-surface distance

In vertex-to-surface distance metric the vertices of the original model are
mapped to their closest points on the polygons of the simplified surface. This
approach is entirely appropriate for models created from a set of points (for
example from 3D scanner) which are then triangulated. This leads to the
thought which is also discussed in Chapter 7, namely that the vertices are only
true data to be preserved rather than the input surface. Vertex-to-surface
approaches are much slower than vertex-to-plane approaches because suitable
mappings must be found for the many input vertices.

Hoppe’s progressive mesh algorithm [20] is based on edge contraction works
in following steps:

1. Choose an initial value for the position of the new vertex v (e.g., an
edge vertex or midpoint).

2. For each original vertex, map it to the closest point on one of the
simplified triangles.

3. Optimize the position of v to minimize the sum of squared distances
between the pairs of mapped points (solve a sparse, linear least-
squares problem).

4. Iterate steps 2 and 3 until the error converges.

Since vertex mapping process is a part of inner loop, the whole computation

is very expensive. Also in some cases, this system will never converge, because
the optimal vertex position may be at infinity.

Surface-to-surface distance

A surface-surface distance metric can provide the strongest guaranteed bounds
on the error of a simplified surface. By definition, such a metric considers all
points on both the original and simplified surface to determine the error at
a given stage of the simplification process. These methods generally choose to
minimize the maximum error, perhaps because finding a guaranteed maximum
bound on the simplification error is the whole point of using such a rigorous
approach. Applications for which such bounds may be especially useful include
medicine and scientific visualization. Algorithms based on surface-to-surface
distance metrics are for example simplification envelopes [6], plane mapping [1]
or tolerance volumes [13].

45

Image metric

Different algorithms use different measures of the geometric error. However,
often the crucial measure of fidelity is not geometric but perceptual. As already
briefly mentioned in section 3.2, there exist algorithms that their simplification
process guide by comparing images of original and reduced model when
rendered. One of such algorithms is [33], which measures the error for
simplification operations by rendering multiple images of the object using
a sphere of virtual cameras. Each camera renders an image of the original
model and of the simplified model, and a root-mean-squared error of pixel
luminance values is computed between the two sets of pixels from all the
cameras – see equation (3.1).

This approach naturally incorporates visual errors due to a number of
sources, such as motion of the silhouette, and deviation of colour, normal, and
texture coordinate attributes. It even accounts for factors such as the content of
the texture maps and the shading modes used to render the model (such as flat
or Gouraud shading).

However, image-based simplification algorithm is significantly slower than
the slowest geometric algorithms, since rendering multiple images for every
edge collapse is an intrinsically expensive way to measure error.

3.7 METRO
Having presented several error estimation approaches there is a question how
to compare particular simplification algorithms. Since the criteria to drive the
simplification process are highly differentiated and many simplification
approaches do not return measures of the approximation error introduced
while simplifying the mesh, a common tool to measure the approximation error
has been developed. Such a tool is called Metro [5].
Metro numerically compares two triangle meshes M1 and M2, which describe
the same surface at different levels of detail. It requires no knowledge of the
simplification approach adopted to build the reduced mesh.
It evaluates the difference between the two meshes on the basis of the
approximation error measure defined in the section 3.3. It adopts an
approximate approach based on surface sampling and the computation of
point-to-surface distances. The surface of the first (pivot) mesh is sampled, and
for each elementary surface parcel it computes the distance to the not-pivot
mesh. The program outputs the maximum and average distance from the first
model to the second model (SGI version even provides graphical output, see

46

Figure 3-3). A two-sided distance function may also be computed by swapping
the order of the models and running the algorithm again. The tool has been
used in several research papers to report on the relative merits of various
simplification algorithms and it is also referred in results sections of presented
algorithms in later sections of this work.

Figure 3-3: Graphical output of Metro (taken from [5]).

We have examined the motivation to measure approximation error, the key
elements common to many simplification error metrics, and several particular
metrics as well. These metrics has been classified into vertex-to-vertex, vertex-
to-plane, vertex-to-surface, and surface-to-surface distance measures. Each class
provides different characteristics in terms of speed, quality, robustness, and
ease of implementation. At the end Metro has been mentioned as a standard
tool for approximation error evaluation and comparison.

47

Chapter 4

Algorithms survey

A common application of simplification is reducing the complexity of very
densely over-sampled models. Those models are often uniformly tessellated,
thus a triangle density is the same in both flat and highly curved regions. It is
usually preferable that local triangle density adapts to local curvature. In other
words, we tend to obtain an approximation with a smaller amount of triangles
in flat areas in opposite to curved parts of the surface.

Successful algorithms for simplifying curves and height fields were
developed twenty years ago, but the work on more general surface
simplification is much more recent [26]. Note that, since height fields are
a special case of general surfaces, optionally approximating a surface is NP-
hard. The traditional approach to multiresolution surface models has been
manual preparation. A human designer must construct various levels of detail
by hand. The general goal of the work done on surface simplification has been
to automate this task.

Just before we present various simplification algorithms we present high
level frameworks upon which the methods are constructed. Knowing these
approaches helps to understand some fundamental concepts of particular
methods. Since new algorithms presented in this work are related to vertex
decimation and edge contraction methods, these two approaches are discussed
more in detail in following survey.

4.1 High level frameworks
The typical simplification algorithm uses a nested optimization process: an
outer optimization makes a sequence of discrete choices for which operations to
perform and in what order, and an inner optimization makes choices in
processing the operator, such as which way to fill the hole during a vertex
removal or where to place the new vertex during an edge collapse.

48

We will discuss a few of the high-level queuing algorithms for choosing the
ordering of the simplification operations as well as the choice of simplification
operators.

Nonoptimizing

The simplest algorithms essentially apply all possible simplification operations
in an arbitrary order. This is desirable in methods based on clustering, where
any operation may be performed completely independently of any other. Note
that such algorithms are nonoptimizing in the sense that they do not concern
itself with the outer optimization problem. There is still some possibility to
make optimizations during the actual application of the selected (inner)
operation.

Greedy

Greedy algorithms solve the outer optimization problem according to some cost
function. This function usually defines a resulting error of proposed
simplification operation. At the beginning the cost of all operations is evaluated
and they are sorted according to their values. The minimum cost operation is
applied to the current mesh and removed from the priority queue. Since the
operation may affect the cost of other operations in the neighbouring mesh, the
cost of neighbouring operations is updated. The most of the time in real
implementation is consumed by the evaluation of operation cost while
updating the neighbours. Thus, choosing operations with fewer neighbours can
significantly improve the performance. For example, vertex removal and half-
edge collapse operations affect fewer triangles than the edge collapse, and thus
they change the costs of fewer neighbouring operations.

Lazy

Lazy queuing algorithms attempt to reduce the number of calls to cost function
in comparison to the greedy approach. The main idea is that it is not necessary
to update the cost of operation in affected area every time, since it can be
updated several times before it is actually used. Instead the dirty flag is used to
mark the cost no longer accurate assuming that new value will be not to far off.
On every operation taken from priority queue the dirty flag is checked. If it is
false the operation is processed, otherwise an actual cost and reinserting it into
the queue is applied.

49

Estimating

Another method for reducing the number of cost computations performed
simply replaces the expensive computations with cheaper (faster) estimates.
The priority ordering of the operations is determined entirely by estimated
costs, whereas the accurate cost computation is performed only once per
operation when applied. This method will work well if the ordering generated
by the estimated costs is similar to the ordering that would be generated by the
accurate costs.

Independent

The independent algorithms perform a maximum set of independent
operations, or operations whose mutual neighbourhoods do not overlap,
chosen in order of the cost function at the time. Each pass of iterative process
creates one level of the simplification hierarchy. Within a pass, only operations
affecting independent mesh neighbourhoods are applied, with the remaining
operations placed on a list L for processing in a future pass. This approach leads
to parallel processing and its extension is described in Chapter 5.

Interleaved simplification operators

In this approach geometry simplification alternates with topology
simplification. This is motivated by the observation that each simplification
stage allows the mesh to be simplified more aggressively than if only one kind
of simplification had been applied. For instance, closing small holes by
topology simplifications allows higher geometry simplification. The simplest
scheme for both simplifications is the nonoptimizing approach. However, any
of the previously mentioned approaches can be used.

We showed that simplification process can be characterized according to the

optimization algorithm, simplification operator, and error metric that it uses.
The particular choice depends on the constraints imposed by the target
application, ease of coding, and the nature of the input data sets. In next section
of this chapter we will present some state-of-the-art algorithms divided info
categories already used in previous text.

4.2 Volume methods
Some work has been done on volumetric approaches to multiresolution
modelling. Generally speaking, if the models in question are acquired as

50

volumes and will be rendered as volumes, volume simplification is a good
approach. However, if the simplified volumes must be converted into
a polygonal form before rendering, volume methods become significantly less
attractive. The simplification algorithm [37] for polygonal meshes has 4 stages:

• convert the input polygon model into a volumetric model
• application of morphological operators in the volumetric domain to

simplify the topology
• iso-surface extraction to obtain a polygonal representation of the

simplified surface
• topology-preserving triangle count reduction to decimate the iso-

surface.

For mesh voxelization they use a parity count algorithm, which is simply the

3D extension to the parity count method of determining whether a point is
interior to a polygon in 2D. Thus, a voxel V is classified by counting the number
of times that the ray with its origin at the centre of V intersects polygons of the
model. An odd number of intersections means that V is interior to the model,
and an even number means it is outside.

The morphological operators are well suited to simplify the topology of
objects because they present a clean and efficient way to remove small features,
close holes and join disconnected components of a model. The first step in using
morphological operators is the calculation of a distance map. Given a binary
volume that is classified into feature and non-feature voxels, a distance map
associates with each voxel the distance to the nearest feature voxel. Feature
voxels are those that are inside the object and non-feature voxels are those that
lie outside the object. Feature voxels have a distance map value of zero. The two
atomic morphological operators are erosion and dilation. They take as input the
volume, the distance map, and an erosion/dilation distance. For dilation, [37]
look through the distance map, and any non-feature voxel that has distance less
than or equal to the threshold is turned into a feature voxel. Erosion is the
complement of dilation. In this case, the volume is negated (i.e. a feature voxel
becomes non-feature and vice versa), the distance map is calculated and
dilation performed. After this, the volume is negated again to obtain the final
result. While useful by themselves, erosion and dilation are usually used in
conjunction with each other. The reason is that if they are used in isolation, then
they increase (dilation) or decrease (erosion) the bounds of the volume. When
erosion is performed followed by dilation, it is called an opening. This is due

51

the fact that this operation will widen holes, eliminate small features and
disconnect parts of the model that are connected by thin structures. The
complement of this operation is a closing, which is a dilation followed by an
erosion. This will close holes and connect previously disconnected parts of the
model.

To create a manifold polygonal model, [37] extracts an iso-surface from the
volumetric representation of the model using the standard marching cubes
algorithm [34].

The new iso-surface usually has simpler topology than the input model. In
addition, because the Marching Cubes algorithm considers cubes in isolation, it
frequently over tessellates the surface. Therefore, the number of triangles of this
iso-surface can be drastically reduced without degrading the quality of the
model. To achieve this end, Garland and Heckbert’s polygon-based
simplification method based on quadric error measurement [10] is used. This
method is based on a generalized form of the edge collapse operation called
vertex pair contraction, and will be described later in this chapter.

4.3 Simplification envelopes
Simplification envelopes [6] are something of a meta-method. The main feature
of this algorithm is to use no error measure but only a geometric construction to
control the simplification. Simplification envelopes are two surfaces constructed
on each side of the original surface using a user specified offset and making
sure these surfaces do not self-intersect. The space between the two surfaces is
then used to build a new surface. Therefore, the only constraint is that the new
polygons should not intersect with any one of the surfaces. This naturally
preserves the original model topology, and guarantees a global error. In order
to construct the envelopes, the original model must be an oriented manifold.

The amount of simplification is controlled by the offset used for constructing
the surfaces. The case where envelope surfaces are most likely to self-intersect is
along the sharp edges of the original mesh, where there will not be much room
to build one of the surfaces. The surfaces which self-intersect must then be
moved closer to the original mesh until the condition is verified. Thus, near
sharp edges, the spaces between the two surfaces will be smaller and less
simplification will be permitted. Conversely, in planar areas, the distance will
be maximal, and therefore, maximal simplification will be allowed.

52

Figure 4-1: Building inner and outer envelopes for a triangle (taken from [6]).

At the beginning the envelopes have to be constructed (see Figure 4-1). The
algorithm is as follows:

1. Offset the outer surface along vertex normals by a fraction of the
desired final offset.

2. If, for any vertex, the surface self-intersects, cancel the move for that
vertex.

3. Repeat 1 and 2 until either no further increment can be made without
intersection, or the offset as reached the desired value.

4. Repeat 1 to 3 for the inner surface.
5. Repeat 1 to 3 for the border tubes. These are built along the borders of

non-closed objects to allow for simplification there also.
The algorithm then goes on to generate the simplified mesh. For each vertex

of the initial mesh:
1. Remove the vertex and the adjacent faces.
2. If possible, iteratively fill the hole by triangulation using as big faces as

possible and ensuring that they do not intersect with the offset
surfaces. Otherwise cancel the removal and process the next vertex.

This algorithm is appealing because it does not use any measure of the error.

The envelopes are the only control over the simplification. However, this
approach is computationally expensive, especially during the envelope
construction phase.

4.4 Wavelet surfaces
Wavelet methods provide a fairly clean mathematical framework for the
decomposition of a surface into a base shape plus a sequence of successively
finer surface details. Approximations can be generated by discarding the least
significant details. Wavelet decompositions are generally unable to resolve
creases on the surface unless they fall along edges in the base mesh [20], [18].

53

Essentially, this requires that the surface be reconstructed using a wavelet
representation. This is as usual difficult. Eck et al. [7] developed a method for
constructing wavelet representations of arbitrary manifold surfaces. This is not
actually a simplification algorithm. It is a pre-processor for another algorithm,
which produces a multiresolution representation of a mesh, which is a compact
geomorphic containing a simple base mesh and a series of wavelet coefficients
that are used to introduce details in the mesh. From this representation, a new
mesh can be retrieved at any required level of detail. However, it suffers from
some serious drawbacks. Before the wavelet representation can be built, the
surface must be remeshed so that it has subdivision connectivity. This process
alone introduces error into the highest level of detail. In addition, the topology
of the model must remain fixed at all levels of detail.

As already said, this method requires the input mesh to be constructed by
recursive subdivision i.e. where each triangle is subdivided using a 4-to-1 split
operator until the desired amount of detail is reached. Such a mesh is encoded
into a multiresolution representation. The algorithm below describes how to
convert any mesh so that it has the property of recursive subdivision.

It is an adaptive subdivision algorithm, which preserves topology but does
identify any characteristic features in the mesh. Approximation error is
measured using the distance to the original mesh. Harmonic maps are used at
several steps to parameterize a 3D mesh into a planar triangulation. The
algorithm has four main steps.

Figure 4-2: Four steps in the MRA algorithm (taken from [17]).

• Partitioning. A Voronoi-like diagram is constructed on the original
mesh (Figure 4-2/1) using a multi-seed path finding algorithm in the
dual graph of the mesh (where the nodes are the faces of the mesh and
the arcs represent adjacency and are weighed using the distance
between the centres of adjacent faces). This diagram is then
triangulated using a Delaunay-like method and the harmonic maps to
straighten the edges (Figure 4-2/2).

54

• Parameterization. The result is a base mesh (Figure 4-2/3) that is
parameterized using a harmonic map. The parameterization is forced
to be continuous across the faces so that the number of wavelet
coefficients is minimal.

• Re-sampling. The base mesh is now re-sampled using the 4-to-1 split
operator until the mesh is at a certain distance from the original mesh
(Figure 4-2/4). Each step is parameterized as in previous step.

• Multiresolution Analysis. The resulting succession of meshes is passed
to the multiresolution analysis algorithm to be encoded using
wavelets.

Like other subdivision-based schemes, wavelet methods cannot easily

construct approximations with a topology different from the original surface.
The wavelet representation is unable to adequately preserve sharp corners and
other discontinuities on the surface. Wavelet methods cannot change the
topology and are capable of reducing smooth manifolds only. They produce
a wide range of simplification and details can be added in specific parts of the
mesh. But it is also computationally very expensive. Furthermore, extracting
a valid mesh from wavelet-based representation is also expensive.

4.5 Vertex Clustering
Vertex clustering methods spatially partition the vertex set into a set of clusters
and unify all vertices within the same cluster [43], [35]. They are generally very
fast and work on arbitrary collections of triangles. Unfortunately, they can often
produce relatively poor quality approximations.

The simplest clustering method is the uniform vertex clustering shown in
Figure 3. The vertex set is partitioned by subdividing a bounding box on
a regular grid, and the new representative vertex for each cell is computed
using cheap heuristics (i.e. the average of vertices coordinates). This process can
be implemented quite efficiently. The algorithm also tends to make substantial
alternations to the topology of the original model.

55

before after

Figure 4-3: Uniform clustering in two dimensions.

Note that, the results of this algorithm can be quite sensitive to the actual
placement of the grid cells. It is also incapable of simplifying features larger
than cell size. A planar rectangle consisting of many triangles all larger than the
cell size will not be simplified at all, even though it can be approximated using
two triangles without error. The most natural scheme is to use an adaptive
partitioning scheme such as octrees. Centring cells on important vertices, can
also improve approximations.

Clustering methods tend to work well if the original model is highly over-
sampled and the required degree of simplification is not too great. They also
tend to perform better when the surface triangles are smaller than the cell size.
Since no vertex moves further than the diameter of its cell, clustering algorithms
provide guaranteed bounds on the Hausdorff approximation error sampled at
the vertices of the original model and its approximation. However, to achieve
substantial simplification, the required cell size increases quite rapidly, making
the error bound rather weak. In particular, at more aggressive simplification
levels, the quality of the resulting approximations can quickly degrade. Vertex
clustering methods are fast and general. On the other hand the simplification
process itself is hard to control and gives poor quality approximations.

4.6 Region Merging
A handful of simplification algorithms operate by merging surface regions
together [16]. In general, these algorithms usually partition the surface into
disjoint connected regions based on planarity assumption. At the beginning
a planarity threshold has to be set. For each triangle its neighbourhood is
checked and if it is sufficiently planar, the triangles are merged together. After
such merges the boundary of each region is simplified, and the resulting region
(loop) is triangulated. These algorithms are restricted to manifold surfaces, and
do not alter the topology of the model. Region merging techniques produce

56

good quality results, and they provide bounds on the approximation error.
However, the implementation of such algorithms is more complicated in
comparison to others without any superior approximations.

In some ways different, but in principle the same approach is proposed by
Garland et al. [12]. Their method is derived from the edge contraction method.
They create a dual graph of the surface, and instead of edge collapse in the
original surface they perform face clustering in the dual representation using
dual quadric metrics [10], [12], [15], [19], see Figure 4-4.

Figure 4-4: Edge contraction in the dual graph. The two faces of the surface
corresponding to the endpoints of the dual edge are merged to form a single

face cluster.

At the end the clusters of triangles are re-triangulated. In opposite to region
merging algorithms, the dual quadric metrics seek to minimize the average
deviation without any guaranteed bounds on the maximum. The quadric metric
will be described later in detail. As [44] shows, clustering methods seem to be
a promising approach for the simplification of massive meshes.

Figure 4-5: Face clusters computed for Isis statue, composed of 375,736
triangles. Cluster shape adapts to surface shape. From left 10,000 clusters, 5000

clusters, 2500 clusters, 1000 clusters and 100 clusters.

57

4.7 Vertex decimation
Decimation methods are algorithms that start with a polygonization (typically
triangulation) and successively simplify it until the desired level of
approximation is achieved. The advantage of decimation methods is that they
can be generalized to volumes [39].

One of the more widely used algorithms is vertex decimation, an iterative
simplification algorithm originally proposed by Schroeder et al. [46]. In each
step of the decimation process, a vertex is selected for removal, all the faces
adjacent to that vertex are removed from the model and the resulting hole is re-
triangulated. Since the re-triangulation usually requires a projection of the local
surfaces onto a plane, these algorithms are generally limited to manifold
surfaces. The fundamental operation of vertex deletion is also incapable of
simplifying the topology of the model. Schroeder [45] was able to lift these
restrictions by incorporating cutting and stitching operations into the
simplification process.

58

1. The three steps of the algorithm are:
2. Characterize the local vertex geometry and topology.
3. Evaluate the decimation criteria.
4. Triangulate the resulting hole.

Now let us have a look at the algorithm in more detail. All the vertices in

a mesh are initially evaluated according to their importance in the mesh. There
are 5 fundamental vertex types recognized by their topology, see Figure 5-2.
Only three types of vertices are usually used in the simplification process;
simple, boundary and interior edge vertices.

The vertex importance is calculated according to the vertex type. For a simple
vertex the importance is equal to its distance from the average plane computed
from the positions of surrounded vertices, see Figure 6a. In case of a boundary
or interior edge respectively, vertex importance is equal to its distance from the
bisector traversing through other two vertices on the border or important edges
respectively (see Figure 4-6b).

V

V2

V1

d

V

d

(a) (b)

Figure 4-6: The distance between a vertex and the average plane (a) and
between a vertex and the bisector (b).

An average plane is constructed using the triangle normals ni, centres xi and
areas Ai.

i

ii

i

ii

A

Ax
x

N

N
n

A

An
N

∑
∑
∑

=== (4.1)

where the summation is over all triangles in the loop. The distance of the vertex
v to the plane is then d = |n (v-x)|. If the vertex is within the specified distance
to the average plane it may be deleted. Otherwise it is retained.

59

Once the vertex is eliminated, the hole arising has to be triangulated. The new
triangulation must be regular – no crossing triangles or triangles with vertices
on the line. If such triangulation does not exist, the vertex must be preserved. It
is also recommended that the new triangulation of the hole should be a good
approximation of the original surface and the triangles would not be too thin
and long. Schroeder et al. propose such a triangulation algorithm where
a splitting plane iteratively divides the hole in two parts, until each hole has the
shape of a triangle.

The original vertex decimation algorithm used a fairly conservative estimate
of approximation error. When a vertex is being removed, its distance to a new
surface is computed and this value is distributed then to neighbouring vertices.
The vertex is deleted if its importance and the accumulated error value are
under some threshold. More recent methods [24], [3] use more accurate error
metrics, like the localized Hausdorff error. Klein et al. [24], [25] use one-sided
Hausdorff distance computed before vertex removal. If the error value is
sufficiently low, the vertex is removed, otherwise it is preserved. The algorithm
of Schroeder et al. is reasonably efficient both in time and space, but it seems to
have some difficulty preserving smooth surfaces [11]. The triangulation method
has also been improved. Ciamplalini et al [3] use 2D triangulations: an ear
cutting solution and minimum angle modification of the previous one. To be
able to apply standard 2D triangulation algorithms, they must project
a triangulated area onto a plane. They use 14 planes projecting the border of the
hole on each of them until they find a ”valid” projection plane (where the
projection has no intersecting edges). Klein et al. [23], [25] have tested several
triangulation methods and found that the optimal triangulation method
depends on the model being reduced. For example Delaunay triangulation
turned out to be unsuitable for models such as a coke can. Lee et al. [29]
recently described an algorithm, which establishes smooth parameterizations
for irregular connectivity, 2-manifold triangular meshes of arbitrary topology.
By applying a vertex decimation algorithm they simplify the original mesh and
use piecewise linear approximations of conformal mapping to incrementally
build a parameterization of the original mesh over a low face count base
domain. The resulting parameterizations are of high quality and their utility is
demonstrated in an adaptive, subdivision-connectivity remeshing algorithm
that has guaranteed error bounds.

60

Vertex decimation methods [39] produce good quality results, preserve mesh
topology and are generally applicable to manifolds only.

4.8 Edge Contraction
The other class of decimation techniques is based on the iterative contraction of
vertex pairs (edges) [10], [44], [31], [20], [19]. These algorithms have become
very popular in recent years. An iterative edge contraction (or edge collapse)
takes the two endpoints of the target edge, moves them to the same position
and links all the incident edges to one of the vertices, deletes the other vertex,
and removes any faces that have degenerated into lines or points, see Figure
4-7. Note that the fundamental operation of contraction does not require the
immediate neighbourhood to be manifold. Thus contraction-based algorithms
can more conveniently deal with non-manifold surfaces than vertex decimation
algorithms.

VjVi V

Figure 4-7: Edge (vi, vj) is contracted. The dark triangles become degenerate and
are removed.

Typically, this removes two triangular faces per edge contraction. These
algorithms work by iteratively contracting edges of the model. The primary
difference lies in how the particular edge to be contracted is chosen and how
a new vertex position is set.

The methods consist of repeatedly selecting the edge with minimum cost,
collapsing this edge, and then re-evaluating the cost of edges affected by this
edge collapse. The first step in the simplification process is to assign costs to all
edges in the mesh, which are maintained in a priority queue. For each iteration,
the edge with the lowest cost is selected and tested for candidacy. An edge is
rejected as a candidate if no solution exists for its replacement vertex. There are
usually some topological constrains to preserve the genus and to avoid
introducing non-manifold simplexes. If the edge is not a valid candidate, its cost
is set to infinity, and the edge is moved to the back of the queue. Given a valid
edge, the edge collapse is performed, followed by a re-evaluation of edge costs
for all nearby edges affected by the collapse. Once the costs for edges have been

61

updated, the next iteration begins, and the process is repeated until a desired
number of simplexes remain.

The general edge collapse method involves two major steps: choosing

a measure that specifies the cost of collapsing an edge, and choosing the
position for the new vertex that replaces the edge. Many approaches to vertex
placement have been proposed, such as picking one of the vertices of the edge,
using the midpoint of the edge, or choosing a position that minimizes the
distance between the mesh before and after the edge collapse. This problem can
be viewed as an optimization problem.

General pair contractions, where vertices need not be connected by an edge,
have been proposed to provide a means of merging separate topological
components during simplification. This may implicitly alter the topology of the
surface (e.g., by closing holes). Contracting a non-edge pair will remove one
vertex and join previously unconnected regions of the surface. In general, pair
contraction requires the algorithm to support non-manifold surfaces, because
when two separate components are joined together, a non-manifold region will
almost certainly be created.

To perform the contraction, we must choose the target position for the new
vertex. The simplest strategy is to use one of the original vertices, or the
midpoint of the edge being contracted. However, the better approximation is
usually required, and a new vertex is allowed to float freely in space in order to
minimize some error metric. This will generally result in higher quality
approximations, but the storage requirements for multiresolution
representation will be higher.

The most important task is to find a way in which the cost of edges is
evaluated for the contraction. The cost of the contraction is meant to reflect the
amount of error introduced into the approximation by the contraction by the
pair in question. Hoppe’s algorithm [20] is based on minimization of an energy
function. This function has four terms:

)()()()()(MEMEMEMEME discscalarspringdist +++= (4.2)

The first one Edist ensures that the simplified mesh remains close to the
original mesh. This geometric error term is very much like Eavg (see equation
(3.11)). The second (Espring) corresponds to placing on each edge of the mesh
a spring of rest length zero and favours triangles with better proportions. The
third term Escalar discourages the simplification of colour and texture

62

discontinuities. Finally, the last term Edisc discourages the simplification of
topology and normal discontinuities. The algorithm maintains a set of sample
points on the original surface, and the distances between these points and the
corresponding closest points on the approximation determine the geometric
error.

The basic steps of the algorithm are very similar to the general scheme of
edge collapse algorithm. Anyway, we show it here for illustration:

1. Sort the edges using the least cost of simplification. This cost is
measured using the variation of the energy function.

2. Apply the edge collapse operator for the edge at the head of the list
and record the corresponding vertex split in the progressive mesh
structure (including colour, texture and normal information).

3. The position of the new vertex is chosen among the two initial vertices
and the centre of the edge, depending on which one is the closest to
the original mesh.

4. Re-compute the cost for the edges that have been affected by the
operator and reorder the list.

5. If the list is empty or the cost of the next simplification exceeds
a certain bound, the algorithm terminates and returns the final
progressive mesh.

6. Otherwise, jump to step 2.

This algorithm produces some of the highest quality results among currently

available methods. The mesh optimisation algorithm [17] performs explicit
search rather than simple greedy contraction. It exhibits even longer running
times, but may produce the highest quality results.

The quadric error metric developed by Garland and Heckbert [10], [15] also

defines error in terms of distances to sets of planes. However, it uses a much
more efficient implicit representation of these sets. Each vertex is assigned
a single symmetric 4x4 matrix, which can measure the sum of squared distances
of a point to all the planes in the set. Under suitable conditions, the eigenvectors
and eigenvalues of a quadric accumulated over a smooth surface region are
determined by the principal directions and principal curvatures of the surface.
While the quadric metric sacrifices some precision in assessing the
approximation error, the resulting algorithm can produce quality
approximations very rapidly.

63

Their simplification algorithm is based on the iterative contraction of vertex
pairs; a generalization of the iterative edge contraction. A pair contraction
moves vertices v1 and v2 to the new position v, connects all their incident edges
to v1, and deletes the vertex ∆(v). The effect of contraction is small and highly
localized. If (v1,v2) is an edge, then 1 or more faces will be removed. Otherwise,
two previously separate sections of the model will be joined at v. The primary
benefit, which is gained by utilizing general vertex pair contractions, is the
ability of the algorithm to join previously unconnected regions together.
A potential side benefit is that it makes the algorithm less sensitive to the mesh
connectivity of the original model.

At the initialization time, the set of valid pairs is chosen, and only these pairs
are considered during the course of the algorithm. The pair (v1,v2) is a valid pair
for contraction if either (v1,v2) is an edge, or ||v1-v2|| < t, where t is a threshold
parameter. Using a threshold t = 0 gives a simple edge contraction algorithm. To
define the edge cost of contraction a symmetric 4x4 matrix Q is associated with
each vertex, and the error at vertex v is defined as a quadric form ∆(v) = vTQv.
For a given contraction of vertices v1 and v2 a new matrix Q’, which
approximates the error at v’, is derived such as Q’ = Q1 + Q2. A new position of
vertex v is set according to the need to minimize ∆(v). This is equivalent to
solving:

=

1

0

0

0

'

1000

34332313

24232212

14131211

v
qqqq

qqqq

qqqq

 (4.3)

for v’. Assuming that the matrix is invertible, we can write

=

−

1

0

0

0

1000

'

1

34332313

24232212

14131211

qqqq

qqqq

qqqq

v (4.4)

If the matrix is not invertible, the optimal vertex position is found along the
segment v1v2. If this also fails, v’ is chosen from amongst the endpoints and the
midpoint.

The algorithm can be quickly summarized as follows:
• Compute the Q matrices for all the vertices.
• Select all valid pairs.

64

• Compute the optimal contraction target v’ for each valid pair (v1,v2). The
error v-T(Q1+Q2)v’ of this target vertex becomes the cost of contracting
that pair.

• Place all the pairs in a heap keyed on cost with the minimum cost pair at
the top.

• Iteratively remove the pair (v1,v2) of least cost from the heap, contract
this pair, and update the costs of all valid pairs involving v1.

The initial matrices Q are computed using the matrix Kp, where:

∑
∈

=
)(vplanesp

pKQ (4.5)

==

2

2

2

2

dcdbdad

dccbcac

dbcbbab

dacabaa

ppK
T

p (4.6)

where p = [a b c d]T represents the plane for the triangles adjacent to vertex v

defined by the equation ax + by + cz + d = 0 where a2 + b2 +c2 = 1.

The “memoryless” algorithm developed by Lindstrom and Turk [31] is

interesting in that, unlike most algorithms, it makes possible decisions based
purely on the current approximation alone. No information about the original
shape is retained. They use linear constraints, based primarily on the
conservation of volume, in order to select an edge for contraction and the
position at which the remaining vertex will be located.

In choosing the vertex position v from an edge collapse, [31] attempt to
minimize the change of several geometric properties such as volume and area.
The idea of preserving a volume is based on choosing a vertex position, which
will minimize the volume of tetrahedrons constructed from the vertices of all
triangles, affected by edge collapse, and the new vertex. Thus if we have
a triangle t=(ve,v1,v2), where ve is a vertex on collapsing edge, we try to
minimize the volume of tetrahedral th=(v,ve,v1,v2). The formula is as follows:

65

0

1111

6

1
)),,,((

210

210

210

210 ===∑ ∑
i i

t

z

t

z

t

zz

t

y

t

y

t

yy

t

x

t

x

t

xx

ttt

iii

iii

iii

iii

vvvv

vvvv

vvvv

vvvvV (4.7)

To further constraints the vertex position, [31] also attempts to minimize the
unsigned volume of each individual tetrahedron, which is a measure of the
local surface error for each corresponding triangle. To minimize these errors,
the minimum of

∑=
i

ttt

v
iii vvvvVvef 2

210)),,,((),((4.8)

is searched for.

By defining the edge cost in terms of the objective function that is minimized

above, the vertex position is optimal with respect to the incurred cost of
collapsing the edge. That is, the cost is a weighted sum of the terms minimized
in the volume optimization. As a measure of triangle shape quality, Lindstrom
and Turk have chosen the following expression:

∑=
i

is vvLvef 2
)),((),((4.9)

which is the sum of squared lengths of the edges incident upon v.

The reported results suggest that it can generate good quality results, and

that it is fairly efficient, particularly in memory consumption.

One of the major benefits of iterative decimation is the hierarchical structure

that it induces on the surface. This quite naturally leads to useful
multiresolution surface representation, as described in following section.

4.9 Multiresolution Models
The simplest method for creating multiresolution surface models is to generate
a set of increasingly simple approximations. A renderer can then select, which
model will be rendered, accordingly to the level of detail needed. In other
words it would be using a series of discrete levels of detail, from which our
multiresolution model would consist. The reason why the discrete

66

multiresolution approach is so popular is its simplicity. However it can
potentially cause significant visual artefacts. Since the number of polygons in
two models can differ significantly, their appearances in the output image can
be different as well. This can lead to “popping” artefacts while the level of
detail is changing. Despite this limitation, discrete multiresolution models can
be quite useful in many applications. Support for discrete levels of detail has
been included in a number of commercial rendering systems, including
RenderMan, Open Invertor, or IRIS Performer. Discrete levels of detail have
also been used for accelerating the computation of radiosity solutions.

On the other hand there are many applications where discrete
multiresolution models are not sufficient. Imagine a large surface, such as
terrain, being viewed from the viewpoint positioned just above the surface,
looking out towards the horizon. An approximation with a constant level of
detail would be either too dense in the distance or too sparse near the
viewpoint. In such a case we would like the level of detail to be view
dependent. Thus, we need a multiresolution representation that continuously
adapts the surface at run time based on viewing conditions. Since this kind of
representation is required by many applications today, we dedicate a particular
attention to this area.

The direct by-product of iterative contraction is an incremental

representation, the so called simplification stream [11]. During the process of
simplification, we get a sequence of models

k
MMMM

kφφφφ

→→→→

321

210 (4.10)

where each step ii
MM →−1 corresponds to the application of a single

contraction iφ . Thus each intermediate approximation Mi can be expressed as

the result of applying some of the total sequence of contractions onto the
original mesh M0. Since we store the entire original model M0 plus the
contraction sequence, the resulting representation is necessarily larger than the
original model. If we assume that our original model is very large and our
desired approximation is quite small, certainly a common case, we are faced
with more significant problem. Fortunately, a closely related representation can
solve this problem.

67

The progressive mesh (PM) structure, originally introduced by Hoppe [20],
[18], provides the same functionality as a simplification stream. However, it has
two important advantages. First, the resulting representation can actually be
smaller than the original model. Second, reconstruction time is proportional to
the desired approximation size. A PM is, in essence, a reversed simplification
stream. It exploits the fact that the contraction operator is invertible. For each
edge contraction we can define a corresponding inverse called a vertex split.
Thus we begin with the final approximation (in Hoppe’s notation base mesh)
and produce a sequence of models applying a sequence of vertex split
operations and terminating at the original model. Each item in vertex split
sequence must encode the vertex being split, positions for the two resulting
vertices, and which triangles to introduce into the mesh. Hoppe [20] also
demonstrated that PM is an effective technique for compressing the input
geometry.

It does not need to be only an edge contraction approach that can generate

multiresolution models. There are plenty of techniques based on vertex
decimation as well. Klein et al. [23], [25] suggest starting from a base mesh,
which is refined by adding vertices in the reverse order of their removal. The
main difference to the progressive meshes algorithms is that aside from a new
vertex and two anchor vertices also the triangulation of the accompanying
fragment has to be transmitted. The unique solution brings Ciampaliny et al.
[3], which can rebuild an approximation of certain error. Let us consider a set of
all the triangles that were generated during the whole decimation process,
including the triangle of the original mesh. Each facet from the set is
characterized by two time stamps: its creation and its elimination. An
intermediate mesh is associated by definition with each time stamp, and
therefore we can associate with each time stamp the global approximation error
held by the mesh. Given the birth and death time stamps, each facet is therefore
tagged with two errors, called the birth and death errors. The extraction of
a representation at a given precision is therefore straightforward: surface is
composed of all of the facets such that their life interval contains the error
threshold searched for.

68

4.10 Post-processing techniques
Mesh Smoothing

Since the majority of simplification algorithms is primarily focused on the
amount of triangles and the error of the approximation, the need for other
requirements such as the quality of triangulation or the smoothness of the
surfaces are often neglected. However, it is often desired to use the
approximations in further scientific processing and not only for visualization. It
is common to find that the quality of approximations is improved in some post-
processing. In recent years many techniques for mesh smoothing have been
developed especially for the needs of CAD/CAM engineering design and
analysis [52]. Since most existing algorithms based on fairness norm
optimisation are prohibitively expensive for very large surfaces, Taubin’s [48],
[49] geometric signal processing on polygonal meshes with linear time and
space complexity seems to be quite promising. The algorithm is based on an
analogy with signal processing. The smooth surface can be seen as a signal
without high frequencies. Taubin converts the problem of surface smoothing to
the problem of low-pass filtering. Most smoothing algorithms move vertices of
the polygonal mesh without changing the connectivity of the faces. Basically the
internal vertices are iteratively moved to the barycentre of their neighbouring
vertices. Taubin’s special filter function avoids mesh shrinkage, and also the
triangles of the mesh are forced to be equilateral.

His approach to extend Fourier analysis to signals defined on polyhedral
surfaces of arbitrary topology is based on the observation that the classical
Fourier transform of signal can be seen as the decomposition of the signal into
a linear combination of the eigenvectors of the Laplacian operator. To extend
Fourier analysis to surfaces of arbitrary topology it is only necessary to define
a new operator that takes the place of Laplacian. A discrete surface signal is
a function x = (x1,….,xn)t defined on the vertices of a polyhedral surface. The
discrete Laplacian of a discrete surface signal is defined by weighted averages
over its neighbourhoods

)(
*

ij

ij

iji xxwx −=∆ ∑
∈

 (4.11)

where the weights wij are positive numbers that add up to one. The weights can
be chosen in many different ways taking into consideration the neighbourhood
structures. One particularly simple choice is to set wij equal to the inverse of the
number of neighbours 1/i* of vertex vi. If W = (wij) is the matrix of weights, with

69

wij = 0 when j is not a neighbour of i, the matrix K is defined as K = I – W. Now
low-pass filtering – the approximate projection onto the subspace of low
frequencies – can be formulated in exactly the same way as for n-periodic
signals, as the multiplication of a function f(K) of the matrix K by the original
signal

xKfx)('= (4.12)

and this process can be iterated N times

xKfx NN
)(= (4.13)

The function of one variable f(k) is the transfer function of the filter. For
example in the case of Gaussian smoothing the transfer function is f(k) = 1 – λk.
To avoid the shrinkage effect know in Gaussian smoothing, Taubin proposes
following function

)1)(1()(kkkf µλ −−= (4.14)

where 0 < λ, and µ is a new negative scale factor such that µ < -λ. That is, after
the Gaussian smoothing step with positive scale factor for all vertices is
performed – the shrinking step –, we then perform another similar step for all
the vertices, but with negative scale factor µ instead of λ:

iii

iii

xxxi

xxxi

µ

λ

+=∀

+=∀

':

':
 (4.15)

Since f(0) = 1 and µ + λ < 0, there is a positive value of k, the pass-band
frequency kpb, such that f(kpb) = 1. The value of kpb is

0
11

>+=
µλ

pbk (4.16)

Values from 0.01 to 0.1 of kpb produce good results. Since we want to
minimize N, the number of iterations, λ is chosen to be as large as possible,
while keeping |f(k)|<1 for kpb < k ≤ 2. The exact values of µ and λ are computed
using the expressions above.

70

Image-Driven Mesh Optimization

This method presented by [32] does provide optimization on already simplified
model comparing visual appearance of the original and resulting model. The
algorithm begins with two input meshes, the original detailed mesh and
a simplified version of this mesh that has the desired number of vertices. It is
unimportant what method is used to create the simplified mesh. Given
a number of viewpoints, the algorithm renders images of both the original and
the simplified meshes for each viewpoint and an edge in the simplified mesh is
selected for improvement (see Figure 4-8).

Figure 4-8: Twelve uniformly distributed views of a model. The viewpoints
correspond to the vertices of a regular icosahedron (taken from [32]).

The algorithm then attempts a number of changes to the mesh at and around
this edge to create a mesh whose rendered images are closer to those of the

71

original mesh. Possible changes to the mesh include moving two or more
vertices, edge swapping, or even a vertex teleport (moving a vertex between
entirely different portions of the mesh).

The measure of similarity is based on the work by [33] in which an image
metric is used to order a set of edge collapses. Although their method uses
geometry-based heuristics for positioning the vertices, here is used the image
metric directly to determine the best vertex positions and what changes to make
to the connectivity.

This mesh optimization method takes into account not just the geometry of
a model but also properties such as textures and surface normals. This
approach fixes problems in a simplified mesh that simplification methods are
insensitive to, such as cracks between surface parts and object interpenetration.

4.11 Conclusion
Recent research in the field of surface simplification has produced several
effective techniques for constructing approximations and multiresolutional
representations. Some commercial packages have included several
simplification facilities. The algorithms available offer several possible trade
offs between quality and efficiency. We have very high quality, but very slow
algorithms such as mesh optimisation [17]. On the other hand there are very
fast, but low quality vertex clustering algorithms [35]. Somewhere between
these extremes we have a number of algorithms, such as the quadric error
metric [10] or vertex decimation [46], which provide various compromises
between the speed and quality of the approximation. There are a number of
areas in which current simplification methods could be improved.

A new algorithm capable of producing approximations, which are provably
close to optimal would be quite useful, or an algorithm, which could preserve
higher-level surface characteristic, such as symmetry.

All current simplification methods assume that the surface being simplified is
rigid. There are many applications where surfaces are changing over time. For
example, animation systems usually represent characters as surface attached to
articulated skeletons. As the skeletal joints bend, the surface is deformed.
Current simplification methods must be extended to handle this more
generalized class of models.

Many simplification methods are based on the same framework: greedy
application of simplification operators. For example, greedy decimation can
limit the quality of the final result. Since it only iteratively does what appears to

72

be the best local operation to perform, a bad decision at some point can lead to
results that are far from optimal. Alternative frameworks are possible. For
instance techniques using a simulated annealing-like process [17], or methods
based on the principle of signal processing on polygonal meshes [51].

New methods for measuring approximation error are also needed. Similarity
of appearance is the ultimate goal for rendering applications. It would be
helpful to have appearance-based metrics for comparing the visual similarity of
two models. Even if there are primarily concerned with preserving the shape of
an object, it is also unclear whether metrics like Emax and Eavg adequately reflect
the similarity of an approximation whose topology has been simplified.

73

Chapter 5

Simplification Algorithm
In the previous chapter, we have reviewed various algorithms which have been
developed for automatic simplification of polygonal surface models. Now, we
will present the simplification algorithm which we have developed. It is
founded on two fundamental components: vertex decimation and half-edge
collapse algorithm. In this chapter, we will focus on the description of the
algorithm itself. We will examine algorithm's performance and its genesis in
Chapter 6 and 7.

5.1 Design goals
The core of the algorithm lies on vertex decimation. We assume to have
digitally measured data, where vertices represent the exact values and edges
and triangles just supply the mesh connectivity. In many cases the actual
presence of edges in the mesh is usually given either by some higher
knowledge or as a random result of polygonization algorithm. On Figure 5-1
you can see an example of four measured vertices (with boundary) - these
values are exact but there is no additional information, how the edge e1 should
be placed in resulting triangulation.

Figure 5-1: Two possibilities of placing edge e1 to triangulate the area among
four vertices.

74

Since surface energy tends to be minimal, we can suppose such edge position
that will minimize the resulting area. However, in cases such as sharp-edges the
situation can be different. This implies our goal not to introduce new vertices in
simplified mesh but keep just a subset of original vertices in resulting
approximation. Having these assumptions, we need a method to evaluate
vertex importance considering neighbouring vertices only. Such evaluation
provides a method proposed originally by W. Schroeder [46].

5.2 Importance evaluation
The evaluation scheme depends on vertex topology in input mesh. Therefore
vertex type must be classified at first. We recognize 5 vertex types, see Figure
5-2.

Figure 5-2: Vertex classification.

Simple vertex is a vertex with a neighbourhood topologically equivalent to
a disk, where no sharp edge is adjacent to the vertex. A boundary vertex lies on
the border of the mesh, where by the border is meant an edge adjacent to one
triangle only. Interior-edge vertex is vertex similar to simple vertex, except it is
adjacent to two sharp-edges. Corner vertex is adjacent to one, three or more
sharp-edges, and a complex vertex is a vertex that belongs to non-manifold
area.

It is obvious that the original algorithm can deal with non-manifold meshes
too, but just in a manner, that non-manifold parts are left untouched. In our
modification, we can process non-manifold meshes as well. Vertices of
particular interest are only simple, border and interior-edge vertices. For each
of them a different evaluation process is used.

The importance of simple vertex v is given by the distance of the vertex from
the average plane given by neighbouring vertices (see Figure 5-3a).
A neighbouring vertex is a vertex which shares an edge with the vertex in
question, in other words, there exists an edge between two neighbouring
vertices. The plane is called average since the neighbouring vertices generally

75

do not lie on the plane and we have to specify it artificially using the average
normal vector n and a point x. The normal vector n is computed as
a normalized average of area weighted unitary normal vectors ni of each
surrounding triangle. The bigger the area Pi of a triangle is, the bigger is its
influence on the resulting normal vector.

,,
N

N
n

n
N ==

∑
∑

m i

m ii

P

P
 (5.1)

where m is the number of adjacent triangles to the vertex v.
Having the normal vector n of the average plane, we need to determine the

point x, lying on the average plane. This point is defined in terms of the average
of area weighted vectors xi from the origin to the midpoint of each surrounding
triangle

∑
∑

=
m i

im i

P

Px
x (5.2)

The final distance d of the vertex v from the average plane is given by the
following equation

().. xvn −=d (5.3)

In case of boundary or interior edge vertices, the importance is evaluated as
the distance of vertex v from a bisector given by its two neighbouring border
vertices or vertices on opposite sides of interior edge respectively (see Figure
5-3 - b).

Figure 5-3: Distance d for vertex importance evaluation, (a) - simple vertex case,
(b) - boundary vertex case.

76

To evaluate the distance of a point from a bisector, we can use an analogy
with the relation of height and area in parallelogram (v,v1,v2,p). The area can be
either computed as a product of the base length and the height, or as a size of
vector product vvvv 121 × . Thus the distance can be evaluated as

()
., 21

1
vvq

q

qvv
=

×
=d (5.4)

Complex and corner vertices have their importance set to some high value
which is far below the threshold which allows vertices to be removed. When all
the vertices are evaluated, a priority queue must be created, where the vertices
are sorted according to their importance in increasing order.

As obvious, this process frames the outer optimization loop and is based on
vertex collapse operator. In the inner loop an edge collapse operator is used.
Choosing edge collapse had several reasons. The most important one is that
after vertex removal a triangulation of resulting area has to be done. Although
it is possible to use projection in 2D, such a triangulation is a non trivial
problem from aside its computational cost, especially if we want to compare
qualities of several possibilities. Therefore, once we take the least important
vertex from the priority queue, we start evaluating its neighbourhood in terms
of searching the best edge to collapse.

Since we want only the removal of the least important vertex, we use half-
edge collapse approach, where no new vertex position is evaluated during
simplification (chosen edge is collapsed to its endpoint different from removing
vertex).

5.3 Local edge contraction
When vertex to be removed is chosen a local simplification operator is applied.
All neighbouring edges are evaluated according to a change they cause to the
surface when collapsed. To find such evaluation we simulate all possible
contractions and estimate the quality of resulting mesh. This quality measure is
defined as a minimal change to resulting mesh area while given maximal
triangle normal deviation allowed. Such conditions are based on assumption
that simplified area should be nearly planar. The edge with best evaluation is
collapsed to its endpoint, opposite to the vertex being removed. The only
exceptions are so called sharp edges; edges whose adjacent triangles have
spatial angle smaller than given threshold (see Figure 5-4). In this case, the only
solution is a contraction of this particular edge.

77

During half-edge collapse one vertex, one edge and two triangles are
removed from the mesh. After the removal all affected vertices and triangles are
updated (their importance values, normal vectors and adjacency information)
and the global priority queue is re-sorted.

Figure 5-4: Spatial angle ϕ of two triangles is given by the angle between their
normals.

Because the edge contraction can potentially introduce undesirable
inconsistencies or degeneracies into the mesh, we must apply some consistency
checks to a proposed operation. If one of the checks fails, we discard the
contraction entirely.

The most common consistency check is related to the problem of mesh
inversion. Consider the contraction shown in Figure 5-5. One popular approach
to detecting this situation is to examine the normals of the facets adjoining
vertices vi and vj before and after contraction [4]. If a face’s normal changes by
more than some significant threshold, we can regard this face as being
“flipped”. A contraction is discarded if any of the local faces flip. To prevent
fold–over we need to pick suitable threshold value.

We have chosen to use more careful check [10], which appears to perform
more reliably in practice. For every face around vi, excluding the faces shared
with vj, there is an edge opposite vi. If we place a plane perpendicular to the
face through the edge, the vertex vj must lie on the same side of the plane in all
cases, see Figure 5-5.

78

 Figure 5-5: The new vertex (vj) must lie on the same half-plane of all oriented
edges to prevent fold–over.

This technique can disclose real foldovers and no threshold values are needed
to be set.

5.4 Parallel processing
Our primary aim was to implement an efficient triangle mesh simplification
algorithm in parallel environment, to obtain faster results for very large
data sets. We can see that algorithm described in previous two sections works
in three steps:

• Vertex topology and importance evaluation. This part can be done in
parallel, because all vertices are obviously independent to the others.

• Priority queue creation using Quick Sort algorithm to sort vertices
according to their importance. Runs sequentially for some reasons
described later.

• Decimation. This part of the algorithm could run effectively in parallel,
but we have to achieve some important restrictions.

A basic idea, which has been used in theoretical work [22], is that decimation

by deleting an independent set of vertices (no two of which are joined by an
edge) can be run efficiently in parallel. The vertex removals are independent
and they leave one hole per one deleted vertex, which can be retriangulated
independently. This decreases the program complexity and running time
significantly. Since deletion and retriangulation is related to the degree of
vertices being removed (O (d2) time in the worst case, where d is the vertex
degree), [22] has advocated deleting low degree vertices, d < 10, and proved that
this still allows large independent sets (>1/6 of vertices). However, this

79

approach ignores the preservation of the model shape. Therefore we used
a technique [21] when we assign an importance value to each vertex and then
select an independent set to be deleted by greedily choosing vertices of low
importance relative to their neighbours.

 To construct an independent set from an assignment of importance values, it
is natural to use a greedy strategy – go through the vertices in order of their
importance and take a vertex if none of its neighbours have been taken. That
means in independent set can be only vertices that do not share an edge with
the each other.

5.5 Super-independent Set of Vertices
After several experiments we found, that the independent set described above
is not fully adequate. The criterion of no sharing edge between two
independent vertices is not sufficient for effective parallelisation. Using such an
independent set of vertices leads to critical sections in parallel code. Since the
computation is quite fast, critical sections rapidly decrease the efficiency of the
algorithm.

 Wherefore we used a super independent set, where every two triangles
including two independent vertices can not share an edge, see Figure 5-6.

Figure 5-6: Vertices v1, v2, v3 are independent to each other; vertices v1 and v3
are super independent.

If we remove one vertex in the independent set, the removal changes the
properties of the vertex neighbours. That affects neighbourhood of other
vertices in the set. In the super independent set are independent even vertex

80

neighbours, so vertices are completely independent and the parallelisation can
be done without critical sections in program code.

Due to data structures used we can create the independent set in O(n) time,
where n is the number of vertices. Using the independent set of vertices, we can
split third step of the algorithm (the decimation) in to two parts – making an
independent set and own decimation (now easy to run parallel).

To decrease the system service overhead with managing threads, we split
a set of computed vertices to number of parts equals to the number of free
processors (used threads) roughly, and each thread computes one part.

Here is a detailed description of our parallel algorithm:
1. Divide the set of vertices into n parts, where n is equal to the number of

free processors.
� Get the number of processors.
� Divide the set of vertices into n parts of the same number of vertices.

2. Run n threads to evaluate vertex importance according to its topology.
Each thread makes a computation on its own set of vertices.
� Determine a vertex topology.
� For simple, boundary or interior edge vertices, compute their

importance. The importance for any other type of vertex is set to any
high value (“infinite”).

3. After all threads finish their job, sort (Quick Sort algorithm) all the
vertices (increasing) according to their importance.

4. Find an independent set of vertices. For each vertex do:
� If the vertex is mark as unused in the independent set (initially all

vertices are marked as unused), check its neighbours. If all the
neighbours are unused too, put the vertex into the independent set
and mark the vertex and all its neighbour vertices as used.

� Used vertices and their neighbours are skipped.
5. Divide the independent set of vertices into n parts (n is the number of free

processors).
6. Run n threads for decimation. Each thread makes the decimation on its

own set of vertices.
� For each eliminated vertex, find the shortest edge that includes it.
� Test the consistency of the mesh if this edge is contracted (removed).
� If the consistency test is OK, remove the vertex and retriangulate the

arising hole, otherwise find another short edge and go to the previous
point.

7. Repeat steps 1– 6 until the required degree of the mesh reduction is
reached.

81

The algorithm is assembled from four main tasks. Vertex importance
evaluation (which can run in parallel), building a priority queue according to
vertex importance (runs sequentially for the moment), super-independent set
creation (which has to be sequential) and own parallel simplification process.
Figure 5-7 shows the time ratio for one and 8 processors used during
simplification of Happy Buddha model.

Happy Buddha - time usage
(1 processor - outside,
8 processors - inside)

Vertex Importance Evaluation

35%

Sort (Quick Sort)

41%

Independent Set

19%

Decimation

5%

Vertex Importance Evaluation

49%

Sort (Quick Sort)

25%

Independent Set

11%

Decimation

15%

Figure 5-7: The time ratio of various parts of the algorithm for Happy
Buddha model with one and eight processors used.

As obvious, the most time consuming parts are importance evaluation and

sequential vertex sorting rapidly decreases the algorithm efficiency. Also the
creation of super-independent set seems to be limiting as the maximal
theoretical speedup of this approach is approximately 15. These results were
subjects of further improvement as discussed in section 5.6 and also in
Chapter 6.

5.6 Further Improvement
Using independent or super-independent sets of vertices, we need to sort
vertices according to their importance and also to create the independent set
itself. This appeared to be a critical part of the algorithm as described above.

82

Since we did not want to use sorting algorithms because of their time
complexity, we used a special function to threshold vertices and let only few
least important vertices to be considered as candidates for the reduction.

The initial idea was to divide data set (vertices) according to the number of
free processors and run decimation as several independent parts. As we already
mentioned, most of data are produced by 3D scanners or iso-surface extraction
methods such as Marching Cubes. Considering the principle of both techniques
as well as some possible rendering optimizations, we can suppose that such
triangular mesh will be stored as a sequence of potential triangle strips. Thus
neighbouring vertices may be stored next to each other in data file or memory.
In other words, if we divide a data set into few groups, according to vertices
index, there is a good probability that vertices in each group will be close to
each other and will constitute a continual mesh. Those groups can be processed
without critical sections except vertices on the boundary of each group. Such
vertices are post-processed.

This approach brought surprisingly good results for the real object models in
the sense of processing time and acceptable quality of approximation. On the
other hand there were some problems controlling the simplification degree in
sense of required budget (resulting number of triangles). Also vertices on the
border of groups had to be handled in a special way. Another problem came up
with artificially generated datasets or changed on purpose. Such models (e.g.
Bunny, see Table 6-1) do not fit to the assumption about strips and the
algorithm may be quite ineffective in this case.

Instead of such a blind vertex division, we searched for bucketing function
which would “sort” vertices in O(N), where N is a number of vertices.

83

0%

5%

10%

15%

20%

25%

30%

35%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

relative importance [0.1%]

p
er

ce
n

t
o

cc
u

rr
en

ce

Figure 5-8: Vertex importance histogram.

A histogram of vertices importance for tested data sets is shown on Figure
5-8. It is obvious that over 90% of all vertices have their importance below 1% of
maximum importance value. Therefore we proposed a simple bucketing
function y=f(x) (5.5) shown on Figure 5-9.

kx

x
y

+
= (5.5)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1.5 -1 -0.5 0 0.5 1 1.5

k=0.1

k=0.5

k=1

Figure 5-9: Graph of the function used.

This function is capable to map the interval < 0,∞) to < 0,1) non-linearly.
Because we are interested in only 1% of important vertices, the function (5.5)
must be modified accordingly (see Figure 6) and scaling coefficient C must be
introduced.

84

0≥
+

= x
kx

x
Cy (5.6)

From equation (4) we can see that coefficients C and k must be determined
somehow. In our approach we decided that we will have two parameters a and
α that will be experimentally determined by large data sets processing (see
Figure 5-10).

a b

C
1

α

1% 10% 100%

Figure 5-10: Definition of the hash function.

The coefficient b is equal to the maximal importance in the given data set and
therefore f(b) must be equal 1. The coefficient a means the boundary for
maximal importance of vertices to be considered for processing and α
determines the slope of the curve, actually. Those conditions can be used for
parameter k and C determination as follows:

kb

b
C

+
=1

, 0≠+ kb
(5.7)

ka

a
C

+
=α

, 0≠+ ka
(5.8)

Then

b

kb
C

+
= (5.9)

and

85

ka

a

b

kb

+

+
=α

.
 (5.10)

Solving that we get

ab

ab
k

−

−
=

α

α)1(
 (5.11)

b

k

b

kb
C +=

+
= 1 (5.12)

for b = 1

 kC
a

a
k +=

−

−
= 1,

)1(

α

α
 (5.13)

According to our experiments on large data sets, we have found that the
optimal values of coefficients are following: a = 2, α = 80. It means that 2
percents of the least important vertices will be mapped onto 80% of the whole
hash table. User has to set values of both parameters and. The parameter α has
a direct influence to the cluster length in the hash data structure, where cluster
length is equal to number of vertices in the same bucket.

Thanks to this function we can assign the vertices to clusters of the same
reasonably small length. Vertices are then removed cluster by cluster from the
least important clusters to the most important. The clusters are sorted while
they are created and whole bucketing has O(N) time complexity.

Having described the specific details of the method, we can present our new
algorithm now:

1. Evaluate the importance of all vertices
2. Make clusters according to the importance of the vertices
3. Remove vertex from the first cluster, if it is empty continue with the next

one
4. Evaluate changed importance of neighbouring vertices and insert

vertices in the proper cluster
5. Repeat steps 3 and 4 until desired reduction has been reached

All details about our simplification approach can be found in publications
listed in Appendix A. In the following section we present our results and draw
conclusions.

86

Chapter 6

Results and limitations
In this chapter we provide several experimental results and make a conclusion
at the end. We present tables of running times, graphs of speed and
approximation quality comparison and also pictures of rendered models.
Because of some special kind of models used, we have to claim that no animal
were harmed during following experiments.

6.1 Experimental Results
We have used several large data sets but we have drawn up our experimental
results using only 7 different data sets, see Table 6-1.

Table 6-1: Data sets used.

Table 6-2 shows time comparison achieved by reducing the models using
1 to 8 – processor computer (DELL Power Edge 8450 – 8xPentium III, cache
2MB, 550MHz, 2GB RAM, running on the Windows 2000).

model name # triangles # vertices

Teeth 58,328 29,166

Bunny 69,451 35,947

Horse 96,966 48,485

Bone 137,072 60,537

Hand 654,666 327,323

Dragon 871,414 437,645

Happy Buddha 1,087,716 543,652

Turbine blade 1,765,388 882,954

87

Time [sec] obtained with different number of
processors (threads) used

Model
name

1 2 3 4 5 6 7 8

Horse 8.9 6.3 5.5 4.9 4.7 4.5 4.4 4.3

Bone 13.5 9.4 8.2 7.6 7.0 6.8 6.6 6.4

Hand 69.2 51.5 44.8 41.0 39.7 38.4 37.5 36.7

Dragon 93.6 69.5 61.5 57.6 54.3 52.6 51.3 50.6

Happy
Buddha

118.3 89.1 78.1 73.2 69.3 67.8 65.9 64.5

Table 6-2: Obtained time (in seconds) for 90% reduction on 1 to 8 processors
active.

We investigated the acceleration and the efficiency for different size of
data sets according to the number of processors used.

6.2 Speedup comparison
Figure 6-1 shows a graph of the speedup comparison. The speedup a is
computed from total times (sequential and parallel parts of the algorithm
together) using expression (6.1).

Ntime

time
a 1= (6.1)

where N=1..8 is a number of processors used and timeN is the time obtained if N
processors (threads) are used. Figure 6-2 presents the speed-up of particular
parts of the simplification process. The vertex importance evaluation, vertices
sorting, independent set of vertices creation and decimation.

88

0

0,5

1

1,5

2

2,5

3

3,5

0 1 2 3 4 5 6 7 8 9

processors used

sp
ee

d
-u

p

bone bunny dragon hand
buddha horse turbine teeth

Figure 6-1: The speed-up of total computation (total time), parallel and
sequential parts together; the acceleration is computed for several models of

different amount of triangles.

Happy Buddha

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9

threads

sp
ee

d
-u

p imp. eval.

sort

i-set

decim.

total

Figure 6-2: The speed-up of partial phases of the simplification algorithm.

89

6.3 Efficiency comparison
On Figure 6-3 we can see a comparison of the computational efficiency

according to the size of data set and number of processors used. The efficiency e
is defined as a speedup divided by the number of processors used:

NtimeN

time
e

∗
= 1 (6.2)

where N=1..8 is a number of processors used and timeN is the computational
time if N processors are used.

Efficiency comparison

0

0,2

0,4

0,6

0,8

1

1,2

0 1 2 3 4 5 6 7 8 9

number of threads

ef
fi

ci
en

cy

horse

bone

hand

dragon

happyb

Figure 6-3: The efficiency of total computation; the efficiency is computed for
several models of different amount of triangles.

6.4 Amdahl‘s law
The experiments proved that the method is stable according to the number of
processors used and all the results meet the Amdahl’s law (6.3) perfectly.

N

p
p

ateor

+−

=

)1(

1

(6.3)

90

and therefore

)1(*

)1(*

−

−
=

Na

aN
p

teor

teor (6.4)

where p is potentially parallel code and N is the number of processors used.

The value of potentially parallel code is independent from the number of

processors used, see Table 6-3 and for the large model Happy Buddha the value
p = 0.51 was reached for the whole algorithm.

Number of processors (threads) used

1 2 3 4 5 6 7 8

e 1 0.66 0.5 0.4 0.34 0.29 0.25 0.22

a 1 1.32 1.51 1.61 1.7 1.74 1.79 1.83

ateor 1 1.32 1.51 1.61 1.7 1.74 1.79 1.83

p X 0.49 0.51 0.50 0.51 0.51 0.51 0.52

Table 6-3: The experimental results and theoretical calculations according to
Amdahl’s law; computed for the Happy Buddha model.

Figure 6-4 shows the amount of potentially parallel code according to the
number of triangles, for different number of processors used.

91

Amount of the parralel code (whole algorithm)

0%

10%

20%

30%

40%

50%

60%

70%

0 200 000 400 000 600 000 800 000 1 000 000 1 200 000

number of triangles

p
ar

al
le

l c
o

d
e

2

3

4

5

6

7

8

(a)

Amount of the parralel code in decimation part

0%

20%

40%

60%

80%

100%

0 200 000 400 000 600 000 800 000 1 000 000 1 200 000

number of triangles

p
o

te
n

ti
al

ly
 p

ra
lle

l c
o

d
e

2

3

4

5

6

7

8

(b)

Figure 6-4: The amount of the parallel code for the whole algorithm (a) – the
potentially parallel code according to Amdahl’s law is approx. 51%, the amount

of the parallel code for the decimation part (b).

Methods Comparison

Figure 6-5 shows the running time for 96% reduction for both mentioned
approaches of vertices ordering. We can see that using the bucketing function
we obtained the best running time in comparison to Quick Sort. It is necessary

92

to point out that the methods using sorting algorithms were implemented in
parallel while bucketing was sequential. The run time of “hash” function is
faster than 8 processors running the method with sort algorithm.

1

10

100

1 000

Teeth Bunny Horse Bone Hand Dragon Happy

Buddha

Turbine

blade

model name

ti
m

e
[s

ec
]

Hash function Q-Sort

Figure 6-5: Achieved time comparison for two mentioned approaches.
Presented Q-Sort time was achieved running on 8 processors, while bucketing

function time is valid for sequential run on one processor.

Unfortunately the results are not comparable with other known algorithms,
due to the different platforms. To make the results roughly comparable at least,
we use the official benchmarks presented by SPEC as shown in Table 6-4, where
η presents the superiority of the DELL computer against the SGI. Table 6-5
presents our results according to results obtained recently by other algorithms,
taking the ratio η into the consideration.

benchmark test / machine SGI R10000 DELL 410 Precision η
(DELL/SGI)

SPECfp95 8.77 13.1 1.49

SPECint95 10.1 17.6 1.74

Table 6-4: Benchmark test presented by Standard Performance Evaluation
Corporation.

93

algorithm time for a reduction from 69.451 to 1.000
triangles [sec]

Proposed algorithm 4,1 * η = 4,1* 1,49 = 6,11

Garland [10] 10,40

Lindstrom & Turk [31] 2585,00

Hoppe [20] 500,00

JADE [3] 325,00

Table 6-5: Rough comparison of running-times of reduction of the Bunny
model.

It is obvious that our algorithm is really fast. However, to be able to make
a full comparison of these methods it is important to consider the
approximation quality as well. Unfortunately, this kind of information is
usually somehow hidden in majority of papers related to mesh simplification
problematic.

Approximation quality

As presented in detail in Chapter 3, several error metrics can be used to
measure the quality of approximation. The most frequently used approach is to
compute a geometric error using Eavg metric (6.5, 6.6) derived from Hausdorff
distance:

() () () ()
()

wvMdMdMd
kk

MME
MPw

v

Xv

v

Xv

vavg −=

+

+
=

∈
∈∈

∑∑ min ,
1

,

21

1

2

2

2

21

21

(6.5, 6.6)

where M1 and M2 are original and reduced model, k1 and k2 are numbers of
vertices on each model, X1 and X2 are subsets of vertices in M1, M2.

As our method keeps the subset of original vertices, we use more simple
formula (6.7):

() ())(,
1

, 112

2

1

21

1

MPXMd
k

MME
Xv

vavg ⊂= ∑
∈

(6.7)

where k1 is original number of vertices, P(M1) is a set of original vertices and
dv(M2) is the distance between original and reduced set of vertices.

94

bunny model

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 10000 20000 30000 40000 50000

facets in approximation

E
_a

vg
 e

rr
o

r

prop. alg.

M. Garland

Figure 6-6: Approximation error comparison.

Figure 6-6 presents a comparison of error measurement of the proposed
algorithm and M. Garland’s method [10]. However, such error evaluation is not
very accurate, because every two models can act in a completely different way.

If we compare the two above mentioned methods, we will find that the error
values are almost the same. It is also hard to say which method gives the best
results, because for each model we get different behaviour of the error.
Examples of reduced models are presented on Figure 6-7, Figure 6-8 and Figure
6-9.

Figure 6-7: A teeth model (courtesy Cyberware) at different resolutions; the
original model with 58,328 triangles on the left, reduced to approx. 29,000

triangles in the middle and 6,000 triangles approximation on the right.

95

Figure 6-8: The Happy Buddha model (courtesy GaTech) at different
resolutions; the original model with 1,087,716 triangles (a), reduced to 105,588

triangles (b), 52,586 triangles (c), 10,974 triangles (d).

Figure 6-9: A bone model (courtesy Cyberware) at different resolutions; the
original model with 137,072 triangles (a), reduced to13,706 triangles (b), 6,854

triangles (c), 1,248 triangles (d).

6.5 Conclusion
We have described our superior algorithm for the simplification of triangular
meshes, which is capable of producing good quality approximations of
polygonal models in uncontested running times.

The algorithm combines Schroeder’s vertex decimation and edge contraction
methods. In the outer optimization loop vertex importance is evaluated based
on decimation criteria, while inner optimization loop uses edge collapse

96

operator to find best fitting contraction, considering even some attribute values,
and to provide retriangulation in a short time. We have also introduced
a bucketing function, which can be used instead of expensive vertices sorting.
Our algorithm has proved its high speed and simplicity. It can be run in parallel
and is best suitable for fast preview providing satisfactory level of detail.

However, there are many problems connected with vertex collapse operator
used in decimation in general. At first, it is necessary to explicitly define the
sharp edges. Sharp edge is such an edge, where the angle between the two
adjacent triangles is less than the specific threshold or the edge is required by
the application. To set the threshold some experience of the user is required and
such a threshold may be different for different models. The main disadvantage
of vertex decimation methods is that they are not able to preserve a volume,
since they produce shrinkage of the reduced model (assuming closed surfaces
with a majority of convex vertices). Figure 6-10 illustrates the situation in 2D.
The more the model is reduced, then the smaller is its volume, or
area respectively. Unfortunately there is no way how to avoid this effect.
Therefore methods based on edge collapse seem to be more promising from this
point of view.

before after

v1

v4 v2

v3

Figure 6-10: Shrinkage caused by the removal of vertices v1, v2, v3 and v4.

Moreover, edge contraction methods offer intuitive techniques for
eliminating approximation error by optimal positioning of a new vertex after
performing an edge collapse. This issue has been also adressed by Taubin, see
[50] for details.

97

Chapter 7

Similarity of Appearance
At this chapter we will present another approach that looks at the simplification
problem from a slightly different point of view. Although a geometrical
distance can tell a lot about model similarity in space, for a similar visual
appearance we would rather follow some other criteria.

The human visual system allocates different amounts of processing resources
to different portions of the visual field which provides a trade-off between
resources and time. On the one hand, attention can be shifted to a new location
through a saccadic eye movement. On the other hand, the photoreceptor
density that decreases between the fovea and the periphery induces no-uniform
processing capability over the entire field. In fact, the conclusion is still more
surprising: features will only be perceived if they success in attracting attention
[8]. A great deal of biological vision research has addressed a problem of
defining such features. Even thought many biological studies helped shape
computational models, we focus on feature perception in computer vision.

The proposed approach is based on detection of the main features of original
model and applying few heuristic rules tries to keep these features over whole
simplification process.

7.1 Vertex estimation – feature detection
According to the notes in previous section, in the following, we consider as
a feature either an extreme vertex (a peak) or a sharp edge (two or more
extreme vertices). Thus features detection is naturally based on vertex
evaluation. Since a lot of oversampled models that need to be simplified are
produced by 3D scanners, one can argue that it is the input vertices that are the
true data to be preserved rather than the input surface. Thus we do not study
any properties of edges or triangles as they are defined in the model. We
suppose that these elements (edges and triangles) are derived from original set
of points anyway. Although we detect feature vertices, we of course mainly

98

search for non-important vertices – vertices to be easily removed with
a minimal harm on model’s appearance. The best candidates for removal are
the least important vertices being part of planar regions of the mesh.

We have studied 4 approaches how to evaluate vertex importance.

Average plane distance

First method was based on evaluating vertex property according to previously
used distance from an average plane. The plane is given by vertices adjacent to
evaluated vertex v. This is the same technique as described in section 5.2. The
higher the distance is the more important is the vertex in a model. Vertices with
high values are good candidates to be marked as feature vertices. Vertices with
near-to-zero distance can be removed.

Gaussian curvature

Since we mostly search for planar regions, we also did several experiments
using Gaussian and mean curvature estimation of the surface [47]. Because of
our focus on flat areas and the fact that we search for vertex pair with the same
evaluation, the Gaussian curvature only was sufficient.

∑

∑

=

=

−

=
m

i

i

m

i

i

A

K

1

1

3

1

2 απ

(7.1)

The curvature K is given by the equation (7.1), where i goes over all
neighbours of evaluated vertex, α is the vertex angle in each of neighbouring
triangle and A means the area of neighbouring triangles.

Note that we are searching for single vertex property only, thus we do not

need to classify the mesh geometry exactly.

Volume estimation

Another widely used criterion in mesh simplification [31] is based on
underlying condition to keep the volume of the original model. In this approach
a vertex importance is related to the volume of the mesh below the vertex (part
of the mesh given by adjacent triangles). For each vertex and its neighbourhood
we introduce a new vertex vv, given as an average point of all vertices adjacent
to the vertex in question v0.

99

m

v

v

m

i

i

v

∑
== 1

r

r

 (7.2)

Having this virtual vertex vv we compute the a of volumes of tetrahedral
v0,vv,vi,vj, where vv is the virtual vertex and v0,vi,vj are vertices of triangles in
our triangulation. See Figure 7-1.

Figure 7-1: Vertex related volume estimation.

The resulting volume value V is weighted by the longest edge going out from
vertex v0 to somehow normalize the values over the whole mesh. The volume
has been evaluated according to following formula (7.3, 7.4).

,
6

1
,

1

∑
=

==
m

k

k

jjj

iii

vvv

k DV

zyx

zyx

zyx

D

 (7.3, 7.4)

where Dk is the volume of one tetrahedron and k goes over all tetrahedrons
related to vertex v0 which is supposed to lay in the origin.

Average normal vector

The last and in some way straight forward method evaluates vertices by
estimating a normal vector in vertex v0. The normal vector n is computed as an
average normal of all triangles adjacent to the vertex v0, see Figure 7-2.

100

Figure 7-2: Average normal vector.

We used the easiest way of computation, which is not-weighted average, see
equation (7.5).

m

n

N

m

i

i∑
== 1 (7.5)

Note that the normals of triangles have unit length. The importance value is
the inverse of the length of the normal. The more the normal length is closer to
1 the more flat area is around the vertex in question. Naturally, if all the
neighbouring triangles have their normals in the same direction, the area of the
triangle fan is flat and the length of resulting normal will be equal to 1. The
more the vertex represents a peak in a mesh the less will be the resulting
normal length, since each of partial normals points to different direction.

7.2 Final algorithm
Evaluation results

Studying the results of presented evaluation, we have decided to use the
average normal for vertex importance estimation (feature detection). On Figure
7-3 you can see the example of cow model with 50% most important vertices
highlighted according to all methods presented. Since all the pictures show
exactly 50% most important vertices, it is obvious, that the average normal
estimation (top left) gives the best results showing the main features of the
model. As you can see, it is a kind of caricature, where the most important
contours are highlighted (horns, ears, eyes, neck, and legs). The Gaussian
curvature estimation (top right) also gives good results which could be even
better with combination of mean curvature to detect sharp edges too instead of
peak points only. However, the computation would be too time-consuming.
Average distance evaluation (bottom left) tends to involve the sharp edges too.

101

On the other hand it misses the details kept by small triangles in areas such as
eyes and also highlights which could be supposed not to be very important
such as a belly. Probably the worst result gives the estimation of tetrahedrons
volume, which was anyway more or less experimental.

Figure 7-3: 50% important vertices of cow model according to 4 different
evaluation used – average normal (top left), Gaussian curvature (top right),

average plane distance (bottom left), tetrahedral volume (bottom right).

102

The graph on Figure 7-4 shows the rate of vertices and their importance. The
picture says that from all the number of vertices (approx. 3000) there were
about 2000 vertices with importance lower then 0.5. It’s obvious, that all the
importance evaluation methods act in the similar way and the majority of
vertices have a low importance (tests have been performed on several models
naturally). Again, the average normal vector evaluation gives the most wanted
results - declaring the majority of vertices as non-important (the lowest line).

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 300 600 900 1200 1500 1800 2100 2400 2700 3000

Number of vertices (rate)

V
er

te
x

im
p

o
rt

an
ce

Normal vector
Gaussian curvature
Avg. plane distance
Volume

Figure 7-4: Vertex evaluation according to the method used in a model of a cow.

After several experiments with the average normal computation (not
weighted, weighted by triangle area), we concluded to the evaluation, where
each normal is weighted by the apical angle of given triangle. The precise
formula can be seen on equation (7.6).

∑

∑

=

==
m

i

i

m

i

ii n

N

1

1

α

α

 (7.6)

where m is the number of neighbouring triangles and αi is the apical angle of i-
th triangle at the vertex (see Figure 7-5). Note that the resulting normal vector N
is not normalized.

103

Figure 7-5: Normal vector weighted by apical angle α for each of adjacent
triangle.

This approach produces best quality evaluation which is independent on
tessellation at the vertex (see Figure 7-6). In case of non-weighted normal, the
resulting normal vector will be different in example on the left (the other two
will be the same and the normal will have a direction more to the front). If the
normal vector would be weighted by triangle area, the first two examples will
have the same normal, but the third one will be different (since the area is
smaller). Only the apical angle weight will give us the same results for all three
cases.

Figure 7-6: Three examples of vertex neighbourhood.

Having evaluated all the vertices we can sort them into priority queue
according to their importance. The least important vertices are the best
candidates for removal. Since vertex removal followed by re-triangulation is
neither trivial in 3D nor natural when ignoring original edges, we perform and
edge contraction instead. For a given vertex the adjacent edges are investigated
and the best-fitting one is replaced by a new vertex. By this step we get a correct
triangulation and are able to follow some other criteria on a quality of resulting
mesh.

104

Best-fitting edge estimation

As already said, once we have a vertex candidate for the removal, we need to
search for the best edge to perform the contraction. The chosen edge will be
replaced by a new vertex of a specific position. Before we describe the edge
estimation, we must first introduce an evaluation of new vertex position.

Since the aim of the method is to find a simplified approximation of the

model with respect to the similarity of appearance, we do not subordinate the
vertex position to any error estimation. We try to find such a vertex which
would approximate the suppositional surface in between the two end-points of
the edge, see Figure 7-7.

Figure 7-7: The new vertex should lie somewhere on the dashed line (in 2D).

Let’s consider 2D case for clearer explanation. To determine a new vertex
position we use a curve which approximates surface the way we show on
Figure 7-7. At the beginning we have only two endpoints and non-normalized
normals which determine vertices importance. We used a quadric curve with
near least square acceleration, introduced originally to smooth the model
contour by [2]. The nice thing about this curve is its invariance to tangent
lengths. The tangents corresponding to a pair of normals at the vertices can be
obtained by using the so-called Gram-Schmidt orthogonalization algorithm.

T1 =N2−N1 (N1 ·N2), (7.7)

T2 =−N1+N2(N1 ·N2). (7.8)

Note, that the normals are assumed to be normalized. It should also be
pointed out that when the angle between the normals, is zero or very close to
zero, then we can not compute the tangent in this way. We use a linear
interpolation on the edge instead. Let’s have

P = P2 – P1 (7.9)

and coefficients βαβα ′′,,, , where

105

21

2

22

21

21

1

11

21

,

,

TT

TP

TT

TT

TT

TP

TT

TT

=′=′

==

βα

βα

(7.10, 7.11, 7.12, 7.13)

we get a function

1

21212

22
)(Pt

TT
Pt

TT
tf +

 ′′−
++

 −′′
=

βααβαββα

(7.14)

Thus the only question is how to choose the parameter t, which means, to
where to put a new vertex on the curve. Since the curve itself is given by
normals as well as the vertex importance, the natural way is to use a linear
interpolation on the importance (length of the normal vectors). Thus, if the
importance of vertices will be equal, the parameter t will be set to 0.5 (the new
vertex will be placed in the middle of the curve).

Switching to 2.5D, we have a tool now how to place a new vertex somewhere

“above” the contracted edge, instead of just somewhere in between the
endpoints of the edge. In full 3D space we can also influence the vertex position
by the properties of triangles adjacent to the edge, or their opposite corners
respectively. We can use the quadric curve again and the only condition is that
the area is not arrow-shaped, see Figure 7-8. In case of arrow-shaped quads we
use only one curve constructed over the edge.

Figure 7-8: The arrow-shaped quad (left), the non-problematic case (right).

The parameter t’ of the second curve (between opposite corners of two
triangles adjacent to the edge) is again given by the importance of opposite
corner vertices, but this time it is weighted by the inverse value of the distance
of each vertex to the point estimated on the first curve. So, if the distance is
equal, then only the importance matters. If the distance of one vertex is higher
the less of its importance is considered. This condition forces to place the vertex

106

in the position given by the importance of surrounding vertices and not the
exact topology of the mesh. The final vertex rv is placed just in the middle of the
two vertices on both curves, see Figure 7-9.

Figure 7-9: The construction of new vertex position.

Having described the new vertex position evaluation, we can get back to the
procedure of choosing the best-fitting edge for the contraction. In our algorithm
we take all the edges adjacent to given vertex (candidate for removal), and
compute new vertex position for each edge. For every new vertex we examine
affected mesh property like the difference between area of original and
resulting triangles, or inconsistencies such as mesh folding or triangle
degeneration caused. Since we primarily remove vertices on flat regions, we
force the resulting mesh to be as flat as possible, thus minimal area of resulting
triangles is prioritized. The edge with such a best evaluation is contracted for
real. If there is no suitable edge to process, the removal is forbidden.

Upon a framework described above, we can present the proposed algorithm

as follows

Init:
• go over all the vertices and compute their importance
• sort vertices according to the importance

Main loop:
• take the least important vertex
• for every adjacent edge

• compute new vertex position for case of contraction

• simulate the contraction and evaluate the quality of

resulting mesh

107

• perform the contraction of best-fitting edge
• re-evaluate affected area

• compute vertex importance
• insert into a priority queue

• continue the main loop

The real implementation uses three magic parameters which are important for

the resulting mesh and can be changed by user. The first parameter is an
importance threshold. If vertex importance exceeds the value of the threshold, it
is marked as extremely important one. These (feature) vertices are processed
a bit different way than described above. The main difference is in estimation of
parameter t, which is set either to 0 or 1 depending on which endpoint of an
edge is extreme. If both of them are extreme, the more important vertex wins
and its position is kept. This strategy leads to simplification which keeps the
most important features represented by extreme vertices without any change
from the original mesh. Such extreme vertices can be seen on Figure 7-10, for
example at the neck. The lower is the threshold value the more features of the
model will be kept and less simplification will be performed.

Figure 7-10: Model feature detection for (left) 50%, (middle) 75% and (righ) 90%
simplification.

The second parameter is the maximal allowed angle between normals of
triangles before and after edge contraction. This value helps to detect triangle
folding and also controls the smoothness of the resulting mesh. The smaller is
the angle the smoother is the resulting mesh – contractions producing not-wavy
surfaces are preferred.

Third parameter is an angle between two adjacent triangles and helps to

define so called flat edge. In general if the vertex selected for removal is extreme
and one of its neighbourhood vertices is extreme as well, only the edge between

108

these two vertices can be considered for removal. Applying this rule we can
preserve sharp3 edges. In this case a sharp edge is every edge that has extreme
endpoints and is not a flat edge. In other words, we do not detect sharp edges
studying the sharp angle between adjacent triangles. The algorithm marks the
edge as sharp if both of its endpoints are extreme and the angle between
adjacent triangles is less than the value given by our third magic parameter. If
such angle is bigger (at most 180 degrees) the edge is marked as a flat edge and
is prohibited from contraction, since it could dramatically change the shape
represented by the mesh, see Figure 7-11.

Figure 7-11: An example of sharp edge (E1-E5) and flat edge (E6).

In general two strategies can be used for simplification process - with or
without memory of reduced vertex and affected area. The approach with
memory initializes a counter of affected vertex during reduction and every time
the vertex is marked as a candidate for removal the counter is decreased. The
only vertices with a counter equal to zero can be considered for the reduction.
Such a use of affected-vertices memory helps to distribute reduction process
over whole surface and the resulting mesh has nicely shaped triangles. If the
simplification runs without memory it can easily produce rapid-flat models,
where flat regions are simplified in prior, see Figure 7-12.

3 An edge, where the angle between its two adjacent triangles is lower than some specific

value.

109

Figure 7-12: Points distribution (density of vertices from top-view) during
simplification of a terrain model (left) with (middle) and without (right) vertex

memory. The middle and left picture shows model after 80% simplification
(20% of original data).

7.3 Results
The proposed method has been tested on several models, mostly from GaTech,
Cyberware and Avalon depositories. Table 7-1 shows some fundamental
information about models on which we will present obtained results. All the
experiments were performed on Intergraph TDZ2000 400MHz Pentium II with
512MB RAM, running on WindowsXP.

name cow fandisk teeth bunny horse bone terrain dragon

vertices

2,905 6,475 29,166 35,947 48,485 60,537 65,829 437,645

triangles

5,804 12,946 58,328 69,451 96,966 137,072 130,630 871,414

picture

Table 7-1: Models used for presented results.

Table 7-2 shows the running times of 80% reduction. It is obvious that rapid-
flat method (approach without vertex memory) is faster but the resulting mesh
contains long and thin triangles. On the other hand the approach with vertex
memory produces nicely shaped triangles but the running times are slightly
worse.

110

name cow fandisk teeth bunny horse bone terrain dragon

mem 1.244 4.604 11.700 13.304 21.032 26.116 31.728 141.980

no mem 1.160 4.116 10.120 12.320 19.848 24.008 28.872 131.804

Table 7-2: Obtained timing [sec] for 80% reduction. Thresholds have been set to
mark 15% vertices as extreme.

On Figure 7-13 you can see the resulting meshes of both methods for fandisk
model. However, at the most drastical reduction (99% and more) the resulting
meshes are similar for both, with and without memory, approaches.

Figure 7-13: Example of reduced model. The original mesh (left), 90% reduction
with and without vertex memory (two in the middle) and drastical 99%

reduction (right).

On Figure 7-14 you can see graphs of error estimation for several models
during simplification process. The models have been simplified from 0% up to
90%. The results are taken from METRO ver. 4.05 [5], using default values
(vertex, edge and face sampling enabled, Monte Carlo sampling, 10times more
samples than triangles in a mesh). To have all the values comparable, the
METRO results were taken with respect to Dragon model, thus re-computed
using following formula (7.15):

maxV

V
EE c

Mr =

 (7.15)

where EM is the value evaluated by METRO, Vc is the number of vertices of
current model in certain level of detail and Vmax is the number of vertices of
Dragon model, which is the maximum number of vertices for certain LOD.

111

METRO error estimation

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0 20 40 60 80 100

Amount of reduction [%]

H
a

u
s

d
o

rf
f

d
is

ta
n

c
e

 (
w

rt
 v

e
rt

e
x

 r
a

ti
o

)

cow

fandisk

teeth

bunny

horse

bone

terrain

dragon

METRO error estimation

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0 20 40 60 80 100

Amount of reduction [%]

H
au

sd
o

rf
f

d
is

ta
n

ce
 (

w
rt

 v
er

te
x

ra
ti

o
)

cow

fandisk

teeth

bunny

horse

bone

terrain

dragon

Figure 7-14: Approximation error for certain LOD for approaches with (upper)
and without (lower) memory.

It is obvious that memoryless approach gives worse result in meaning of the
Hausdorff distance. However, vertices distribution follows ones assumption
that flat regions needs to be built from much less number of vertices than
rugged surface. Here is noticeable difference between geometrical and
perceptive evaluation of the approximation quality.

112

Also the oversampled models such as dragon, bunny and bone have error
values higher than other datasets. Although, the values are higher than other
simplification methods, it must be pointed out that METRO computes the error
based on the Hausdorff distance which is not considered during
a simplification in this case. The main goal of presented algorithm is to keep the
similarity of appearance. However, the geometrical error is also important in
mesh simplification to be able to compare the results with other methods. In
Table 7-3 there are outputs of METRO in detail for cow, bunny and dragon
models.

name reduction vertices faces area bbox diag. H-dist

0% 437645 871414 0.1452 0.266905 dragon

90% 41603 81808 0.1446 0.266801
0.005964

0% 35947 69451 0.1143 0.250246 bunny

90% 3824 5368 0.1125 0.249250
0.022444

0% 2905 5804 2.1802 1.271114 Cow

90% 391 776 2.0851 1.267350
0.032040

Table 7-3: METRO details for chosen models.

7.4 Conclusion
A new approach for triangular mesh simplification with respect to similarity of
appearance was presented. This original method is based on vertex importance
evaluation to select the least important vertex to be removed from the mesh.
This evaluation uses vertex average normal vector which lowest values concern
specific model features to be kept in approximations. Simplification itself is
performed as an edge collapse where a new vertex position is evaluated with
respect to supposed surface of the original object given by the endpoints of the
edge, the normal vector at these points and opposite corners of adjacent
triangles.

We showed that geometrical error does not have to be the only criterion of
approximation quality and that a visual appearance can lead to opposite
observation. This could be quite important in application such as computer
games, 3DTV and other multimedia where mathematical precision is not
a principal value. Conversely, preserving main visual features is more relevant.

113

Chapter 8

Conclusion
We have described a method for the automatic simplification of highly detailed
polygonal surface models into faithful approximations containing fewer
polygons. The empirical tests demonstrate that presented simplification
methods are of very high speed while keeping a reasonable quality of the
resulting approximations, see Figure 8-1.

We have also shown how to run simplification algorithm in parallel without
a need of critical sections.

An original approach for triangular mesh simplification with respect to
similarity of appearance was presented. Based on edge collapse operator this
algorithm introduces the way how to compute an optimal position of resulting
vertex after each edge contraction.

Figure 8-1: A dragon model (courtesy GaTech) at different resolutions; the
original model with 871,414 triangles on the left, reduced to approx. 430,000

triangles in the middle and 87,000 triangles approximation on the right.

8.1 Summary of Contributions
To review, the primary contributions of my work as described in this
dissertation are:

• Super-independent set of vertices. We have defined a new criterion
how to choose vertices as candidates for removal during simplification
process. It is based on independent set of vertices [21] with more strict

114

constraints to vertices neighbourhood. The use of super-independent set
of vertices leads to ability to have a parallel code without critical sections
in simplification process.

• Surface Simplification Algorithm. By combining several approaches of
mesh simplification and principles of super-independent set of vertices,
we have developed a fast parallel algorithm capable to produce high-
quality approximations of polygonal surfaces. This algorithm can
simplify both manifold and non-manifold models. It's robust, very fast
and accurate while preserving a mesh topology. Since the algorithm
keeps the subset of original vertices, in addition to producing single
approximations, it can be also used to generate multiresolution
representations such as progressive meshes and vertex hierarchies for
view-dependent refinement.

• Edge classification and introduction of new vertex position. Finally, we
have introduced an original approach of edge evaluation and
classification, which results in a new simplification algorithm. This
algorithm mainly preserves the visual appearance by detecting and
keeping important features of the original model such as sharp edges or
high detail regions during even drastic simplification. While we suppose
that original surface tends to be curved according to its vertex normals,
a new vertex position is determined to lay on such supposed surface
using near least-square curvatures.

8.2 Future Work
As we have a simplified model we are still able to compute back the curves on
which approximately original vertices lied. This is very interesting and leads to
an idea of mesh refinement. With some effort we should be able to refine
simplified model even without the knowledge of simplification process or exact
position of original vertices. A future work is to design such refinement method
which would be capable of displaying a complex model just from a base mesh.
Along a base mesh it will be necessary to provide some additional information
as well, which will be the main subject of the further research.

Such method would provide an easy way of transferring simplified
triangular meshes through the network and fine rendering on client’s side using
several mathematical operations.

115

Appendix A
Coloured pictures

Figure 1-3, page 11. Figure 2-6, page 21.

Figure 2-11, page 28.

Figure 3-3, page 46.

116

Figure 4-5, page 56.

Figure 6-7, page 94.

Figure 6-8, page 95.

117

Figure 6-9, page 95.

Figure 7-10, page 107.

Figure 7-13, page 110.

Figure 8-1, page 113.

118

Appendix B
List of Publications

[i] Franc M., Skala V.: Mesh simplification with respect to a model

appearance. Proceedings Spring Conference on Computer Graphics 2006,
ISBN 80-223-2175-3. Comenius University Bratislava, pp. 136-143, 2006.

[ii] Franc M., Skala V.: Fast Algorithm for Triangular Mesh Simplification
Based on Vertex Decimation. Springer-Verlag Lecture Notes,
CG&GM2002 Proceedings, Amsterdam, The Netherlands, April 2002.

[iii] Franc M., Skala V.: Parallel Triangular Mesh Decimation Without
Sorting. In SCCG IEEE proceedings, ISBN 0-7695-1215-1, Los Alamitos,
USA, pp.22-29, 2001.

[iv] Franc M., Skala V.: Parallel Triangular Mesh Decimation Without
Sorting. In SCCG 2001 Conference Proceedings, Comenius University
Bratislava, Slovakia, ISBN 80-223-1606-7, pp.69-75, 2001.

[v] Franc M., Skala V.: Triangular Mesh Decimation In Parallel Environment.
EUROGRAPHICS Workshop on Computer Graphics and Visualization,
Girona, Spain, pp.39-52, ISBN 84-8458-025-3.

[vi] Franc M., Skala V.: Parallel Triangular Mesh Reduction. In Proceedings
of International Conference on Scientific Computing Algoritmy 2000,
Slovakia, pp.357-367, ISBN 80-227-1391-0.

[vii] Franc M., Skala V.: Parallel Triangular Mesh Decimation. In Proceedings
of International Conference SCCG'2000, Budmerice, Slovakia, pp.164-171,
ISBN 80-223-1486-2.

[viii] Franc M.: Triangular Mesh Simplification Methods. MSc Thesis (in
Czech), University of West Bohemia in Pilsen, May 2000 (supervisor:
Skala V.).

[ix] Franc M.: Methods for Polygonal Mesh Simplification. State of the Art
and Concept of Doctoral Thesis, Technical Report No. DCSE/TR-2002-01,
University of West Bohemia, Plzen, Czech Republic, January 2002.

119

Appendix C
Stays and Lectures Abroad

Stays:

12.2.1999 – 28.5.1999 University of Girona, Spain
19.5.2001 – 27.5.2001 Univesity of Maribor, Slovenia
15.6.2001 – 28.6.2001 University of Ioannina, Greece

Lectures:
24.5.2001 Trinagular Mesh Decimation - University of Maribor, Slovenia
27.6.2001 Parallel Triangular Mesh Simplification – University of Ioannina,

Greece

Conferences:

24.4.2000 – 25.4.2000 CESCG 2000, Budmerice, Slovakia

26.4.2000 – 29.4.2000 SCCG 2000, Budmerice, Slovakia
10.9.2000 – 15.9.2000 Algoritmy 2000 – Conference on Scientific

Computing, Vysoke Tatry, Slovakia
28.9.2000 – 29.9.2000 3rd EUROGRAPHICS Workshop on Parallel Graphics

& Visualization, Girona, Spain
25.4.2001 – 28.4.2001 SCCG 2001, Budmerice, Slovakia
21.4.2002 – 24.4.2002 CG&GM2002, Amsterdam, The Netherlands
21.4.2006 – 24.4.2006 SCCG 2006, Ciasta Papiernicka, Slovakia

120

Appendix D
Project work
Member of solving team of following projects:

• MSM235200005 and LC06008 Ministry of Education CR
• 3DTV FP6-2003-IST-2 project Network of Excellence, No:511568
• Computer Graphics and Visualization in Parallel and Distributed

Environment, MSMT CR - VS 97 155

121

Appendix E
Citations

• Krivograd, S., Hren, G., Žalik, B., Jezernik, A., "Hiter algoritem
za poenostavljanje in obnovitev trikotniških mrež za prenos rezultatov
MKE preko svetovnega spleta (A fast triangular-mesh decimation-and-
undecimation algorithm for transferring FEM results via the Web",
Strojniški vestnik (Journal of Mechanical Engineering), L. 49, Št. 11, 2003,
str. 524-537, ISSN 0039-2480.

• Jose Pablo Suárez Rivero and Ángel Plaza de la Hoz, Refinement and
hierarchical coarsening schemes for triangulated surfaces, Proc. 11th Int.
Conf. in Central Europe on Computer Graphics, Visualization and
Computer Vision (WSCG 2003), 2003

• Hradek,J., Skala,V.: Hash Function and Triangular mesh Reconstruction,
Vol.29, No.6., pp.741-751, Computers&Geosciences, Pergamon Press,
ISSN 0098-3004, 2003

• S. Krivograd, B. Zalik, F. Novak: Triangular mesh decimation and
undecimation for engineering data modelling, Inf. MIDEM , Vol. 32, No.
3, 2002, pp. 219-223.

• S. Krivograd, B. Zalik, F. Novak: TriMeDeC tool for preparing visual
teaching materials based on triangular networks, Computer Applications
in Engineering Education , Vol. 10, 2002, pp. 144-154.

• M. Grabner, On-the-fly greedy mesh simplification for 2 1/2-D regular
grid data acquisition systems, Vision with non-traditional sensors, Proc.
of 26th Workshop of the Austrian Association for Pattern Recognition, F.
Leberl and F. Fraundorfer (eds.), vol. 160, Austrian Computer Society,
2002

122

References
[1] Bajaj C., Schikore D.: Error-bounded Reduction of Triangle Meshes With

Multivariate Data. SPIE vol. 2656, pp. 34-45, 1996.
[2] Barrera T., Hast A., Bengtsson E.: Surface Construction with Near Least

Square Acceleration based on Vertex Normals on Triangular Meshes,
Sigrad '02, pp. 43-48, 2002.

[3] Ciampalini A., Cignoni P., Montani C., Scopigno R.: Multiresolution
decimation based on global error. Technical Report CNUCE: C96021,
Istituto per l'Elaborazione dell'Informazione - Condsiglio Nazionale delle
Richere, Pisa, ITALY, July 1996.

[4] Cignoni P., Costanza D., Montani C., Rocchini C., Scopigno R.:
Simplification of tetrahedral meshes with error evaluation. In
Proceedings of the IEEE Visualization.

[5] Cignoni P., Rocchini C., Scopigno R.: Metro: Measuring Error on
Simplified Surfaces. Computer Graphics Forum, vol. 17, pp 167-174,
1998.

[6] Cohen, J., Varshney, A., Manocha, D., Turk, G., Weber, H., Agarwal, P.,
Brooks, F., and Wright, W.: Simplification Envelopes. In Computer
Graphics (SIGGRAPH'96 Proceedings).

[7] Eck M., DeRose T., Duchamp T., Hoppe H., Lounsbery M., Stuetzle W.:
Multiresolution analysis of arbitrary meshes. In Robert Cook, editor,
SIGGRAPH 95 Conference Proceedings, Annual Conference Series, pages
173--182. ACM SIGGRAPH, Addison Wesley, August 1995. Los Angeles,
California, 06-11 August 1995.

[8] Fdez-Vidal, Xose R. and Garcia, J. A. and Fdez-Valdivia, J.: Using Models
of Feature Perception in Distortion Measure Guidance. Pattern
Recogntion Letters, Vol. 19, Issue 1, pp. 77-88, 1998.

[9] Franc M., Skala V.: Parallel Triangular Mesh Decimation. In Proceedings
of International Conference SCCG'2000, Budmerice, Slovakia, pp.164-171,
ISBN 80-223-1486-2.

[10] Garland M., Heckbert P.S.: Surface Simplification Using Quadratic Error
Metrics. Computer Graphics (SIGGRAPH '97 Proceedings), pages 209-
216, 1997.

[11] Garland M.: Multiresolution Modeling: Survey & Future Opportunities.
Eurographics '99, State of the Art Report. 1999.

123

[12] Garland M., Willmott A., Heckbert P.S., Hierarchical Face Clustering on
Polygonal Surfaces. ACM Symposium on Interactive 3D Graphics, March
2001.

[13] Gueziec A.: Locally Toleranced Surface Simplification. IEEE Transactions
on Visualization and Computer Graphics, vol. 5(2) pp.168--189, 1999.

[14] He T., Hong L., Varshney A., Wang S.: Controlled Topology
Simplification. IEEE Transactions on Visualization and Computer
Graphics, vol. 2, pp. 171-184, 1996.

[15] Heckbert P.S., Garland M.: Optimal Triangulation and Quadric-based
surface simplification. Journal of Computational Geometry: Theory and
Applications, vol. 14 no. 1-3, pages 49-65, November 1999.

[16] Heckbert P.S., Garland M.: Survey of surface simplification algorithms.
Technical report, Carnegie Mellon University - Dept. of Computer
Science, 1997.

[17] Hoppe H., DeRose T., Duchamp T., McDonald J., Stuetzle W.: Mesh
optimization. In SIGGRAPH 93 Conference Proceedings, pages 19-26,
1993.

[18] Hoppe H.: Efficient Implementation of Progressive Meshes. Computers
& Graphics Vol. 22 No. 1, 27-36, 1998.

[19] Hoppe H.: New quadric metric for simplifying meshes with appearance
attributes. In David Ebert, Markus Gross, and Bernd Hamann, editors,
IEEE Visualization '99, pages 59--66. IEEE, October 1999. ISBN 0-7803-
5897-X. Held in San Francisco, California.

[20] Hoppe H.: Progressive meshes. In Computer Graphics Proceedings,
Annual Conference Series, 1996 (ACM SIGGRAPH '96 Proceedings) ,
pages 99-108, 1996.

[21] Junger B., Snoeyink J.: Selecting Independent Vertices For Terrain
Simplification. In WSCG '98, Plzen, Czech Republic, February 1998.

[22] Kirkpatrick D.: Optimal Search in Planar Subdivisions. SIAM J. Comp.,
pages 12:28-35, 1993

[23] Klein R., Kraemer J.: Building multiresolution models for fast interactive
visualization. Proceedings of SCCG '97 Spring Conference on Computer
Graphics, Bratislava, June 5-8, 1997.

[24] Klein R., Liebich G., Straser W.: Mesh reduction with error control.
Proceedings of Visualization ’96, 1996.

124

[25] Klein R.: Multiresolution Representation for Surface Meshes Based on the
Vertex Decimation Method. Computers & Graphics, Vol. 22. No. 1, pp.
13-26, 1998.

[26] Krus, M., Bourdot, P., Guisnel, F., Thibault, G.: Levels of detail and
polygonal simplification. ACM's Crossroads, 3.4., 1997.

[27] Langis C., Roth G., Dehne F.: Mesh Simplification in Parallel. In
Proceedings of the 4th International Conference on Algorithms and
Architectures for Parallel Processing (ICA3PP 2000), December 11-13,
2000. pp. 281-290. NRC 44161.

[28] Lee A.W.F., Moreton H., Hoppe H.: Displaced Subdivision Surfaces.
Proceedings of SIGGRAPH 00 (2000).

[29] Lee A.W.F., Sweldens W., Schroder P., Cowsar L.: MAPS:
Multiresolution Adaptive Parameterization of Surfaces. In SIGGRAPH
'98 Proceedings. 1998.

[30] Levoy M.: The Digital Michelangelo Project. In Proceedings of the 2nd
International Conference on 3D Digital Imaging and Modeling, October
1999.

[31] Lindstrom P., Turk G.: Fast and memory efficient polygonal
simplification. IEEE Visualization 98 Conference Proceedings, 1998.

[32] Lindstrom P., Turk, G.: Image-Driven Mesh Optimization. Technical
report GIT–GVU–00–16, Georgia Institute of Technology, June 2000.

[33] Lindstrom, P., Turk G.: Image-driven Simplification. Technical Report
GIT–GVU–99–49, Georgia Institute of Technology, December 1999.

[34] Lorensen W., Cline H.: Marching Cubes: A High Resolution 3D Surface
Construction Algorithm. Computer Graphics (SIGGRAPH ’87
Proceedings), 21(4), pp. 163-169, July 1987.

[35] Low K., L., Tan T. S.: Model Simplification Using Vertex-clustering.
Proceedings of the 1997 symposium on Interactive 3D graphics,
Providence, Rhode Island, United States, pp. 75 - 83, 1997.

[36] Luebke D., Reddy M.,Cohen J.,Varshney A.,Watson B., Huebner R.: Level
of Detail for 3D Graphics. Published by Morgan Kaufmann as part of
their series in Computer Graphics and Geometric Modeling. ISBN 1-
55860-838-9.

[37] Nooruddin F.S., Turk G.: Simplification and Repair of Polygonal Models
Using Volumetric Techniques. GVU Technical Report GIT-GVU-99-37,
Georgia Tech 1999.

125

[38] Pajarola R., DeCoro C.: Efficient implementation of Real-Time View-
Dependent Multiresolution Meshing. IEEE Transactions on Visualization
and Computer Graphics, vol. 10, no. 3, May/June 2004.

[39] Pawasauskas J.: Generalized Unstructured Decimation. Advanced Topics

in Computer Graphics - CS563, March 18, 1997.
[40] Rendleman C.A., Beckner V.E., Lijewski M., Crutchfield W.Y., Bell J.B.:

Parallelization of Structured, Hierarchical Adaptive Mesh Refinement
Algorithms. Computing and Visualization in Science, April 1999.

[41] Renteln P. and Dundes A.: Foolproof: A Sampling of Mathematical Folk
Humor. Notices Amer. Math. Soc. 52, 24-34, 2005.

[42] Rossignac J.: 3D Compression Made Simple: Edgebreaker with
Zip&Wrap on a Corner-Table, Proceedings of the International
Conference on Shape Modeling & Applications, pp. 278, May 07-11, 2001.

[43] Rossignac J., Borrel P.: Multi-resolution 3D approximations for rendering
complex scenes. Modelling in computer graphics: Methods and
Applications, pp. 455-465, 1993.

[44] Shaffer E., Garland M.: Efficient Adaptive Simplification of Massive
Meshes. IEEE Visualization 2001.

[45] Schroeder W. J.: A Topology Modifying Progressive Decimation
Algorithm. In IEEE Proceedings Visualization '97, pages 205-212.

[46] Schroeder W. J., Zarge J. A., Lorensen E.: Decimation of Triangle Meshes.
Computer Graphics (SIGGRAPH '92 Proceedings), Vol. 26, No. 2, July
1992, pp. 65-70.

[47] Surazhsky T., Magid E., Soldea O., Elber G., Rivlin E.: A comparison of
Gaussian and mean curvatures estimation methods on triangular
meshes. IEEE International Conference on Robotics & Automation, 2003.

[48] Taubin G.: Geometric Signal Processing on Polygonal Meshes.
Eurographics 2000 - State of the Art Report, August 2000.

[49] Taubin, G.: A Signal Processing Approach to Fair Surface Design.
Computer Graphics, August 1995.

[50] Taubin G.: Curve and Surface Smoothing Without Shrinkage.
Proceedings of the Fifth International Conference on Computer Vision,
pp. 852-855, 1995.

126

[51] Taubin G., Zhang T., Golub G.: Optimal Surface Smoothing as Filter
Design. Tech. Rep. 90237, IBM T.J. Watson Research, March 1996.

[52] Volpin O., Sheffer A., Bercovier M., Joskowicz L.: Mesh Simplification
with Smooth Surface Reconstruction. Computer-Aided Design, vol. 30
no. 11, pp. 875-882, 1998.

 [53] Weisstein, Eric W.: MathWorld – A Wolfram Web Resource.
http://mathworld.wolfram.com/.

 [54] Wu J. H., Hu S. M., Sun J. G., Tai C. L.: An Effective Feature-Preserving
Mesh Simplification Scheme Based on Face Constriction. Ninth Pacific
Conference on Computer Graphics and Applications (PG'01), pp. 12-21,
2001.

