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Extrakce iso-ploch z časově proměnných dat
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Department: Department of Computer Science and
Engineering

Plzeň 2011
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Abstract

Isosurface visualization is a powerful tool for exploration of numerical data-sets.

The topic has been a subject of intensive research for more than two decades.

Starting from the simple techniques for static regular datasets in the late ’80s,

the research has advanced to the interactive exploration of evolving isosurfaces

in time-varying datasets.

This work contributes to the field of Isosurface Extraction by the introduc-

tion of three new methods. The first method focuses on the static, regular and

unstructured datasets. By careful study of the existing methods, a room for their

space and time optimization is identified. Our method is based on a newly pro-

posed transformation of the input data into an alternative space. The method

decreases space requirements and processing time considerably when compared

to existing state-of-the-art methods.

The second part of this work deals with a relatively new topic of Isosurface

Extraction from datasets with dynamic meshes. Such datasets usually originate

from Computational Fluid Dynamic (CFD) simulations, in which moving bound-

aries of a simulation domain force the simulation mesh to change itself with each

discrete time step. While the techniques for generating dynamic meshes have

been intensively studied and optimized, there is a lack of suitable visualization

methods.

This work introduces two new methods for Isosurface Extraction from the

datasets with dynamic meshes. The first method tries to approach the problem

from the geometric point of view. The correspondence of cells between adjacent

time steps is calculated back, based on the cells’ positions and values. The method

focuses on the simpler case of the 2D triangular dynamic meshes. The second

method simplifies data preprocessing compared to the first approach and offers

the ability to extract isosurfaces from a 3D dynamic mesh.

All proposed methods were applied to real-world datasets. The focus has

been set on usability of the proposed methods in practice. The results achieved

during tests along with formal complexity comparisons clearly show advantages

of the methods proposed.

keywords: isosurface, efficiency, scalar field, dynamic mesh



Abstrakt

Zobrazováńı iso-ploch je častě použivaným nástrojem pro vyšeťrováńı datových

množin. Tato tématika je intenźıvně studovaná už téměř 20 let. Výzkum pokročil

od jednoduchých metod použ́ıvaných na počátku osmdesátých let až k interak-

tivńımu zobrazováni iso-ploch z časově proměnných dat.

Tato práce přisṕıvá k výzkumu extrakce iso-ploch ťrema novými metodami.

Prvńı prezentovaná metoda je zaměřena na statické datové množiny. Podrobným

studiem již existuj́ıćıch metod byl odhalen prostor pro jejich časovou a pros-

torovou optimalizaci. Prezentovaná metoda je založená na transformaci vstupńıch

dat do nového alternativńıho prostoru. V porovnáńı s nejmoderněǰśımi exis-

tuj́ıćımi metodami snižuje naše metoda prostorové nároky a výpočetńı čas.

Druhá část této práce je zaměřená na relativně novou tematiku extrakce

iso-ploch z datových množin s časově proměnnou śıt́ı. Taková data prěvážně

pocháźı z numerických simulaćı prouděńı kapalin, ve kterých si pohybuj́ıćı se

části vyžaduj́ı změny śıtě s každým daľśım časovým krokem. Zat́ımco techniky

pro generováńı časově proměnných śıt́ı byly intenźıvně studovány, vhodných zo-

brazovaćıch technik je nedostatek.

Prvńı ze dvou prezentovaných metod se zaměřuje na výpočet korespondence

buněk śıtě ve dvou po sobě následuj́ıćıch časových kroćıch za pomoci geomet-

rické podobnosti a vzájemné pozice buněk. Metoda je vhodná pro dvourozměrné

trojúhelńıkové śıtě. Druhá metoda zjednodušuje a urychluje předzpracováńı dat

a poskytuje možnost extrakce iso-ploch ze ťŕırozměrny̌ch časově proměnných śıt́ı.

Všechny navržené metody byly aplikovány na skutečné datové množiny. V

pr̊uběhu výzkumu byl kladen d̊uraz na použitelnost navržených metod v praxi.

Výsledky dosažené v pr̊uběhu testu jasně poukazuj́ı na výhody navrhovaných

metod oproti již existuj́ıćım metodám.

kĺıčová slova: iso-plocha, efektivnost, časově proměnná śı̌t
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Chapter 1

Introduction

1.1 Definitions

Simulation domain is an area interest of a simulation. The choice of a simulation

domain depends on the problem under investigation. Definition of a simulation

domain in this thesis includes geometric borders of the area where the simulation

is going to take place as well as its physical properties.

Simulation mesh is a set of n-dimensional elements (cells) which discretizes

simulation domain. A numerical simulation produces results over these discreted

elements rather than over continuum of a simulation domain. These elements are

called cells.

Dataset is a set of input data. The two basic components of a dataset (in this

thesis) are:

• Geometry. Under the term dataset geometry we will understand spatial

position of the discrete elements (e.g. vertex, cell) defined in the dataset.

• Variables. Under the term dataset variable we will understand scalar values

or vectors defined in the dataset.

Isosurface is a surface represented by the points of constant value (e.g. pres-

sure, temperature, velocity), constructed within a volume of data. Mathemati-

cally, the isosurface S for isovalue q is a surface:

S(q) = {x | F (x) = q}

where x ∈ S represents a point in an n-dimensional space; and F (x) is a

scalar function F : RN → R defined over input data. 2D version of 3D isosurface

is called isocontour.

5



6 CHAPTER 1. INTRODUCTION

1.2 Data Types

The purpose of this section is to categorize the types of input data mentioned

in this thesis. It is not meant to be an exhaustive list of all possible data types

that are used by the scientists and engineers. Our description limits only to the

selected types of the datasets suitable for isosurface extraction.

The first categorization of the datasets divides them into two groups with

respect to their relation to time.

1. Static datasets. A static dataset describes the state of simulation domain

in one given moment in time. Neither geometry of the cells nor data values

associated with discrete points within dataset are changing.

There are two basic types of static datasets with respect to the shape of

cells:

• Regular static datasets. This is special type of the datasets for which

the assumption is made about regularity of the cells shape. Usually,

the cells are cubes with common length of sides. Advantage of this

kind of dataset is that the cells geometry is implicitly given.

• Unstructured static datasets. In this kind of dataset the cells can

take the shape of tetrahedron, hexahedron or any other N-dimensional

element or mix of elements. Geometry of the cells have to be stored

along with data values defined within those cells.

2. Time-varying datasets. A time-varying dataset describes states of the mesh

geometry and values defined within the geometry at defined discrete points

in time.

Two major groups of time-varying datasets are distinguished based on

whether geometry of the cell varies over time or not.

• Static geometry. Time-varying datasets with static geometry usually

comes out of the numerical simulation where pure Lagrangian ap-

proach is used (i.e. no displacement of the points / cells within a

simulation domain). The advantage is that geometry of the cells is

independent of time and thus is saved only once.

• Dynamic geometry. This is the last and most challenging type of

datasets discussed in this thesis; challenging from both storage space

and computational point-of-view. Whatever calculation is done over

such datasets, a large data volume must be taken into account, requir-

ing highly optimized algorithms to be used (figure 1.1).
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(a) (b) (c)

(d) (e) (f)

Figure 1.1: Example of a dataset from combustion simulation with time-varying
scalar values and dynamic geometry. Figures (a)-(c) show changing boundaries
of the simulation domain at the time steps 1, 60, 88, while (d)-(f) show changing
mesh.

1.3 Principles and methods

There are two basic phases of the methods for isosurface construction:

1. Isosurface extraction. During the extraction phase, the cells intersected by

the isosurface are identified.

2. Isosurface visualization. Once the extraction is done, various techniques

can be employed to calculate the isosurface geometry within intersected

cells and to render its shape.

This thesis focuses on the first phase. Based on the data given, different al-

gorithms for isosurface extraction were developed. The focus of these algorithms

ranges from low extraction complexity, through space optimization, to I/O effec-

tiveness while handling large volumes of data.
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Before the existing methods will be described, an overview of the basic prin-

ciples is provided in the following paragraphs.

Extremal values. Most of the existing techniques for isosurface extraction

are based on manipulation with extremal values of the cells. Under the term

extremal values of a cell we understand a pair made of minimum and maximum

of all values defined within the cell (typically the values assigned to the points at

cell’s corners). In the rest of this thesis, we will call it a min-max pair of a cell.

Active cells. Traversing through the min-max pairs of the cells in the dataset

allows for identification of the active cells. An active cell c is a cell intersected

by the isosurface for the given isovalue; mathematically:

cmin ≤ isovalue ≤ cmax (1.1)

Isosurface extraction. Existing isosurface extraction techniques are based on

the organization of the min-max pairs of the cells in some kind of data structure.

Transversing such data structure in a defined way allows for identification of the

active cells.

Methods. The basic method for identification of active cells is simple sequen-

tial traversal of all cells in the dataset. The test is made for each cell, whether a

min-max interval of the cell covers given isovalue. This method called Marching

Cubes has been introduced by Lorensen and Cline in 1987 [34]. In their original

paper Lorensen and Cline introduced 15 ways of how a cubical cell can be inter-

sected by an isosurface. Using the scheme provided, geometry of the isosurface

can be easily constructed within the active cells and rendered out.

Many researchers inspired by this seminal work tried to improve and extend

it in many ways. The main drawback of the Marching Cubes is its high compu-

tational cost. All cells in a datasets have to be visited and tested. Number of

methods have been introduced to avoid this costly computation and to decrease

the time needed for extraction (chapter 2).

Advantage of the min-max based techniques for isosurface extraction is that

they are applicable on both regular and unstructured static datasets, regardless

of the cells shape. Only min-max pair of each each cell is considered during the

extraction phase. Geometry of cells is taken into account just in the visualization

phase.

The next step in the isosurface extraction is represented by the techniques

able to handle time-varying data. Most of the research in this area focuses on

the datasets with static geometry.

The simplest method for time varying data is to build auxiliary data structure

separately for data at each time step. This approach, though working, is time

and space inefficient.
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In order to optimize the isosurface extraction existing techniques incorpo-

rate the time dimension into their supporting data structures. The focus of the

available techniques ranges from space optimized data structures to I/O efficient

mechanisms designed for large data volumes. Section 3.4 provides overview of

these techniques.

Recently the computational power and data storage space increased up to the

level that can be considered as reasonably sufficient for the numerical simulations

in the domains with moving boundaries and inner parts. These simulations closely

reflect reality in many applications in the automobile and the aerospace industry.

Despite growing size and complexity of this kind of simulations there is still

lack of the suitable methods for isosurface extraction. The techniques which

count with static geometry of the dataset along its time dimension fail for the

dynamic geometry data.

The second half of this thesis is dedicated to the overview of the dynamic

meshing (chapter 3). The techniques for construction of dynamic mesh are stud-

ied as a base for further research. Overview of the few existing methods for

isosurface extraction from such kind of datasets is provided. Then our contribu-

tion to this field is described and analyzed.

1.4 Goal and contribution

Our main aim is to study properties of the time-varying datasets with static and

dynamic mesh geometry and to find a transformation of such data into a space,

which allows for isosurface extraction in the space and time optimized way.

The author’s contribution to the field of isosurface extraction is threefold:

1. Space and time optimized isosurface extraction from static datasets

The main drawback of the existing methods for isosurface extraction from

static datasets are their high space requirements and long construction time

of the data structure that aids in the process of the extraction of active cells.

Some of the existing methods require the size of memory as much as three

times larger than the size of input dataset.

In the section 2.6 a novel method is introduced which decreases the memory

space required down to around 1.1 times of the size input dataset (in the

average case). Considerable improvement are also achieved in shortening

the time needed to build auxiliary data structure.
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2. Isosurface extraction from dynamic datasets - geometric approach

Lack of the suitable visualization methods for the time-varying datasets

with dynamic geometry was the main motivator for the second half of the

research presented in this thesis.

First of our two proposed approaches to the isosurface extraction from the

datasets with dynamic geometry is based on the technique to find back

geometric correspondence between the mesh cells in the neighboring time

steps. The advantages and disadvantages of this approach are discussed in

the section 3.6 of this thesis.

3. Isosurface extraction from dynamic datasets - min/max approach

High complexity of our first (geometry-based) solution to the problem led

us to the proposal of the min/max-based solution. The cells are represented

by their min-max values and organized in the couples in order to achieve

lower memory consumption. The technique decreases complexity of the

supporting data structure construction. The active cells can be identified

at interactive frame rates (section 3.7).



Chapter 2

Static datasets

2.1 Overview

This chapter deals with the optimized ways of isosurface extraction from the

static regular and unstructured datasets, a subject of research for more than two

decades. The research in the field of isosurface extraction for static datasets has

been driven by the effort to minimize the number steps necessary to identify the

parts of the input volume intersected by the isosurface. Various techniques have

been proposed, many of which are output optimal (meaning, they only need M

steps to identify M active cells). However, the results of our research will show

that there is still a room for space and time optimization of the supporting data

structures as well as for the isosurface extraction process itself.

The content of this chapter is divided into three principal parts. In the first

part, the existing methods are studied and evaluated (sections 2.2, 2.3 and 2.4).

According to their base principle the methods are divide into three groups:

1. Marching methods

2. Surface growing methods

3. Value-space methods

The second part deals with comparison of the existing methods (section 2.5).

The comparison focuses on the space and time complexity of supporting data

structures, as well as on the search process for active cells identification. Out of

this comparison the main motivation for our research in this field is formulated

(section 2.5.4).

In the third part of this chapter, our approach for optimized isosurface ex-

traction is introduced (section 2.6). Formal analysis and practical tests of our

method clearly show advantages and improvements over the existing solutions.

11
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2.2 Marching methods

Marching methods described in this section take into account geometric location

of the examined cells. There are two ways how this geometric information is

treated in order to find active cells. The simplest approach is to visit the cells

one-by-one check whether a cell is intersected by isosurface for the supplied iso-

value [34]. More advanced approached is to first divide the volume of the input

datasets into subvolumes and examine (or skip) each subvolume based on the

maximum range of values within it [63].

In 1987 Lorensen and Cline introduced the famous Marching Cubes algo-

rithm [34]. Their method is considered as a simples basic method to identify the

active cells and extract the isosurface geometry.

The basic principle of the Marching Cubes is traverse all the cells in the

dataset one-by-one. For each cell c a simple test is made whether the min-

max interval of the cell covers the supplied isovalue q. In the case that the test

cmin ≤ q ≤ cmax is positive, the cell e is evaluated as active and added into the

list of active cells.

Given a particular isovalue, only a portion of all cells in the dataset is in-

tersected by the isosurface. For this reason, traversal of all cells is unnecessary,

making the the Marching Cubes algorithm computationally inefficient.

Wilhelm and van Gelder introduced a Branch-On-Need Octree (BONO) [63].

The technique is inspired by the traditional octree subdivision of the volume.

BONO technique is more efficient in the terms of number of subdivision nodes.

Space of the BONO node is divided by assigning the-largest-possible-power-of-

two rows and columns to a lower branch and the rest of the subspace is divided

among the other three ”quadrants” (in 2D). Figure 2.1 a shows the 2D example

of BONO subdivision of regularly placed cells. Min/max values of the cells are

stored in the nodes of a BONO tree, so only those subtrees satisfying condition

min < isovalue < max are traversed during active cells extraction. The time

complexity of this method is O(K + log N/K), where K is the number of isosurface

cells, and N is the total number of cells.

Majority of the datasets that appear in practice have smooth gradients of the

contained scalar values without frequent cases of sudden value change in a local

neighborhood of the cells. BONO method is well suited for this kind of regular

dataset.

The biggest disadvantage of the BONO method appears when it is applied

to the high frequency noise data. In this case the subdivision become inefficient

because for any isovalue supplied most of the BONO’s subdivision nodes have

to be visited. Consequently, the search for active cells may be computationally

nearly as expensive as a simple marching method of Lorensen and Cline [34].
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Even Subdivision Strategy Branch-on-Need Strategy

Root

Level 1

Level 2

4 Nodes

12 Nodes 9 Nodes

4 Nodes

1 Node 1 Node

(a)

Figure 2.1: 2D example of BONO subdivision. The largest possible power of two
number of rows and columns is assigned to a lower left branch, and the rest of the
space is divided among the other quadrants (picture and description from [63]).

2.3 Surface growing methods

The principle of surface growing methods is to determine starting cell known as

the seed and trace the isosurface outward to the neighboring cells. These methods

rely on knowledge of a sufficient starting set of cells, since growing a surface from

a single cell can only capture one component of an isosurface.

Itoh et al. [26, 27, 28] introduced surface growing technique based on the

extrema graph. The method is based on the following simple rule: ’If there is a

closed isosurface, then there exist extremum points both inside and outside of

the isosurface. If there is an open isosurface, then the isosurface intersects the

boundary of the volume.’ According to the above rule, the cells intersected by

a closed isosurface are to be found around an inner extremum point, and cells

intersected by an open isosurface are to be found on the boundary.

In the pre-process of the extrema graph method of Itoh et al., extremum

points are first extracted. Then the extremum points are connected for form

a graph. At the same time, boundary cells are registered in a list and sorted

according to the minimum and maximum values of their nodes (figure 2.2).

When the isovalue is specified, the cells on the arcs of extrema graph and

sorted boundary cells are visited. This step guarantees that at least one cell

each isosurface component is found. Having these basic seeds, the isosurface

components are constructed using the propagation algorithm.
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The total cost of preprocessing is regarded as O(m2 log m), where m denotes

the number of extremum points. The number of cells visited during active cells

extraction is regarded as O(n2/3). The time required for preprocessing can be

significant in the case of high frequency noise in the data, causing high m values.

In 2001 Itoh et al. proposed Volume Thinning method [29] for construction

of the extrema graph. The method, originally used in the image processing, visits

all the cells in the datasets and eliminate those that are unnecessary for creation

of the extrema skeleton. The skeleton created, retains topological features in the

volume like holes or voids.

Another solution has been found in the work on Contour trees [9, 55]. A

Contour tree is a structure that summarizes all possible contours on the map

(figure 2.3). In [9] Carr et al. provide algorithm for constructing so call Join tree

and Split tree and finally merge these two into a final Contour tree.

In 1997 van Kreveld [56] et al. introduced algorithm for construction of a

Seed set, which contains the cells intersected by the isosurface components (one

seed per component).

Bajaj et al. [4] provide three algorithms, first, for constructing nearly optimal

seed set, minimizing the storage overhead for the search structure. Another two

algorithms focus on extremely fast Contour tree computation suitable for large

datasets that cannot be kept in main memory (out-of-core computation).

Figure 2.2: Example of the 2D extrema graph and boundary cell list [29].

Figure 2.3: Example of contours and contour trees (source: web page of H.Carr
at www.csi.ucd.ie).
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2.4 Value-space methods

The methods presented in this section differ from the marching methods (sec-

tion 2.2) in the way how the a single cell is represented. A triple (ID, min, max )

is used to represent a single cells. Cell’s ID is a unique cell identifier defined when

the cell is created, allowing to access cell without any information about the cell’s

geometry (consecutive cells’ IDs don’t necessarily implies their geometric adja-

cency). A couple of scalars min, max then specifies minimum and maximum

scalar values defined within the space of the cell.

The (ID, min, max ) representation of cells is well suited for both structured

and unstructured datasets, because it is independent of geometry of the cells.

There are three kinds of methods that use this representation:

1. Methods which organize the id,min,max triplets in so-called span-space and

then use some data structure to divide and index the span-space [32, 46].

2. Methods which sort and group the cells into lists and define a way how to

traverse this list in order to extract active cells [19, 47, 11, 57, 60].

3. The method of Bordoloi and Shen [7] doesn’t fit into none the two above

mentioned categories. Their method first transforms the min, max values

into an alternative 2D space, which is then used to construct data structure

that aids during active cells extraction.

The next paragraphs provide description of the major methods from each of

the three groups listed above.

The notion of Span-space has been originally introduced by Livnat et al [32].

In the Span-space the cells are represented by their minimum (x-coordinate)

and maximum values (y-coordinate). Active cells are identified by the simple

restriction of Span Space along min and max axis. Figure 2.4 illustrates the

process of isosurface extraction using Span Space (the area of active cells for

isovalue q is enhanced).
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Figure 2.4: Span-space. Each black dot represents one cell.
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Livnat et al. originally proposed kd-tree for spatial subdivision of Span-

space in the NOISE algorithm [32]. Kd-trees designed by Bentley in 1975 [6] are

basically multidimensional binary search trees. Each node of the tree holds one

of the data values and two subtrees as children. The subtrees are constructed so

that all nodes in left/right subtree holds values lower/higher than the parent’s

node value. The parent’s node value which is computed as a median of values

in the left and right subtree. The points, representing the active cells can be

extracted by simply traversing kd-tree with worst case time-complexity of O(
√

N

+ K ), where N is total number of the cells in the dataset and K represents the

number of isosurface cells. Figure 2.5 shows span-space partitioned by the nodes

of Kd-tree.
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Figure 2.5: Kd-tree. The lines represent the structure of kd-tree. The root line
represents the first split of along the min coordinate.

Shen et al. proposed lattice subdivision of Span Space in the ISSUE meth-

ods [46]. A simple two-dimensional regular lattice is used to subivide Span

Space into LxL regions. ISSUE lowers the time complexity of the active cells

to O(log(N
L ) +

√

N
L + K)), where N is total number of the cells in the dataset, L

is the user specified parameter defining the number of lattice elements along each

axis and K represents the number of isosurface cells. Figure 2.6 shows lattice

subdivision of Span Space.

minimum

m
ax

im
u

m

q

q

case 1

case 5

case 4

case 3

case 2

Figure 2.6: Span Space subdivided by LxL regular lattice. Given the isovalue q,
lattice elements can be classified into five different cases.
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The two previous methods, NOISE and ISSUE belong to the first of three

groups mentioned at the beginning of this section. The next 5 methods described

below belong to the second group, focusing on sorting of the cells into lists and

their efficient traversals for active cells identification.

Gallagher [19] designed a span filter to optimize the performance of the iso-

surface extraction. Initially, the range of the scalar values in the dataset is sub-

divided into several subranges termed buckets. The number of buckets that a

cells scalar values cross is defined as the span length. Cells are then distributed

into different span lists according to their span lengths. Within each span list,

the cells are further grouped into different buckets based on their lower bounds.

During extraction for a given isovalue, the algorithm examines each span list.

Within each span list, buckets that have bounds at and lower than the isovalue,

depending on the span length of the list, are retrieved, and the elements inside

are visited. Figure 2.7 show span filter structure with four span lists.
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Figure 2.7: (a) Span range and buckets. Two cells with span length = 2. (b) Span
filter data structure with four span lists. Search sequence for isovalue q (marked
with arrows) starts at the bucket with the lowest span length and continues to
the once with higher span length until all span lists are visited.

Shen and Johnson introduced Sweeping Simplices technique [47]. The tech-

nique uses a cell list division scheme, which assigns the cells into the groups at

various level according to the min/max values. For each subgroup the minimum

list (cells sorted by the min values) and the corresponding sweeping list (cells

sorted by the max values) is constructed. During the active cells extraction, the

minimum lists and sweeping lists are restricted by the selected isovalue. Then

the efficient comparison scheme is used to quickly extract only the cells in both

restricted lists, which are in fact the active cells.
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The Interval Tree technique [11] guarantees worst-case optimal efficiency.

Cells, represented by the min/max intervals are grouped at the nodes of balanced

binary tree. Each node holds discriminant d. A list of the cells I = ci, i = 1..N at

each node is divided into three groups: 1) cimin
≤ q ≤ cimax

, 2) cimin
≥ q and

3) cimax
≤ q. The cells from the second and third group belongs to the left and

right subtree of the node while the cells from the first from the first group are

kept in the node sorted in two lists according to their min values (AR list) and

max values (DR list). Figure 2.8 shows example of the interval tree and stored

intervals. For any isovalue query, at most one path from a root node down to a

leaf node is traversed. During traversal, the AR and DR lists of the nodes along

the path are traversed for active cells identification.

AL: d,e,f,g,h,i

DR: i,h,g,f,e,d

AL: a,b,c

DR: c,b,a

AL: j,k,l

DR: l,k,j

2     3     4      5      6      7      8       9      10      11     12

AL: m

DR: m

a
b

c

i

m
l

k

h
g
f

e
d

j

Figure 2.8: Interval tree built over 13 cells. White circles represent nodes with
empty AR, DR lists.

Span-triangle data structure was introduced by von Rymon-Lipinski et al. [57].

Span-triangle is focused on isosurface extraction from medical volume datasets,

sampled as either 8 bits or 16 bits integers, moreover cropped to an exploration

range [emin, emax].

Skeleton of Span-triangle structure is base array. Each element in the base

array corresponds to the cells x with min value b = xmin − emin and contains

pointer to its span array and cell info array. An element of span array at position

s holds pointer to the first item with value span s = xmax − xmin in a cell info

array. Figure 2.9 shows example of Span-triangle structure for exploration range

[emin, emax] = [0, 3] and isovalue v = 2. Using fast Radix sort algorithm, the

structure can be constructed in O(N) time and takes O(N) space.
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Figure 2.9: Sample of the span-triangle data structure for exploration range
[emin, emax] = [0, 3] and isovalue v = 2. Active element of the data structure
for isovalue v = 2 are emphasized by a gray background.

Waters et al. [60] use fixed-sized buckets to divide the list of cells in a scalar

field. A record for one cell includes a cell’s min/max and ID values. List of the

cells is first sorted according to the minimum values. Such sorted list is then split

into intervals of the same size B - buckets. Figure 2.10 illustrates organization

of the cells in the min/max space and their assignment to the buckets. Similarly

to Span Space the active cells are identified by restriction of the 2D space along

the min (x) and max (y) axis. Buckets are traversed along the min (x) axe and

tested for ycell = maxcell < max condition. The time complexity for creating the

list is O(N logN + N
B (B logB)) and for identifying the active cells O(K + B).

Space complexity is O(N).

m
ax

min

ca

Figure 2.10: Isosurface extraction using fixed-sized buckets. The cells of scalar
field are organized in a space similar to Span space and divided into the buckets
of equal size. Parts of the buckets containing the active cells are emphasized by
the black boxes.
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Bordoloi and Shen [7] introduced the space efficient technique for isosurface

extraction from large scientific datasets. The original mesh cells are first repre-

sented as the points in 2D UV-space (figure 2.11). U coordinate of the cell C is

determined as u = Cmaximum + Cminimum and V coordinate as v = Cmaximum

- Cminimum. Then the U and V axis are quantized, which results into a set of

rectangular regions within UV-space. Given an isovalue, the decision boundaries

for UV-space are computed. The cells stored in the rectangular regions within

such decision boundaries are selected for extraction of isosurface geometry. Due

to the quantization of the U and V axis the min/max values of the cells within

each rectangular region of UV-space do not need to be saved. Only the space

for cells IDs and the space or representing rectangular regions in UV-space are

required.

isovalue * 2 u-axis

v-
ax

is

v > | u - isovalue * 2|

u
v

=
maximum + minimum
maximum - minimum

Figure 2.11: UV-space. Each cell is represented as a point with coordinates (u, v).
Isosurface passes passes through the cells in the region v ≥ —u - isovalue * 2—
(shaded).

2.5 Analysis of the existing methods

2.5.1 Space complexity

This subsection discusses space requirements of the methods described in the

previous sections 2.2, 2.3 and 2.4. In the following, we assume that there are N

cells in the dataset, ID of each cell is represented by c bytes number and minimum

and maximum value of a cell need d bytes each. For example: a single triple (ID,

min, max) needs c + 2d bytes of memory.

Marching Cubes method traverses the input cells by simply reading the input

dataset. Because no auxiliary search structure is built, the space requirements of

the Marching Cubes are equal to the storage space needed for input dataset only.

Wilhelm and van Gelder in the original paper on BONO method calculate

the ratio of BONO nodes against data points to be ≤ 1
6 (0.1615 exactly) for the

regular volumetric datasets whose side contains at least 32 cells.
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The NOISE and Fixed-sized buckets techniques store the (ID, min, max)

record once for each cell. Thus, the run-time space requirements of the NOISE

and Fixed-sized buckets are (c + 2d)N .

The ISSUE and Interval tree use two records for each cell: (min, ID) and

(max, ID). Therefore, the ISSUE and Interval tree require storage space equal to

(2c + 2d)N .

The space-efficient method of Bordoloi and Shen [7] first transforms the cells’

extremal values into the 2D UV-space and then applies the quantization to divide

the uv-space into a finite set of M x L buckets. The method requires the storage

space for N cell IDs and ML + L + 1 quantization levels, where ML + L +

1 is typically equal to N/100. Table 2.1 summarizes space requirements of the

selected methods.

Method Space requirement
Space

complexity

ISSUE 4N + kd-trees at min=max O(N )
Interval tree 4N + tree overhead O(H + I )

Fixed-sized buckets 3N + min dictionary O(N )
Quantized search N + ML + M + 1 O(N )

N = # of cells H = # of interval tree nodes
I = # of distinct intervals in data M, L = # of quantization levels

Table 2.1: The space requirements of the selected methods.

2.5.2 Time complexity

There are two phases of the active cells search: construction of the auxiliary

search structure and the search pass itself. Both phases are discussed in this

subsection.

The most time-consuming parts of the construction phase are the sorting

steps. The ISSUE method [46] requires two sorting passes for each non-empty

lattice element (Row and Column data structures). The Interval tree method [11]

needs to sort AL and DR lists of cells within each tree node. The Fixed-sized

buckets method [60] sorts all cells by minimum value in O(N log N) time, and

then resorts the cells bucketwise by maximum value in O(B log B) time for

each of the N
B + 1 buckets (where B is the number of cells per bucket). In the

Quantized search method [7] all cells are first sorted by their u value, then the u

axis is quantized into M intervals and cells are sorted for the second time within

each u-interval.
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During the search phase K active cells are identified for a supplied isovalue.

To identify K active cells a certain number of search structure elements E must

be visited.

For Marching Cubes method K = E. Therefore, optimized methods were

proposed. In generally all the other method provide nearly optimal search times

almost proportional to the number of active cells K. Table 2.2 summarized time

complexity of the extraction phases for a selected methods.

As can be seen from the table 2.2 the best search times can be theoretically

achieved by the Bucket Search, because very few elements need to be visited and

all the cells within visited elements are put into the list of active cells. However,

this approach provides results with certain search error.

Method Time complexity

Marching Cubes O(N)
BONO O(K + log(N/K))

NOISE O(
√

K + K)

ISSUE O(log(N
L ) +

√

N
L + K))

Buckets Search O(K + B))
UV Search K + Q + err

L = number of lattice elements along each axis
B = number of buckets
Q = number of visited quantization elements
err = search error (number of false positives)

Table 2.2: Time complexity of the active cells search of the selected methods.

2.5.3 Suitability and accuracy

The last criteria are suitability and accuracy. It might be misleading to judge

described methods only by their time and space complexity. Marching Cubes

and BONO methods are suitable (without any auxiliary data structure) only for

regular (structured) volumetric datasets. On the other hand, the family of value-

space methods is suitable for both structured and unstructured datasets because

geometry doesn’t play any role in the search structure.

All described methods are able to provide exact list of the active cells, except

the UV-Search methods. UV-Search methods guarantees to provide all the ac-

tive cells together with certain search error (small percentage of false positives).

However, this search error is balanced with small space requirements and short

search times.
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2.5.4 Conclusions from analysis

All of the value-space methods summarized above report space complexity O(N).

However, in practice situation is different. If the cell IDs are represented by 32-

bit integers and min-max values by 32-bit floats, then the ISSUE and Interval

tree applied to a 5123 regular floating-point dataset require approximately 2GB

of memory only for search structure, which is four times the the size of the

initial dataset. This high space requirement, makes the two mentioned methods

unusable for moderate size 5123 datasets on most of todays desktop computers

(with 2GB of memory and 32 bit operating system).

Our first conclusion from the analysis above is, that there is still room for

space optimization of the isosurface extraction methods.

As mentioned in the section 2.5.2, the most time-consuming part of construc-

tion of the search structure are sorting steps. All of the presented methods need

to sort the {min, max} pairs according to both extremal values - this means,

that they require at least 2 ∗O(N log N) steps. Out of this we make our second

conclusion:

There should exists a 1D space S, and such transformation {cmin, cmax}→ S

for all cells c in the dataset, that the active cells identification will be possible

directly in S.

Coming out of the R2 → R transformation of the cells’ extremal values pro-

posed in the previous paragraph, it is obvious that part of the original information

has to be lost. Therefore, the resulting set of the active cells identified over S

will include certain number of false positives (search error). The accuracy with

which a search structure would be built over S is crucial for minimizing of the

the search error. In order for such search method to be efficient, the search error

should be in practice smaller than the error of the UV-search method of Bordoloi

and Shen [7].

2.6 Proposed method

2.6.1 Overview

This section describes our newly proposed method for isosurface extraction. Mo-

tivation for this research came out of the conclusions made in the previous sec-

tion 2.5.4.

The method is based on a simple transformation of the {minimum,maximum}
information of each cell into a 1D space. The proposed transformation lowers the

worst-case space requirement to 2N . Construction of the search structure over

1D data requires only one initial O(N log N) sorting step, which shortens and
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simplifies the preprocessing compared to the existing methods.

Our algorithm achieves the near-optimal search times. The number of false

positives during the active cell search (search error) decreases significantly com-

pared to [7].

Once identified, the active cell IDs are transferred into our point-based vi-

sualization system. A range of point-based techniques has been developed for

isosurface rendering [30], [21], [12], [42], [13], [8], [33]. We have adopted a tech-

nique similar to Iso-splatting [13] for interactive focus+context [58] visualization

accelerated by modern GPU hardware. For high-quality isosurface rendering we

use the method of Brentzen and Christensen [8].

2.6.2 Transformation

The main idea of the transformation is to convert the {minimum,maximum} pair

of each cell into the parameter t (denoted tc for cell c):

{cmin, cmax} → tc, tc ∈ [0, 1] (2.1)

The transformation (Eq. 2.1) is done by quantization of the max-axis of the

Span Space [32] to the M quantization intervals. M is the parameter to our

method and its choice is explained later in the Sec. 2.6.5.

After the max-axis quantization the Span Space becomes a finite set of par-

allel horizontal lines. Parameter t from the transformation, is equal to 0 at the

beginning of the bottom-most line, and is equal to 1 at the right end of the top-

most line. The t-interval per one max-axis quantization interval is tint = 1 / M .

Figure 2.12 shows the span space turn into finite set of the quantized intervals

along the maximum axis.

Considering the quantization described in the previous paragraph, the pa-

rameter tc of a cell c is computed as follows:

tc = ti + t0 (2.2)

where:
ti = ⌊ cmax − maxmin

maxmax − maxmin
/ tint⌋ ∗ tint (2.3)

t0 =
cmin − minmin

minmax − minmin
∗ tint (2.4)

Such a 1D index is used for a fast construction of the search structure and

for the identification of active cells. As can be seen, the transformation does

not handle both extremal values in a symmetric way (only the max values are

quantized), which results in the small search error rates of the method presented.

Once the parameter t is computed for each cell of a dataset, the cells are

sorted by t in increasing order. Finally, a list of records is constructed. Each

record contains parameter t and a list of IDs of the cells, which have this value
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of parameter t. Since the list of cells is sorted by the t parameter, the records

can be created by simply traversing the list of cells and grouping the cells with

the same parameter t into the same record. An index of the first record on each

max-axis quantization interval is placed into a simple search dictionary which

helps during the active cell search.

2.6.3 Extraction

The goal of the extraction phase is to identify all active cells. For a supplied

isovalue q, a cell c is defined to be active if: cmin ≤ q ≤ cmax.

Active cells for the supplied isovalue are collected by traversing the max-

axis quantization intervals in the top-bottom order using two nested loops. The

outer loop traverses the items of the search dictionary to determine the index

of the first record on the current quantization interval. The inner loop collects

the active cells from the records in the current quantization interval, until the

condition tc ≤ tlimit holds. The value of tlimit for the n-th quantization interval

is computed as follows:

tlimit = (n ∗ tint) +
q − minmin

minmax − minmin
∗ tint (2.5)

The index of the last traversed quantization interval, ”final”, is determined

by the selected isovalue q:

final = ⌊ q − maxmin

maxmax − maxmin
/ tint⌋ (2.6)
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Figure 2.12: Span Space quantized along the maximum axis. Filled circles rep-
resent the original cells (min,max pairs). Empty circles show transformation of
the original cells (represented by t value). Shaded area contains the active cells
for given isovalue.
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2.6.4 Incremental search

For small changes of isovalue q, it is often efficient to extract the active cells

incrementally. For this purpose, we keep list L of the last visited record on each

quantization interval. The intervals between the topmost one and the finalnew

are marched from the record with index stored in L, activating the cells until

the first inactive record is met. Cells from all the quantization intervals between

finalold to finalnew are deactivated.

Similarly, when the isovalue is decreased to qnew, the quantization intervals

are traversed backward from the position stored in L, deactivating the cells passed

along the way to the new value of limitn. Additionally, full extraction has to be

done for the quantization intervals finalold to finalnew.

2.6.5 Number of quantization intervals

As stated in Sec. 2.6.2, the number of max-axis quantization intervals is an op-

tional parameter to the method presented and depends on the data type of the

processed dataset.

For datasets with byte data, it is sufficient to quantize the max-axis of the

Span Space into 256 intervals to recognize clearly each possible maximum value.

In other words, the R2 → R transformation (Eq. 2.1) does not quantize the

maximum values of cells (i.e. it preserves the original {minimum,maximum}
information), and the active cells can be extracted with zero search error. The

same is the situation for 2-byte integer datasets and the search structure with

65536 quantization intervals.

The number of quantization intervals for the floating-point data has been de-

termined experimentally. The relationship between the chosen number of quan-

tization intervals and the search error has been observed. In all performed mea-

surements, the search error drops under 0.3% for more than 216 quantization

intervals, regardless of the input dataset (Fig. 2.19). Thus, for floating-point

data we use 216 quantization intervals. Comparison of the search error with the

method [7] is provided in Sec. 2.7.2.

2.6.6 Search error

The search error is represented by the number of false positives that appears

during active cells identification. In our method the false positives may appear

when the last (the lowest) quantization interval is traversed for gathering the IDs

of active cells.

Within this last interval the method can’t check whether the original max

value of an investigated cell is higher or lower than the supplied isovalue because

the original max value has been quantized (this is where the part of information

is lost). Figure 2.13 shows the area where the search error my appear.
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Figure 2.13: Span-space turned into finite set of quantization intervals along the
maximum axis. The area of the lowest max quantization interval where the search
error may appear is crosshatched.

2.6.7 Optimization

For floating-point datasets the number of different t parameters of the trans-

formed cells can be very large, which may results in a large number of records.

In the worst case, there is one record created for each cell. Therefore, we em-

ploy user-selected level of the t quantization △t. Mathematically, the cells of any

record R = (c0, ..., cn) satisfy conditions: tc0 ≤ tc1 ≤ ... ≤ tcn
and |tcn

−tc0| < △t.

All cells of R are further represented by the parameter tR = tc0.

Let’s assume two records R1 and R2 on the same quantization interval, so that

tR1
< tlimit < tR2

. Because each cell of R2 has its t > tR2
, R2 can not contain

any active cells with t < tlimit. Therefore, collecting the active cells from records

with t < tlimit guarantees that all active cells will be found when quantization is

applied, avoiding cracks in the isosurface.

2.7 Comparison

We have implemented the ISSUE [46], Interval tree [11], Fixed-sized buckets [60],

and Quantized search [7] algorithms to compare the method proposed against

existing methods. The Span-triangle method [57] was omitted from the tests

because it is aimed only to quantized data (byte or 16-bit integer).

First, the formal space and time complexities of the presented method are

discussed, followed by the results of the tests. The comparison is always made

against the method with best results according to give criteria (e.i. extraction

time, search structure size, etc.).
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2.7.1 Formal complexity analysis

Search structure

The construction of our data structure involves three steps. The transforma-

tion of {min, max} values into parameter t requires O(N) time, while the sorting

pass requires O(N log N) time. The creation of records is O(N) step. Thus,

construction of our search structure can be done in O(N log N) time.

The most time-consuming parts of the construction phase are the sorting

steps. The ISSUE, Interval tree and Fixed-sized buckets methods sort minimum

an maximum values in two sorting passes. Similarly Quantized search method

sorts first u values and then v.

Since there is only one initial sorting step in the proposed method, the con-

struction time is significantly shorter when compared to the current state-of-the-

art algorithms for active cell identification. This conclusion is supported by the

measurements presented in Sec. 2.7.2.

All of the methods have space requirement equal to at least 3N. The exception

is UV-search method [7] which balances the space requirement and search error.

Because our method stores the ID number and t parameter once for each cell,

the temporal space required by our method is 2N words. However, due to the

bucketization of cells into records, the final space requirements of the proposed

method are between 1N and 2N , which is competitive with the UV-search (see

results in Sec. 2.7.2).

There is also a small space required for the search dictionary, which contains

one 4-byte integer for each quantization interval. Thus, the space allocated for

the search dictionary is 256 * 4-bytes = 1kB for byte data, and 256kB for 16-bit

integer and floating-point datasets.

Active cells search

At run-time, active cells are identified by traversing the list of records. In the

worst-case scenario, there is one record created for each cell. In such a case, we

need to visit K + E records, to extract K active cells. For each record visited,

one comparison of its tR parameter is performed. For each traversed quantization

interval one check of the search dictionary and one failed tR comparison are

performed. E is the search error introduced by the small amount of records

visited in the last quantization interval, which do not contain active cells. Because

E is very small in practice (under 0.3%), the run-time complexity of our search

algorithm is O(K).

In a typical case, many records contain more than one cell. Therefore, to

extract K active cells we usually need far less than K comparisons, which shortens

the search process.
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2.7.2 Search structure tests

The analyses from Sec. 2.7.1 are supported by the results of measurements.

Tab. 2.3 summarizes seven datasets used during tests. The tests for Vertebra

and X2 −Y 2 datasets were done on the 64-bit Intel processor and 4GB of RAM.

The tests for all other datasets were done on a desktop PC with Intel 3.2GHz

processor, 2GB of RAM and ATI FireGL V5200 graphics adapter.

Dataset Resolution Description

Skull 256x256x256 hexahedral grid, byte

CT-head 256x256x113 hexahedral grid, 16-bit integer

FiveJets 128x128x128 hexahedral grid, 32-bit float

TeraShake 750x375x100 hexahedral grid, 32-bit float

Isabel 500x500x100 hexahedral grid, 32-bit float

Vertebra 512x512x512 hexahedral grid, 16-bit integer

X2 − Y 2 512x512x512 hexahedral grid, 32-bit float

Table 2.3: Summary of datasets used during tests

Figure 2.14 provides a comparison of the construction time of the presented

data structure versus four tested methods. For testing purposes, the number

of quantization intervals for our method has been determined according to the

data type of a dataset (Sec. 2.6.5). For the Fixed-sized buckets [60] the fixed

bucket size of 8192 cells has been used as recommended by the authors of the

method. For the Quantized search the (M,L)=(2000,200) quantization levels were

constructed, because at this setup it achieves the run-time performance similar

to our method (see Figures 2.16, 2.17, 2.18). As predicted by the analysis of the

construction complexity, our search structure achieves the shortest construction

times of all tested methods. Construction times provided by Fig. 2.14 include

creation of the temporary and final data structure without data loading.

Figure 2.15 compares the size of the final data structures. Because we do not

compress the cell IDs, the size of our search structure is always greater than 1N

words. We need additional space to store the tR parameter of each record, and the

space for the search dictionary. Thus, the total space required by our method is

between 1N and 2N words for the tested datasets. Only the Quantized search [7]

achieves a comparable size of data structure. However, our method achieves much

better construction times than the Quantized search and lower search error.
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Figure 2.14: Comparison of the construction times. As predicted by the analysis
of construction complexity, the search structure proposed achieves the shortest
construction times of all tested methods.

Figure 2.15: Comparison of the size of the final data structures. Only the Quan-
tized search achieves size of the data structure comparable to our method, but at
the cost of almost twice as long construction time (Fig. 2.14) and higher search
error.
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2.7.3 Extraction times test

The measurements of the search times are provided in this subsection. The search

times of the presented method are compared against the Interval tree and the

Quantized search with three different setups of quantization levels. The Interval

tree method has been chosen because of its reported near-optimal search time

O(K + log N), where K is the total number of active cells. The Quantized

search has been included into the measurements because, as well as the method

presented, it uses quantization of the data to shorten the search time. For each

dataset, 1000 isovalues from the value range of the data were randomly chosen.

For each chosen isovalue, the average search time for 100 full extraction queries

was recorded.

Figures 2.16, 2.17, 2.18 show that our method outperforms the Interval tree.

In fact, the search times of our method are comparable to those of a Quan-

tized search with M=2000 and L=200 quantization levels. However, as will

be shown later in this section, the search error of the Quantized search for

(M,L)=(2000,200) is significantly higher when compared with our method.

Note that the authors of the Quantized search method [7] do not provide

any specific recommendation for the optimal setup of M and L parameters, while

the value of the optional parameter in our method (the number of max-axis

quantization intervals) is exactly given by the data type of the processed dataset

(see Sec. 2.6.5).

Figure 2.19 shows that the search error decreases with an increasing number

of quantization intervals. We used three floating-point datasets with a different

value range. For all three datasets, the search structures with 210 to 219 quantiza-

tion intervals were constructed. For each constructed data structure, the average

search error for 200 full extraction queries (with random isovalues from the value

range of the data) was recorded. The results indicate that the average search

error remains below 0.3% for a search structure with more than 216 quantization

intervals, regardless of the input dataset.

Finally, Tab. 2.4 provides exact measurements of search error for floating-

point datasets and selected isovalues. Note that the search error of our method

is zero for byte and 16-bit datasets, because each possible maximum value is

covered by one quantization interval; thus, there is no quantization of the input

data at all. The search error of the Quantized search method has been measured

for various quantization levels ranging from (M,L)=(500,50) to (4000,400). As

can be seen, our method achieves much lower search error, even compared to the

Quantized search with M=4000 and L=400.

Additionally, a C++ pseudocode is provided in the appendix B of this thesis

to facilitate the implementation. Appendix A provides details about the test

datasets and the isosurfaces extracted using the method proposed.
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Figure 2.16: Comparison of the search times. The plots show that the search
times of our method are comparable with Quantized search with M=2000 and
L=200 quantization levels. As mentioned in Sec. 2.7.1 the run-time complexity
of our proposed method is O(K).
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Figure 2.17: Comparison of the search times (part 2).
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Figure 2.18: Comparison of the search times (part 2).

Figure 2.19: Plot of the search error versus number of quantization intervals for
floating-point datasets. The results show that the search error falls below 0.3%
for search structure with more than 216 quantization intervals, regardless of the
input dataset.
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Dataset / Isovalue Quantized search [%] Our method [%]
M=500 M = 2000 M = 4000
L=50 L=200 L=400

FiveJets / 253947.5 1.81 0.86 0.97 0.025
TeraShake / 0.015 6.25 3.05 1.25 0.04
TeraShake / 0.08 5.29 4.95 4.26 0.05

Isabel / 16.3 1.63 0.53 0.48 0.18
Isabel / 25.6 5.44 1.57 1.25 0.21

X2 − Y 2 / 3.5 3.61 2.77 1.01 0.17
X2 − Y 2 / 4.1 2.81 2.01 1.32 0.31

Table 2.4: Comparison of the search error for the Quantized search and our
method.





Chapter 3

Dynamic simulation mesh

3.1 Overview

The research presented in this chapter focuses on isosurface extraction from time-

varying datasets with dynamic geometry. This topic represents the second large

part of the research presented in this thesis.

During late 90 and beginning of this decade, the computational power allowed

for simulation of physical phenomena during certain period of time. Data that

came out of this time-varying simulations were in generally magnitude larger

than the static datasets from late 80 and early 90. Due to this fact, a demand for

highly optimized isosurface extraction methods emerged.

Most of the time-varying simulations use static simulation mesh to discretize

simulation domain. Most existing isosurface extraction methods targets this type

of data.

Recently a new type of simulations appeared, that requires simulation domain

to change its boundaries due to the moving parts or changing physical properties

inside the domain. Changing domain boundaries cause the mesh cells to change

their shape. This gradual mesh changing may end up in point where the shape of

cells impacts the simulation results up to an unacceptable level. At such a point

a change know as re-meshing has to take place. During re-meshing, the cells that

no longer satisfy given quality criteria are removed from the mesh, replaced by a

set of more suitable new cells or moved/re-shaped according to some simulation

factors.

Figure 3.1 shows an example of dynamic mesh from a simulation of combus-

tion process in an engine. The mesh changes its layout (number of cells and

their geometry) according to the vertical position of a moving piston. Dynamic

mesh provides better discretization of changing simulation domain and positively

influences overall accuracy of the solution.

37
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(a) time step 400 (b) time step 420 (c) time step 440

Figure 3.1: Example of dynamic mesh from a simulation of combustion process
in an engine. The simulation mesh is reconstructed according to the vertical
position of a moving piston. Layout of the simulation mesh is depicted for the
time steps 400, 420 and 440.

The phenomenon of changing mesh complicates the problem of isosurface ex-

traction. While the techniques for generating dynamic meshes are being rapidly

developed, there is a lack of suitable visualization methods for this type of

datasets.

The simplest solution to this problem is to treat each time step as a separate

static subset of data. This solution is common in most of today’s commercially

available visualization systems. Though, this solution is very stable and easy

to implement its drawbacks are high space a time requirements. Therefore, the

research presented in this chapter focuses on development of the visualization

techniques capable of interactive isosurface extraction from the datasets with

dynamic simulation mesh.

Two novel approaches to the problem described in the previous paragraph

will be introduced. Our first approach, focuses on geometry update between two

adjacent time steps. By calculating back the inter-time step cells connectivity,

the algorithm is able to smoothly visualize evolving isocontours even between

defined time steps. The second approach transforms initial data into Span space

and tries to minimize space requirement of the search structure allowing for fast

isosurface extraction from any defined time step at the time of request.

The rest of this chapter splits into three logical parts. The first part (sec-

tion 3.2) provides introduction into the theory and application of dynamic meshes.

The second part (sections 3.4 and 3.5) describes existing visualization techniques

for the time-varying datasets with static and dynamic simulation mesh In the

third part (sections 3.6) and 3.7) two newly proposed methods for isosurface

extraction from dynamic mesh data are introduced, followed by the practical test

on the real-world dynamic mesh datasets.
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3.2 Dynamic meshing

3.2.1 Introduction

Principle of dynamic meshing lies in the conditional update of generated initial

simulation mesh at each time step. Criteria and conditions of mesh quality and

mesh update depend strongly on particular application.

There are many kinds of conditional mesh update covered by the term dy-

namic meshing. In the simulations where the zones of frequent changes in data

values are moving, the fixed uniform grids are computationally inefficient. There-

fore, solution adaptive grids are often employed, refining the mesh right at the

place of the high data changes. This is called mesh adaptation [1].

Another technique uses a fixed number of grid points, and let the grid points

move in space or move entire grid. This kind of dynamic meshes is known as

the moving meshes. Thompson et al. [53] provides a good survey of the area.

The most general case is to rebuild the whole mesh at each time step. This

kind of mesh update, usually termed re-meshing, is used in simulations with

rapidly moving domain boundaries (figure 3.1). Re-meshing changes both geom-

etry and the number of cells during mesh update.

Many simulations, due to the complexity of simulated phenomenon, use com-

bination of the techniques mentioned above. Typically the computationally ex-

pensive re-meshing is required in the mesh zones around places of fluid-structure

interaction where mesh cells are deformed due to some dynamics of the structure.

In the places further away from the simulation domain boundaries the shape of

mesh cells is less influenced by the boundaries movement. In such place usually

the mesh movement/adaptation techniques are applied to increase quality of the

resulting mesh. Figure 3.2 shows an example of where combination of the mesh

update techniques is used.

Figure 3.2: Example of the simulation where two mesh update techniques are
used. Frequent mesh changes happen around moving rectangular body (inside
the ring), while small or none mesh nodes displacement is applied outside the
ring (picture from [15]).
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3.2.2 Arbitrary Lagrangian-Eulerian (ALE) methods

In the following paragraphs the term continuum stands for a moving fluid or

other material volume.

In the CFD applications the mesh generation process begins by choosing the

right kinematical description of moving and deforming continuum. This descrip-

tion essentially determines the relationship between a continuum and a mesh [15].

There are two classical descriptions of motion:

• Lagrangian description, in which each node of simulation mesh is attached

to a particle in a continuum. During simulation a mesh follows the con-

tinuum in its motion because mesh nodes remains attached to the same

particles. The main drawback of this method is its inability to follow large

deformations of simulation domain without frequent re-meshing.

• Eulerian description lefts a mesh fixed during the whole simulation. The

physical quantities associated with particles moving through the fixed re-

gion of space are examined. A particular value of observed quantity at a

mesh node at time t corresponds to the value of observed quantity at node

position in time t. Eulerian method handle the simulation domain distor-

tions relatively easy, but at the cost of lower resolution of flow details.

There are situations that would be difficult to analyze in either the La-

grangian reference frame or the Eulerian reference frame individually. Arbitrary

Lagrangian-Eulerian (ALE) description of continuum movement combines the

best features from both Eulerian and Lagrangian description. Figure 3.3 shows

example of mesh nodes and particles movement in Eulerian, Lagrangian and ALE

description. In the ALE description the nodes of simulation mesh may fully or

partially follow a movement of continuum or may be fixed like in the Eulerian

description. The movement of nodes in ALE description offer higher ability to

handle the mesh distortions caused by large deformations or movement of simu-

lation domain boundaries.

Lagrangian description
t

Eulerian description
t

ALE description
t

Mesh node
Continuum particle Particle motion

Node motion

Figure 3.3: 1D example of the Lagrangian, Eulerian and ALE mesh update with
respect to the actual particle motion (picture from [15]).
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3.2.3 Mesh adaptation

The main objective of the mesh adaptation is to optimize the simulation mesh

to achieve higher accuracy of the final solution, without excessive computational

load. The mesh adaptation strategies typically fall into one of the following three

categories:

• r-Refinement. During this type of mesh adaptation the number of mesh

cells remains the same. Typically, the mesh nodes are moved toward the

zones with higher solution gradient.

• h-Refinement. h-Refinement modifies the cells connectivity by refining the

cells in the zones with increasing solution gradient, while the cells in the

zones with decreasing computational gradient are merged. The simplest

strategy is based on the cells subdivision. The ”parent cell” is subdivided

into in generally N ”child cells”.

There are two basic types of h-Refinement: isotropic and anisotropic. In

isotropic refinement the new cells are added equally is all directions, while

anisotropic adds the cells only in some directions (figure 3.4).

• p-Refinement. in p-refinement the increased resolution is achieved by adap-

tive increasing of the order of accuracy of the polynomial in each cell.

Combinations of the listed refinements types are also possible. In practice the

combinations like hp-refinement or hr-refinement are often employed.

isotropic

anisotropic

(a) (b)

Figure 3.4: (a) Examples of isotropic and anisotropic cell refinement process for
2D rectangular and triangular shaped cells. (b) Example of the solution adaptive
grid. Picture from the ITAPS web page www.tstt-scidac.org.
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3.2.4 Mesh regularization

Objective of the mesh regularization is to keep the simulation mesh as regular

as possible by preventing excessive cells deformation caused by the boundaries

movement. Watching and enforcing given cells shape quality criteria decreases

numerical errors of the overall solution.

In generally the mesh regularization methods are classified depending on

whether the boundaries movement is known before the simulation or is unknown.

If the boundaries movement is prescribed before the simulation then the mesh

movement/update can be simply computed using interpolation techniques [23], [25], [41].

Interpolation of the mesh nodes velocity usually results into Eulerian description

close to the moving boundaries, while Lagrangian description applies to the nodes

far away from the moving boundaries. An example of the method that fits into

this category is Layering.

Layering, updates hexahedral meshes by dynamically adding the layers of

mesh cells near the moving boundaries (figure 3.5). Layer of the cells adjacent to

the simulation domain boundaries (layer j in figure 3.5) can be split or merged

with its adjacent layer (layer i in figure 3.5). When the layer j grows, its height

h is checked by the ideal cell height hideal condition [16]:

h < (1 + α)hideal (3.1)

If cell height h does not meet condition 3.1, the layer j is split according to

the user specified criteria and the new layer is build upon j. The mesh from

figure 3.1 has been created by the layering method.

If the boundaries movement is not known a priori a parts of moving surfaces

must be tracked during the simulation. In this case, usually the mesh nodes

movement fits Lagrangian description near the moving boundaries (i.e. cells are

bound and updated according along the boundary), while the internal nodes of

the mesh are Eulerian. This is case of numerical simulations described by for

example [39], [31], [24].

Moving boundary

layer  j

layer  i

h

Figure 3.5: Layering. Layer j grows on the layer i according to the movement
of domain boundaries. Height h of layer j is periodically checked until it fails to
meet condition 3.1 - then the layer j is split [53].
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The following two methodologies the Transfinite mapping and Spring smooth-

ing assume that no information abound boundaries movement is known a priori.

A short overview is given for both.

Transfinite mapping. This technique can be applied in the cases where bound-

aries are given by their exact geometric description. The general transfinite

method describes an approximate surface or volume at a nondenumerable num-

ber of points (thus the term transfinite mapping) [15]. The nodal coordinates

can be obtained explicitly once the boundaries have been discretized, thus the

procedure is computationally cheap (see [22], [17], [18]). Figure 3.6 shows an

example of the transfinite mesh.

Spring smoothing. Spring smoothing idealizes the connections between mesh

vertices as a network of interconnected springs. The initial connection of the

mesh nodes is considered as a stable state of the mesh. Deformation of the mesh

boundaries causes displacement of the vertices by the boundaries and generates

tension on the springs. The tension on the springs connected to i -th internal

mesh vertex is expressed as a force ~Fi in the i -th vertex:

~Fi =

ni
∑

j

kij(δ ~xj − δ ~xi) (3.2)

where ni is the number of vertices connected to vertex i, δ ~xj is a displacement

of neighbor nj against the vertex xi, kij is the spring constant (Equation 3.3).

So, the resulting force in the i -th vertex is proportional to the displacement

along the springs connected to the node i [16]. The position of the i -th vertex is

then adjusted according to the vector and magnitude of the ~Fi. This process of

force-relaxation on the mesh springs is applied to all internal mesh vertices.

kij =
1

√

~xi − ~xj

(3.3)

Figure 3.6: Example of a transfinite mesh created around circular shaped
body [35].
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3.2.5 Real-world applications of dynamic meshing

Four examples of the industrial applications of the dynamic meshing are discussed

and illustrated in this section. This is to give reader clearer idea on how the

techniques from the sections 3.2.3 and 3.2.4 are used in practice; and to support

the conclusion made in the rest of this thesis.

Amsden [2] describes dynamic meshing techniques used in KIVA-3V program

for simulation of vertical and canted valves of combustion engines. Especially

useful in these simulation are Layering and local refinement and coarsening of a

simulation mesh (figure 3.7). As stated by Amsden: ”This is not simply a matter

of generating the initial grid: The grid must dynamically change during the run

in response to the changing valve positions...”.

Figure 3.7: Mesh layout of the valve with piston down (left image) and up (right
image) [2].

Cavallo et al. [10] used dynamic mesh in the simulation of a flow through the

split-body valve. The mesh is adaptively refined and coarsened in the zones where

a moving inner part of the valve creates moving mesh boundaries (figure 3.8).

(a) 50% open (b) 70% open (c) 80% open

Figure 3.8: Layout of the dynamically updated simulation mesh and direct ren-
dering of the data from a split-body valve simulation (picture from [10]).
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(a) (b)

Figure 3.9: (a) Munition separation in various stages of the simulation. The
mesh has to dynamically adapt around falling object [50]. (b) Left column:
modeling the flow around dynamic canopies of the deployed parachute group.
Right column: Details of the dynamic mesh adapting around changing parachute
shape [51].

Snyder and Sverdrup [50] discuss advantages of dynamic meshing against

other methods for simulation of munition separation from under an aircraft wing.

Rapid movement of falling munition requires continual modification of the simu-

lation mesh (figure 3.9a).

Stein et al. [51] use dynamic simulation mesh to model aerodynamic around

changing parachute structure. Mesh moving methods along with local re-meshing

of the fluid domain are used in this simulation (figure 3.9b).
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3.3 Isosurface extraction from dynamic mesh data

3.3.1 Problems

Typically after the simulation mesh is generated, the cells correspondence is lost.

This fact defines the starting point for the isosurface extraction from dynamic

mesh data: a dataset with different mesh at each time step without any defined

relation of the cells along the time dimension.

There are two major problem that need to be addressed by the methods for

isosurface extraction from the datasets with dynamic simulation mesh:

1. Changing mesh geometry. The number of the cells changes between succes-

sive time steps. Geometry and position of the cells (and possibly topology

of the mesh) may also vary during the course of simulation.

2. Large data volumes. The datasets with dynamic mesh are usually a mag-

nitude larger when compared to those with static mesh.

Two problems listed above lead to the specific challenges that need to be

overcome by the efficient solution to the isosurface extraction from dynamic sim-

ulation mesh:

• Representation of the dynamic mesh

• Measuring similarity in the dynamic mesh

• Suitable search structure for active cells identification

Each of these three challenges is discussed in the following sections.

3.3.2 Representation of the dynamic mesh

The total number and position of the cells may vary between successive time

steps. Mathematically: for two successive time steps Ct and Ct+1 represented by

the disjunctive set of cells Ct = {ci, i = 1..n} and Ct+1 = {cj , j = 1..m} holds

that n 6= m.

To find the representation of the dynamic mesh for the total number of T

time steps means to find such mapping Λ that:

Λt : Ct −→ Ct+1, t ∈ (1, T − 1) (3.4)

Λ = Λ−1 (3.5)

Equality 3.5 states that the reconstruction of the cells correspondence should

give the same result whether being done along or against the time dimension.
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There are four variations of the Λ mapping above on the level of single cells:

1. The cell ci ∈ Ct does not map on any cell of Ct+1:

λ0 : ci −→ ∅ (3.6)

2. The cell ci ∈ Ct maps on exactly one cell cj ∈ Ct+1:

λ1 : ci −→ cj , ci ∈ Ct, cj ∈ Ct+1 (3.7)

3. The cell ci ∈ Ct maps on more than one cell from Ct+1:

λsplit : ci −→ {cj : cj ∈ Ct+1}, ci ∈ Ct (3.8)

4. The two or more cells ci ∈ Ct maps on one cell from Ct+1:

λmerge : {ci : ci ∈ Ct} −→ cj, cj ∈ Ct+1 (3.9)

3.3.3 Similarity in the dynamic mesh

Let’s represents a cell c as a couple c = (g, v), where g represents the cell’s

geometry and v defines cells values. A similarity δ of two cells c1 and c2 then

can be defined by the means of geometric and value similarities as a function

composition:

δ(c1, c2) : G ◦ V −→ R, δ ∈ (0, 1) (3.10)

G : (c1g, c2g) −→ R (3.11)

V : (c1v , c2v) −→ R (3.12)

δ=1 represents maximum similarity (c2 is an exact image of c1) and suggests

that only one λ mapping exists and it is λ1. δ=0 represents no similarity in

neither geometric nor value sense and suggests that only one lambda mapping

exists and it is λ0.

When generalizing δ similarity for the two mesh setups at successive time

steps, the minimal and maximal similarity ∆ ∈ (0, 1) of two meshes can be

defined as:

∆ = 0 ⇔ ∀c ∈ Ct ∃ λ0 : c −→ ∅ (3.13)

∆ = 1 ⇔ ∀c ∈ Ct ∃ λ1 : c −→ s ∈ Ct+1, δ(c, s) = 1 (3.14)

Between the similarity extremes defined above lies the average case when

0 < ∆ < 1. In this case certain amounts of all four cases of λ mappings exist

between the cells at adjacent time steps and the similarity δ of the mapped cells

is between 0 an 1.
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3.3.4 Geometric considerations

The purpose of this section is to analyze the impact of the mesh update methods

(section 3.2) on the mesh similarity ∆ at successive time steps. Such analysis

is necessary for the space and time efficient design of the isosurface extraction

method from the datasets with dynamic mesh. In the following, the cells geometry

changes during mesh adaptation and mesh regularization are discussed.

There are two ways in which the mesh adaptation is usually done (sec-

tion 3.2.3). The first way is to adaptively refine/coarse single cells in the areas

with high solution gradient. This process is equal to the set of the λsplit mappings

(refinement) or the set of λmerge mappings (coarsening). In any case, this changes

in the mesh are local and most of the cells in the mesh keep their position and

shape (equivalent to the Eulerian description of the mesh nodes).

The second typical way of performing the mesh adaptation is Lagrangian or

ALE nodes displacement toward the zones with high solution gradient. This

operation results in a set of λ1 mappings whereas the cells similarity δ in the area

of adaptation decreases proportionally to the velocity magnitude of the nodes

movement (figure 3.10a).

The situation is more complicated in the case of mesh regularization. Changes

in cells position, shape and total number strongly depend on the used mesh

update method and the speed of boundaries movement. Figure 3.10 shows each

of the three cases listed below (figure 3.10b).

• Typically the mesh zones near the moving boundaries (if the boundary

movement is not known a priori) features increased number of the λ0 map-

pings of the cells.

• Further away from the moving boundaries the severity of the mesh changes

decreases and λ0 mappings become rare. Important aspect of the cells

geometry change in the transition zone between Eulerian and Lagrangian

nodes movement is to keep the quality of the cells in order produce accurate

solution. Such quality enforcement may result in adding/removing the cells

which are due to their shape no longer computationally feasible (e.g. too

thin or too large). The result of the addition/removal of the cells is increased

number of the λsplit and λmerge mappings along with decreased similarity

δ of the mapped cells.

• The influence of the boundaries movement on the position and shape of the

cells decreases with the distance of these two elements. The update of cells

far away from the moving boundaries is small resulting in the λ1 mapping

and cell similarity δ close to 1.
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Mesh adaptation

Refinig (λsplit)

Coarsening (λmerge)

ALE displacement (λ1)

(a)

Mesh regularization

Moving boundary

λ0

λmerge

λ1      δ

x
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Figure 3.10: Illustration of the geometric changes in term of λ mapping in the
mesh during (a) mesh adaptation and (b) mesh regularization.

3.3.5 Identification of the active cells

Most of the existing techniques for active cells extraction from time-varying data

assume static simulation mesh. The methods exploit the fact that the correspon-

dence between the cells at successive time steps is implicitly given. In the sense

of the equations 3.6 to 3.9 it means that only λ1 mappings exist between the

cells at successive time step and these mapping are known a priori. Dynamic

mesh update however requires λ0, λsplit and λmerge mappings between the cells

at successive time step.

In the section 3.4 an overview of the existing methods for static simulation

mesh is provided, along with the conclusion that all of this methods fail when

applied on the dynamic mesh datasets. Thus, the two main challenges of the

suitable isosurface extraction method are: (1) how to find back lost correspon-

dence of the cells at the successive time steps and (2) to exploit geometric and

value coherence of the corresponding cells along the time dimension.

Keeping geometry of all mesh cells in the main memory could be very space-

consuming (if not impossible for large datasets). Thus, only the space efficient

structures holding the minimal amount of information necessary to identify the

active cells, could be in the main memory. Geometry of the active cells then can

be read from the disk using I/O efficient out-of-core techniques.



50 CHAPTER 3. DYNAMIC SIMULATION MESH

3.4 Existing methods for time-varying datasets with static mesh

The explanation of the principles of dynamic meshing provides a minimum knowl-

edge necessary for understanding of the requirements imposed on the methods for

isosurface extraction from such kind of datasets. This section provides overview

of the existing methods for isosurface extraction from time-varying data with

static simulation mesh. These methods provide a good starting point for the

further research presented later in this thesis.

3.4.1 Temporal Hierarchical Index Tree

For a time-varying field, a cell may has multiple corresponding points in the Span

space for the different time steps. To characterize a cell’s scalar variation over

time, the area over which the corresponding points spread in the Span space is

measured.

In Temporal Hierarchical Index Tree (THIT) [44] the cells are first assessed by

their temporal variation. Criterion for low temporal variation is that the points

corresponding to the same cell are located with 2x2 elements of lattice subdivision

of the Span space.

The Temporal Hierarchical Index Tree places the cells with low temporal

variation over time closer to the root of the tree. For other cells that do not

satisfy the criterion of low temporal variation the root time interval is divided

in half. Process continues recursively into each of two subtrees. The leaf nodes

contain cells with the highest scalar variation over time, so that the cells’ time-

specific extreme values are used.

Search index for each node of the THIT is created by the ISSUE [46] algo-

rithm. The min/max values in the nodes closer to the root node are used to refer

to a cell for more than one time step, which contributes to the lower overall size

of the tree structure.

Given an isosurface query at time step t, THIT is traversed and the nodes

that contain the active cells are visited. In the visited nodes the ISSUE search

for the active cells is performed.

This method accelerates isosurface extraction from time-varying data. How-

ever at each time step the entire data domain (time step) is loaded into the main

memory. The isosurface extraction process potentially needs to access all of the

time steps in the time-varying dataset, which may cause memory overhead.

3.4.2 Temporal Branch-on-Need Tree (T-BON)

The Temporal Branch-on-Need Tree (T-BON) [52] extends the three dimensional

Branch-On-Need Octree (BONO) [63] for dataset. The method focuses on mini-

mizing the number of I/O operations, by reading from disk only those portion of

search structure and data necessary to construct the current isosurface.
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First a BONO tree [63] is computed for each time step. Information about

general infrastructure of a BONO tree is saved to the disk only once for the entire

dataset. Then the extreme values for nodes are computed and stored separately

for each time step (figure 3.11).

During isosurface extraction a query in the form (isovalue, time step) is pro-

cessed by first testing if the iso-range of the root node of the BONO tree for

desired time step covers the isovalue. If so, root node’s children are tested for

iso-range as well. Once the process hits a leaf node which covers desired isovalue

the disk block which contains the node’s data (cell values) is added to the list.

Once this process is over, all of the blocks in the list are read from the disk at

once. This clearly minimizes the I/O access. However, T-BON does not exploit

any temporal coherence in the input data (except regular mesh geometry).

BONO t1
BONO t2

BONO tn

Time tree tnt1 -

Figure 3.11: T-BON method. A separate BONO tree is constructed for each time
step. Geometry of the tree structure is saved only once, while actual values are
stored separately for each time step.

3.4.3 Time-space partitioning tree

Time-space partitioning tree (TSP) [45] is the octree-based data structure, ef-

ficiently encoding coefficients of the spatial and temporal variation of the data.

TSP tree is a standard full octree that recursively subdivides a data volume until

a predefined minimum size of sub-volume is reached.

Each node of TSP tree stores a binary tree, recursively bisecting time-span

[0, t ] of the entire dataset until the unit time step is reached. For each node of

binary time-tree associated with each TSP tree node the coefficients of spatial

and temporal variations are computed from the original time-varying data.

During the volume-rendering-based visualization the partial images from sub-

volumes are cached for the current time step. When another time step is selected

a TSP tree is traversed. The test whether particular sub-volume’s spatial and

temporal variations exceeds the user-selected thresholds is performed, in case of

which this sub-volume is rendered again. Otherwise the cached rendered partial

image is used, speeding up the visualization process.
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TSP enables user to manage the trade-off between the visualization speed

and accuracy through the thresholds of spatial and temporal coherence. Similar

error-based isosurfacing method [59] is described later in this section. Figure 3.12

shows example of the TSP tree for datasets with three time steps.

[0,3]

t=0

[2,3][0,1]

t=3t=2t=1

Bi

Ni

Figure 3.12: TSP tree is a standard full octree (left side of the picture). Each
node of TSP tree has assigned a binary time tree (right side). In this case, the
dataset consists of four time steps (picture from [45]).

3.4.4 4D approach

In 1996 Weigle and Banks introduced recursive contour meshing [61] for decom-

posing n-dimensional simplex into a set of (n-1 )-dimensional simplices. Their

method also includes the 4D case. Based on this work, two years later, Weigle

and Banks published the method [62] for isosurface extraction from time-varying

scalar fields.

Basic idea of their 4D method [62] is to look at the time-varying data as to

be the one static 4D dataset. Each sample of the original dataset is identified by

three spatial coordinates x, y, z and one time coordinate t. This interpretation of

3D time-varying data together with the usual way of extracting isosurfaces from

the mesh composed of n-dimensional simplices (over n-dimensional data) leads

them to construction of a mesh of 4-simplices. To find an isosurface f(x,y,z,t) = 0,

they apply two constraints to the 4-simplicial mesh.

In the first pass a set of iso-volumes f1(x,y,z,t) = 0 are extracted by impos-

ing isovalue constraint over the 4-simplices. This results in a set of 3-simplices

intersected by the isosurfaces of the given isovalue.

To produce isosurface for the particular time step ct the second pass is done,

imposing the time constraint f2(x,y,z,t) = t - ct = 0. This produces the resulting

isosurface composed of 2-simplices for desired isovalue and time. Although this

method elegantly captures temporal coherence in a dataset, its high computa-

tional demands makes it impractical for the large datasets.
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Figure 3.13: (Left) Isosurface satisfying 2 constraints in 4-dimensional space. 3-
simplexes (wire frames) are the result of imposing first (isovalue) constraint. Ex-
tracted isosurface satisfies the second (time) constraint. (Right) A time-varying
2D contour sweeps out surface in (x, y, t)-space. The silhouette of the surface
(projected down the t-axis) forms the envelope of the swept curve. Analogy can
be used for (x, y, z) data plus time dimension (pictures from [62]).

3.4.5 Out-of-core visualization

Recent advances in computational performance enable scientists to perform large-

scale simulations, producing datasets which are usually a magnitude larger than

is a size of physical memory of workstation-class computers. Thus, various out-

of-core visualization approaches have been proposed. Principle of the out-of-core

approaches is to split original dataset into a range of files and using only those

of them needed for visual analysis.

The main issues solved when using out-of-core approach is to minimize the

number of disk I/O operations necessary to access required data. The out-of-core

methodology is usually used as the extension of the existing methods, enabling

them to work with large-scale dataset.

As an example of the out-of-core method the work of Reinhard et al. [40] is

briefly described. Their method is focused on fast out-of-core isosurface visual-

ization. The method first partitions the whole dataset into a range of small files.

Each file contains the data for one time step and a certain range of isovalues.

Efficient 28 bytes-per-voxel data format is used to store time-varying data in the

files, reducing the necessary disk-memory traffic. For visualization of the iso-

surfaces they use ray-tracing based method of Parker et al. [36]. The technique

has been implemented and tested on 32 processors SGI Origin 2000 computer,

with 12 GB memory. Computational power along with the out-of-core nature of

the technique allows visualization of the isosurfaces from such a large datasets at

interactive frame rates.
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3.4.6 Adaptive extraction of time-varying isosurfaces

Solution to the problem of fast isosurface extraction from large time-varying

datasets proposed by Gregorski et al. [20], utilizes adaptive mesh refinement

scheme and an out-of-core approach. The key of the adaptive extraction method

is the recursive mesh refinement scheme which splits initial volume into a set of

tetrahedra. These are further grouped into the diamonds organized in a hierar-

chical structure.

During the preprocessing phase an isosurface approximation error, minimum

and maximum data values enclosed by each diamond and normalized gradient

vector at each data point are computed. At runtime, the refinement process

creates a set of tetrahedra, describing domain around the isosurface, based on

user supplied isosurface approximation error, isovalue and time step.

If another time step is selected, the min, max and error tolerance values of

the visible diamonds are checked. If these fit the user-defined threshold values,

all of the tetrahedra within such diamonds are used for isosurface extraction.

Otherwise, the refinement process (sequence of splits and merges) is initiated.

When the isovalue is changed then the refinement process can start either

from the root diamond of a diamond hierarchy or from a current refinement of

a mesh, checking the min, max and error tolerance values of the diamonds. The

way in which the refinement process is initiated depends on the data difference

between time steps ti and ti+1.

3.4.7 Difference intervals

Waters et al. introduced the Difference intervals technique [59] for better utiliza-

tion of spatial and temporal coherence in a dataset. Static mesh with time-varying

scalar values is assumed. Input of the method are desired isovalue and time step.

Isosurface evolution is visualized by first computing the active and inactive cells

from an entire dataset (or only from a selected time span) and then visualized

using this information.

In a preprocessing time a set of active cells is first computed for the first

time step, using an arbitrary existing technique. Active / inactive cells are then

computed from this initial information for the next time step. Movement of cell in

the Span space is observed and classified into 11 cases (figure 3.14), which results

into designation of each cell with either add (cell became active) or remove (cell

became inactive) operation. Eventually, a cell can holds its status in a next time

step. The changes between ti and ti+1 are encoded into an operation set Di. In

a preprocessing step the operation sets are computed for all the adjacent pairs of

time steps. The technique for temporal compression of a sequence of operation

sets is also discussed.
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Figure 3.14: Examples of the add and remove operations. These operations
are then encoded in the operation sets and used for playback of the evolving
isosurfaces (picture from [59]).

Visualization utilizes the encoded operation sets to update only the necessary

portions of the isosurfaces according to the add or remove operation assigned to

each single cell. In this way an interactive playback of isosurface evolution of

constant isovalue q is possible in both forward and backward direction.

A point-based rendering technique is utilized for visualization of the isosur-

face. Once the desired isovalue is changed the preprocessing steps has to be done

with this new parameter again.

3.4.8 Persistent hyperoctree (PHOT)

Persistent hyperoctree (PHOT) [48] introduced by Shi and allows to extract a set

of the active cells and simultaneously only those of them that are visible from the

current point of view (relevant cells). By saving the time to extract occluded cells

and more efficient tree construction, significant speed up in isosurface extraction

is achieved.

By deleting the nodes which contain only the inactive cells in their sub-volume

and collapse the nodes that contain only one children in an octree a compact octree

is made (figure 3.15).

Each PHOT’s node has 8+k jumpers (k is a small constant) with associated

version number. Root node of hyperoctree represents an entire hyper volume and

has 16 children, each representing one hyperoctant.

To make hyperoctree persistent all the cells are collected and two copies are

held for each of them. One copy holds a cell’s min value as its key and the other

one holds the max value. The cells are sorted according to their key values in

ascending order and the list is traversed. If a cell has its min value as its key it

is stored in the current version of the tree, otherwise the new version is created

and the cell is stored into it. When traversing a PHOT, the root node with the

largest version number smaller or equal to isovalue is identified and its subtree is

traversed by following the latest jumpers no later than isovalues.

For 3D isosurface extraction by 4D slicing along the time axis a 4D cells are

constructed and indexed by their value ranges using PHOT. Given an isovalue

and time parameters the active and relevant cells are extracted, and then sliced

along the time axis to determine the isosurface at given time.
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Figure 3.15: Compact hyperoctree for the set of active cells (the black ones on
the left sub-figure). As can be seen from the right sub-figure the nodes which
contain only one children are collapsed (picture from [48]).

3.4.9 Conclusion

Previous sections review 8 major techniques for isosurface extraction from the

time-varying datasets with static mesh. The purpose of this section is to asses

usability of the described methods for the datasets with static simulation mesh.

In the following paragraphs a brief summary of the way in which the tech-

niques exploit data coherence along the time dimension is provided. Finally, the

conclusion from this summary is made.

In the Temporal Hierarchical Index Tree a cell’s temporal variation is mea-

sured as a displacement of its corresponding points (for the various time steps)

in the Span space. Since the correspondence of the mesh cells between adjacent

time steps is in generally unknown for a dynamic simulation mesh, such temporal

variation measurements in Span space can not be done, which is why the THI

tree is unusable for the datasets with dynamic simulation mesh.

T-BON method uses BONO tree for spatial indexing of the mesh cells. BONO

tree is created only once for the whole datasets, so the simulation grid has to

remain static during the course of simulation. Only the min/max values of the

cells are stored separately for each time step. Because the T-BON method does

not exploit any temporal coherence of the data between adjacent time steps, a

set of different BONO trees can be used to represent dynamic simulation mesh.

However, this idea implies for a large storage space (no spatial or value coherence

is taken into account) and moreover, BONO tree is suitable for regular grid

datasets rather than unstructured dynamic meshes.

TSP tree is a time supplement octree. The mesh cells are spatially indexed by

the standard octree. So, each leaf node of the TSP tree corresponds to a particular

mesh cell. A binary time tree stored at each TSP node keeps an information about

variation of the cells’ min/max values along the time dimension. Because of the

variable number of the mesh cells in the dynamic simulation mesh, a TSP tree

should has to be rebuilt at each time step to reflect the changes in mesh layout.
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4D approach of Weigle and Banks represents 3D time-varying dataset as the

4D static data. The original 3D gridded time-varying data are represented as a

mesh composed of 4D cells - the hypercubes. To construct a hypercube, a cor-

respondence of the two original 3D cells for each hypercube has to be known a

priori and must be 1:1. Thus the simulation mesh has to stay unchanged for

any two adjacent time steps. Moreover, high computational and space require-

ment of the method makes it impractical for rather large datasets with dynamic

simulation mesh.

In the Adaptive extraction approach of Gregorski et al. the original mesh

cells are grouped into a hierarchy of diamonds. Since the hierarchy of diamonds

does not change during the simulation, the simulation mesh is required to remain

static.

The Difference intervals method encodes the changes of a cell status in the

successive time steps as either add (cell become active) or remove (cell become

inactive) operation. In order to encode the status of all cells in the dataset the

assumption of static 1:1 correspondence between the cells at adjacent time steps

has to be satisfied. This requires the simulation mesh to keep the fixed number

of mesh cells during the whole simulation.

Persistent Hyperoctree (PHOT) is derived from the standard hyperoctree, in

which each node has 16 children (hyperoctants). Since the original 3D octants

are merged into the 4D hyperoctants a data grid is assumed to be regular and

fixed during the whole simulation.

Given the description of the way a spatial and values coherence is exploited in

the techniques listed above, it is apparent that all of them require static simulation

mesh with implicit cells correspondence. Thus a simple conclusion can be made

from the description above: The assumption of the static geometry prevents the

usage of these methods over the datasets with dynamic mesh.

The next section provides overview of the naive approach and one existing

method capable of active cells identification from the datasets with dynamic

mesh.
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3.5 Existing methods for time-varying datasets with dynamic mesh

3.5.1 Naive approach

As can be seen from the list of the techniques above, the active cells identification

in the dynamic meshes can not be simply solved by applying the existing tech-

niques designed for static simulation meshes. Thus a common approach to the

this problem today in most of the commercially available visualization systems is

to treat dynamic mesh as a sequence of the static meshes, which will be termed

in the following as the naive approach.

In the naive approach the search structure for active cells identification is built

independently for each time step (figure 3.16). Any of the existing techniques for

static simulation mesh described in the chapter 2 can be used (including the

newly proposed approach in the section 2.6).

The advantage of the naive approach is that it is simple to implement and

relatively stable. Obvious disadvantage is its high computation cost and long

time required to produce animation of the evolving isosurfaces. This is due to

the fact that spatial and temporal coherency in the datasets is not exploited in

any way.

Time tree

Figure 3.16: The naive approach. A search structure is built separately for each
time step. Resulting set of search structures is indexed by a simple two level
’time tree’.

3.5.2 A method for layered meshes

Doleisch et al. [14] introduced a method for visualization of datasets with dynamic

simulation mesh. Their method is designed specifically for the layered meshes

(chapter 3.2.4).

Continuous intervals are assumed in the dataset within which a number of

mesh cells and their correspondence between adjacent time steps remains static.
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Such intervals are called topology zones. Cells are not matched or tracked over

the topology zones borders (rezone points).

Within a topology zone a mesh layout is expected to change linearly, so the

shape of cells as well as the values associated with mesh vertices can be inter-

polated from the key geometries at the borders (or inside) of a topology zone.

Within a topology zone any of the existing methods for isosurface extraction from

static datasets can be used (chapter 2). Figure 3.17 illustrates the principle of

the method.

The assumption of the topology zones can be used only for a specific subset

of the datasets with dynamic simulation mesh. However, in generally, each time

step might represent a different topology zone.

Figure 3.17: Principle of the topology zones technique [14]. Each topology zone
consists of at least two key geometries. Borders of the topology zones are called
rezone points (picture from [14]).

3.6 Proposed method 1: Isolines extraction

3.6.1 Overview

The goal of this method is the extraction of isocontours from the two-dimensional

time-varying datasets with dynamic simulation mesh. Such datasets are often

used in engineering practice to investigate physical phenomena ’per slice’.

The key idea of the method is to find the mapping Λ (section 3.3.2) between

adjacent time step by establishing the edge-edge correspondence between the

mapped cells. Reconstruction of the mapping Λ is based on the data values simi-

larity and spatial distance of the potentially correspondent cell at two successive

time steps. The method is able to handle all four cases of the λ cell mappings

(equations 3.6 to 3.9) under the assumption of the low temporal distortion of the

data (reasonably high similarity δ of the mapped cells).
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The proposed method tries to reconstruct the cell-cell correspondence between

the time steps. Out of the computed correspondence a cell strips can be made

which follow the gradient of data values. In the following such cell strips will

be referred to as iso-components. In the case of 2D mesh, an iso-component is

basically a strip of neighboring triangles, covering certain range of the isovalues.

The iso-component has the inner (IE) and the outer (OE) envelope (figure 3.18).

Outer envelope

Iso-curve

Inner envelope
Edges sequence

Figure 3.18: Iso-component. In 2D mesh an iso-component is a strip of neigh-
boring triangles with inner and outer envelope.

Computed iso-components allow for reconstruction of the edge-edge corre-

spondence of the mapped cells. The edges mapping then can be directly used to

interpolate points of the isocontours for the desired isovalue.

A brute-force approach to the problem would be to first extract isocontours

for desired isovalue at two successive time steps and then map them to create

their smooth shape morphing. Disadvantage of the this brute-force solution is

that the isocurves and their morphing have to be recomputed every time the user

changes isovalue. Figure 3.19 compares the brute-force solution and principle of

our method.

(a) (b)

Figure 3.19: (a) The brute-force approach to the problem. (b) Our method.
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(a) (b) (c) (d)

Figure 3.20: Four stages of our method: (a) extraction of the iso-components,
(b) tracking of the iso-components between successive time steps, (c) mapping of
the inner envelopes vertices between corresponding components, (d) final edge-
to-edge mapping of the components.

3.6.2 Preprocessing

The preprocessing described in this section applies for a pair of two consecutive

time steps. Thus, it has to be done separately for each pair of time steps in

the datasets. Such separate computations suggest application of the parallel

computing with all its benefits.

The process of establishing edge-edge correspondence consists of the four fol-

lowing steps (figure 3.20):

1. Extraction of the iso-components

2. Tracking of the iso-components between adjacent time steps

3. Mapping of iso-components’ inner envelope vertices

4. Establishment of the edge-edge correspondence

Each step of these four is detailed below.

1. Extraction of the iso-components

Iso-component extraction begins by sorting a list L of all different isovalues from

both adjacent time steps. The values in L defines boundaries of intervals that are

used for further processing. The middle value of each interval within L is taken

as a seed value for iso-components extraction.

To locate unique set of seed cells for each iso-component a Contour tree (sec-

tion 2.3) is built. Once a seed cells are determined for each seed value the iso-

components are extracted using continuation method (figure 3.21).
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Figure 3.21: Iso-components extraction. All the different isovalues from two
adjacent time steps are merged and sorted into one list L. Iso-components are
then extracted using continuation method and middle values of the intervals in
the list L.

2. Tracking of the iso-components between adjacent time steps

The feature tracking techniques [43] are employed to find the best matching

successors for each extracted iso-components. In our implementation, the area

overlapping test is used [49]. Depending on the application, more complex feature

tracking techniques can be used without disturbing the overall concept of our

method.

3. Mapping of iso-components’ inner envelope vertices

Once the successors of the iso-components are determined, the process of mapping

of their IE vertices takes place. This mapping provides a guide to the final edge-

to-edge mapping.

Process of IE vertices mapping is based on the notion of candidate area (fig-

ure 3.22a), which is defined for each mapped IE vertex. Successor of the vertex

has to lie within this area. Employing this principle, the closest from such re-

stricted set of candidate vertices is chosen as the successful one. During the

mapping process the projections (Fig. 3.22b) of vertices from successive time

slices are considered rather than computing with the real space-time elements.

p
q

r
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(a)

S

S’

S’

q

q’
C(q)

C’(q)
IE

IE’

(b)

Figure 3.22: (a) Candidate area of the vertex q (shadow region). (b) Projection
of slicechord S.
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The process of the IE vertices mapping is essentially a problem of linear

morphing of two polygons. Our solution to this polygon morphing problem is

inspired by the approach of Bajaj et al. [5]. They assume only closed polygons and

use a complex set of orientation rules for mapped polygons, which is not possible

in our case, because we also have to deal with open polygons (iso-component may

be open, so its inner envelope is also an open polyline). Thus, our handling of the

candidate areas follow slightly different rules than originally proposed by Bajaj.

Details and all special cases treaded can be found in [37].

4. Establishment of the edge-edge correspondence

Connecting the IE vertices of successive iso-components by the slicechords enables

us to map the edges of related iso-components. Edges from connected vertices

are mapped. By this way a list of each extracted iso-component edges mapping

onto the edges of its successive iso-components are build up. Extracted lists of

iso-intervals, iso-components and edge-to-edge mapping are saved and can be

used anytime for the final visualization.

3.6.3 Visualization

Having determined the set of iso-components for each isointerval and a set of

edge-to-edge mapping for each iso-component, resulting isocontour evolution can

be visualized.

During the visualization, queries of the form query(isovalue, time) are ac-

cepted and processed. First the pair of adjacent time slices covering the queried

time is selected. Next, the iso-component covering the queried isovalue is selected

from the earlier time-slice. As depicted by the figure 3.23, a list of selected iso-

components edges is traversed and the points C and E are interpolated out of

the point-pairs A-B and D-F according to the desired isovalue. Point R is then

interpolated out of C-E according to the desired time. Extracted R points are

then connected by line, approximating resulting isocontour.

When the time value is changed by user during interactive exploration only

the new set of R points has to be interpolated out and a resulting isocontour is

assembled from them. In the worse case when the new time value does not fit

into the time interval spanned by the currently selected pair of time slices a new

proper pair of time slices is selected.

When the isovalue is changed and fits into the range of isovalues covered by

the currently selected iso-component, an interpolation scheme described in the

previous paragraph is done, otherwise a new proper iso-component is selected.
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Figure 3.23: Visualization. First the vertices C and E are interpolated out at the
edges of successive iso-components based on selected isovalue. User-selected time
rules the interpolation of point R (on the connection of C and E).

3.6.4 3D case

In the case of 3D time-varying simulation mesh, the overall principle of this

method can be used; however some of its aspects have to be treated in a slightly

different manner.

3D version of 2D iso-components are iso-volumes extracted by the continua-

tion method. Such iso-volume has only one envelope composed of 2D triangular

mesh. This fact represents the complication: how to map the tetrahedral cells

inside the iso-volume? Even if these geometric obstacles would be overcome, it

is computationally not feasible to implement this method for 3D datasets.

3.6.5 Tests

The method has been implemented in C# and tests run on Intel 3.2GHz work-

station with 2GB of RAM. Two 2D datasets were used for testing.

The Airfoil dataset is the result of simulation of low-speed air wave hitting

the leading edge of the flexible airfoil. Scalar values associated with the mesh

vertices are the velocity magnitudes of advancing air wave. The dataset consists

of 200 time steps each represented by the triangular adaptive mesh with 16 000

to 17 000 vertices per time step. Simulation mesh adapts to the changing shape

of flexible airfoil at each simulation step. For the test we took every 10th time

slice and computed the isocontour evolution in between them by our method.

Figure 3.24 shows original data from the Airfoil dataset, dynamic mesh and

evolving isocontours.

The Payload dataset originate from CFD simulation of payload release from

under an aircraft wing. The dataset consists of 500 time steps from which every

10th time step has been saved and used as an input of our method. Number of

the samples at each time step vary between 60 000 and 62 000. Simulation mesh

adapts itself around falling payload as the simulation time proceeds.
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Table 3.1 summarizes the total preprocessing times for both 2D datasets and

provides extraction times for the selected isovalues and time steps.

Dataset
Airfoil Payload

Preprocessing time [minutes] 13.3 42.6
Extraction times

isovalue time step
0.1 10 0.2133 0.5668
0.5 50 0.1158 0.7885
0.6 180 0.1288 0.6841
0.85 230 - 0.6382
1.2 240 - 0.8833

Table 3.1: Performance results for both 2D dataset. Extraction times were mea-
sured for various isovalues and time steps.

Figure 3.25 shows the GUI of the application, implementing our isocontour ex-

traction method. Isocontours rendered in the visualization window in figure 3.25

are extracted from the Payload dataset.

(a) (b) (c)

(d) (e) (f)

Figure 3.24: Airfoil dataset. (a,b) Input data (speed magnitude) at the time steps
10 and 100, (c) dynamic adaptive mesh (time step 80), (d) isocontour evolution
computed by the proposed method between the time steps 30 and 50, (e)-(f)
extracted isocontours at the time steps 74 and 186.
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Figure 3.25: Isocontours extracted from payload-release simulation (iso-
value=0.533, time step: 395). Blue rendered original data at the background
(speed magnitude values) are just for illustration and comparison purposes.

3.7 Proposed method 2: Value-space approach

3.7.1 Overview

Z-Diamonds [38] is simple and efficient algorithm for extraction of the isosurfaces

from the datasets with dynamic mesh. Z-Diamonds method works over triangular

or tetrahedral meshes.

The method makes no assumption about the way a simulation mesh changes

between adjacent time steps. We also do not attempt to reconstruct the evolving

isosurfaces in between time steps defined in a dataset. Figure 3.27 outlines the

principle of the Z-Diamonds method.

3.7.2 Preprocessing

Since a simulation mesh dynamically changes, we do not try to match the original

mesh cells between adjacent time steps. Instead the mesh at each time step is

preprocessed into a list of diamonds. Each diamond is composed of two neigh-

boring simplicial cells, sharing a common face (i.e. two triangles in 2D or two

tetrahedra in 3D, figure 3.26). Diamonds are not matched or tracked between

adjacent time steps.

Pairing of the tetrahedral mesh cells into the diamonds has several advan-

tages over the simple tetrahedral representation of a mesh. A single diamond

is represented by five vertices and five scalar values, in comparison to the eight

vertices with associated scalar values necessary to represent two separate tetra-

hedra. During the visualization, geometry of the diamonds is loaded from disk.
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The ”five-vertex” representation of the diamonds reduces the I/O traffic during

loading.
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Figure 3.26: Each diamond is composed of two neighboring simplicial mesh cells,
sharing a common face. Reference diamonds are depicted for 2D (a) and 3D (b)
simulation mesh.

In our algorithm, the diamonds for each time step are built and stored into

2D table (right side of the figure 3.27). To keep the diamonds with similar values

close to each other in the table, we sort the diamonds by their minimum value

and then store them one-by-one row-by-row. The result of the diamonds building

process is a set 2D tables, one for each time step. Independent processing of the

data for each time step suggests usage of the parallel computing.

Once the diamond building has finished, construction of a search structure for

identification of active diamonds takes place. This search structure is the TSP

tree of Shen et al. [45]. Instead of dividing volume, here we index a set of 2D

tables spread along the time dimension. Thus, in our algorithm the TSP tree is

quadtree rather than octree for each time step. So, each leaf node (x,y) of TSP

tree corresponds to the elements at (x,y) in the diamond tables. TSP tree holds

only the min/max values of the diamonds. Geometry of the diamonds is stored

in the files, separately for each time step.

Ti
m

e

D
ia

m
o

n
d

 t
a

b
le

s

Common 
TSP tree

1

43

2

Figure 3.27: Outline of the principle of the Z-Diamonds method. Original mesh
cells are paired into diamonds. Min/max and ID values of the diamonds are then
organized in the diamond tables (one for each time step). A common TSP tree
is used to index the diamonds stored in the diamond tables for all time steps.
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3.7.3 Active cells identification

During the visualization phase the queries in the form (isovalue, time step) are

processed. IDs of the active diamonds are extracted by traversing a common TSP

tree using specified isovalue and time step. Geometry of the active diamonds

is then dynamically loaded from a disk in an out-of-core fashion. Isosurface

geometry can be extracted from the loaded active diamonds using techniques like

Marching tetrahedra [54] or Marching Diamonds [3].

Since we extract isosurfaces only at the discrete time steps we do not deal

with the topological changes of the isosurfaces at intermediate time steps. We

assume that the datasets processed by our method are sampled sufficiently along

the time dimension.

3.7.4 Optimizations

Optimized diamonds building

In the preprocessing phase of the Z-Diamonds method, the neighboring tetrahedra

are paired into diamonds. When looking for a suitable neighbor of tetrahedron T0

to create a new diamond, that neighbor of T0 is chosen, whose additional vertex

has scalar value closest to those of T0. In this way, there is in average 13% of

diamonds left, which contain only one tetrahedra intersected be the isosurface.

The second tetrahedron is loaded from disk, but is left unused. This increases

the amount of unused data loaded during visualization.

The way in which diamonds are built can be optimized by pairing those

diamonds which have higher probability that the range of isosurfaces intersecting

one of them will continue to the other one (i.e. following the gradient of data).

Optimized algorithm has the following four steps:

1. Interpolate gradient ∇BT0
= 1

3

∑3
i=1 ∇vi at barycenter BT0

of T0 (Fig. 3.28a).

2. Construct the plane P with normal vector ∇BT0
, passing through the

barycenter BT0
.

3. For each neighbor Ti of T0, do compute angle αi between the plane P and

line BT0
, xi.

4. Create the new 3D diamond from tetrahedron T0 and its neighbor Tn, which

has not been assigned to some other diamond yet, and which satisfies con-

dition αn = min(αi), i = 1,2,3,4.
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Figure 3.28: (a) Optimized pairing of the triangular cells in 2D mesh. That
neighboring triangle of T0 is chosen which satisfies condition αn = min(αi), i =
1,2,3,4. (b, c) A set of active diamonds for one isosurface. Active diamonds are
rendered with (left) and without (right) optimized diamond building.

I/O optimized loading of diamonds

The process of loading geometry of diamonds consumes significant part of

the processing time of each isosurface query (in average 70 to 80%). Thus, we

propose optimized way of loading diamonds.

The optimization of geometry loading is achieved by the usual out-of-core

practice of reading block of diamonds at once instead of separate access for each

diamond. Once read, geometry of the diamonds is cached at the corresponding

leaf nodes of the common TSP tree. A flag is kept at each TSP leaf node,

indicating pre-loaded geometry, which can be used during visualization without

additional disk access.

As mentioned before, the diamonds are sorted by their min value before their

geometry is stored into files. This increases probability that cached diamonds

are intersected by the same isosurface. Thus, usage of the pre-loaded and cached

diamonds is maximized during isosurface visualization.
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3.7.5 Tests

Original Z-Diamonds method and proposed optimizations have been implemented

in C#.NET. The tests were run on Intel 2.4 GHz workstation with 2GB of RAM

and ATI FireGL 5200 graphics adapter.

Table 3.2 provides overview of the datasets used for tests as well as the prepro-

cessing times. Table 3.3 draws the isosurfaces extraction times during interactive

visualization. Query execution times stated in the table 3.3 include time for active

cells extraction by traversing a TSP tree, loading of active diamonds geometry

from disk and extraction of isosurface geometry from loaded active diamonds.

Dataset # of time # of cells Dataset Preprocessing Size of
steps per size time preprocessed

time step data
Motor 148 40k to 115k 3.2GB 86mins 32s 1.2GB

Wind tunnel 700 400k to 430k 7.5GB 120mins 8s 3.4GB

Table 3.2: Datasets used for during the tests of the Z-Diamonds method with the
preprocessing times and sizes of the preprocessed datasets.

Dataset / isovalue / time step Extraction # of active # of triangles
time diamonds on the isosurface

Motor / 391.124 / 30 612ms 15,900 36,768
Motor / 392.345 / 130 514ms 6,741 15,398

Wind tunnel / 8.612 / 451 289ms 3,133 4,932

Table 3.3: Extraction times, numbers of active diamonds and numbers of triangles
on the resulting isosurfaces for selected isovalues and time steps for Motor and
Wind tunnel datasets.

Optimizations

Figure 3.29 shows the comparison of extraction times before and after pro-

posed optimizations of the Z-Diamonds method for the first 100 time steps of the

motor data set. Table 3.4 provides precise measurements of extraction times of

the isosurfaces for selected isovalues and time steps for both data sets. The over-

all speedup of the Z-Diamonds method after the proposed optimizations ranges

from 63 to 74%. Figure 3.30 shows isosurfaces extracted using the Z-Diamonds

method.
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Figure 3.29: Extraction times for the first 100 time steps of the Motor data set.

Data set # of Extr. time Extr. time speed-up
isoval. / time step active original optim. [%]

diamonds Z-Diamonds Z-Diamonds

motor
341.14 / 9 16,296 682 ms 212 ms 69%
392.2 / 12 10,102 412 ms 153 ms 63%
512.9 / 63 23,395 817 ms 238 ms 71%
wind tun.
80.6 / 120 10,208 587 ms 147 ms 74%
96.5 / 213 8,296 496 ms 131 ms 73%

Table 3.4: Comparison of the extraction times of the original and optimized
Z-Diamonds method for the Motor data set with calculated overall speedup in
%.
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(a) Motor 3D (Temperature), Iso-
value 341.14, time step 9

(b) Motor 3D (Temperature), Iso-
value 391.142, time step 30

(c) Motor 3D (Temperature), Iso-
value 512.9, time step 63

(d) Motor 3D (Temperature), Iso-
value 392.345, time step 130

(e) Wind tunnel, Isovalue 8.612, time step
451

Figure 3.30: Isosurfaces for selected isovalues and time steps extracted by the
Z-Diamonds method.
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Conclusions and future work

In this thesis we have presented our research made in the field of Isosurface

Extraction. The focus has been put on two specific types of data-sets: static

data-sets and time-varying data-sets with dynamic simulation meshes.

State of the art methods for Isosurface Extraction from static data-sets have

been presented and evaluated in this work. Based on this evaluation, it has been

concluded that advancements can be done in the space and time efficiency of the

presented methods.

The method presented in this work (section 2.6) uses transformation of the

initial static data into an alternative 1D space. Search structure for active cells

identification is built over transformed data. Active cells are identified directly

in the alternative space.

The proposed transformation of the input static data shortens preprocess-

ing time considerably when compared to the best times achieved by the existing

state of the art methods. The space requirements and extraction times of the

proposed method are comparable to, or better than, the best existing space ef-

ficient method, while the search error of our method is considerably lower. The

relative simplicity of the method proposed allows its easy implementation. The

Isosurface Extraction from time-varying data-sets with dynamic meshes is the

focus of the second part of this work. Dynamic meshing has numerous applica-

tions in engineering practice. While the methods for dynamic mesh generation

were studied intensively during the ’80s and ’90s, there is still lack of suitable

visualization techniques.

We have studied the principles and applications of dynamic mesh genera-

tion. This basic knowledge of the problematics is necessary to understand the

requirements of suitable visualization methods.

Two principally different methods have been proposed for Isosurface Extrac-

tion from dynamic mesh data. Both presented methods address the same basic

73
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problem: to find back lost correspondence of the mesh cells between the different

mesh setups at consecutive time steps.

The first approach investigates geometrical and value similarity of the cells

from adjacent time steps. Based on this, the correspondence of the cells is estab-

lished. The method works for 2D data-sets with dynamic meshes. The biggest

disadvantage of our first approach is complicated and long preprocessing before

actual isocontours can be extracted. Therefore, our second proposed method tar-

gets the same goal of establishing the inter-time step cell correspondence but with

shorter preprocessing, better algorithmic complexity and easier implementation.

The solution first transforms the cells in space efficient form into the min-max

space. The correspondence is then calculated based on the cells data similarity,

rather than on their geometric position. Once the cell correspondence is estab-

lished, the search structure is built, exploiting temporal coherence of the input

data.

Both proposed methods represent one of the first Isosurface Extraction meth-

ods published, which focus specifically on the data-sets with dynamic meshes.

As we have observed from the reviews of the work presented, as well as after the

cooperation with the engineers from practice, the need for such methods is high.

However, very little research in the area has been done yet. Therefore, the work

presented in this thesis, along with the very few existing methods, form the basis

of a completely new chapter in the Isosurface Extraction.

The first topic that we would like to investigate in further research is metrics

for measurement of the dynamic mesh similarity suitable for simulation data-sets.

Out of this it should be possible to describe a model of the dynamic mesh, which

will allow for space and time efficient construction/visualization of the evolving

isosurfaces.



Appendix A

Test datasets and isosurfaces

All isosurfaces shown in this appendix were extracted using the newly proposed

methods from this thesis.

Skull - static regular dataset, 256x256x256 cells, byte values

Rotational C-arm x-ray scan of phantom of a human skull. Siemens Medical

Solutions, Forchheim, Germany. www.volvis.org

Figure A.1: Skull dataset, isovalue 60.

CT-head - static regular dataset, 256x256x113 cells, 16-bit integer values

CT study of a cadaver head. Data courtesy of North Carolina Memorial Hospital.

Downloaded from Stanford volume data archive.

Figure A.2: CT-head dataset. Isovalues: gold 850, red 1994 and gray 850.
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Vertebra - static regular dataset, 512x512x512 cells, 16-bit integer values

Rotational angiography scan of a head with an aneurysm. Michael Meiner, Via-

tronix Inc., USA.

Figure A.3: Vertebra dataset. Isovalue 1000.

FiveJets - time-varying dataset (static mesh), 128x128x128 cells, 32-bit float

2000 time steps. Energy values datasets of five jets entering rectangular region.

Downloaded from the Volume data repository of UC Davis.

Figure A.4: FiveJets dataset. Isovalues: (left) time step=364 orange 250235,
gray 253290, (right) time step=1763 red 254052 gray 251200.

Isabel - time-varying dataset (static mesh), 500x500x100 cells, 32-bit float

48 time steps. National Center for Atmospheric Research, USA.

Figure A.5: Isabel dataset. Temperature isovalue 22 at (a) time step 4 (b) time
step 8.
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Terashake - time-varying dataset (static mesh), 750x375x100 cells, 32-bit float.

227 time steps. Magnitude 7.7 earthquake along San Andreas fault, California.

Data courtesy of San Diego Supercomputer Center, USA.

Figure A.6: Terashake dataset. Velocity magnitude isovalue 0.052.

Motor3D - time-varying dataset (dynamic mesh), 40000 - 115000 cells, 32-bit

float. 148 time steps. Total size of the dataset is 3.2GB. Simulation of the

combustion process. Data courtesy of Randy P. Hessel from Engine Research

Center, University of Wisconsin-Madison, USA.

Figure A.7: Motor3D dataset. (Top row) AMU isosurfaces for isovalue 0.0234 at
the time steps (from left to right) 6, 19 and 40. (Bottom row) Isosurfaces of the
temperature 340 degrees Celsius at the time steps 113, 135 and 148.
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WindTunel - time-varying dataset (dynamic mesh), 400 000 to 430 000 cells,

32-bit float. 700 time steps. Total size of the dataset is 7.5GB. Simulation of

the debris in the flow. Data courtesy of New Technologies Research Center,

University of Wes Bohemia, Czech Republic.

Figure A.8: WindTunel dataset. Isosurfaces of (left) Total pressure 12.711 at
time step 688, (right) wind velocity magnitude around debris isovalue 17 at time
step 28.



Appendix B

Implementation details

The pseudo-C++ code is provided in this appendix to facilitate implementa-

tion of our method for isosurface extraction from static datasets proposed in the

section 2.6.

A C++ class Helix implements the construction and extraction algorithms.

Helix structure is internally stored as a single list of helix records.

struct Record {

float t;

int[] ids;

};

Additionally, the class Helix contains the following member variables, which aid

in the construction and the extraction process.

Record[] helix; // list of records (helix)

int n_rev = 256; // total number of helix revolutions

int n_rec = 0; // counter of helix records

int[] dict; // search dictionary

// delta t per one helix revolution

float t_rev = 1.0 / n_rev;

Construction

Method construct takes a list and the number of cells as its input param-

eters. We assume that the functions sort_by_t() and floor() (returns the

largest integer less than or equal to the specified number) are provided. Function

compute_t() computes helix parameter t of a given cell according to the Eq. 2.2

to 2.4.
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void Helix::construct( Cell* cells, int N ) {

int rev = 0; // index of current revolution

int prev = 0; // index of prev. revolution

// Compute t for each cell

foreach ( Cell c in cells )

compute_t(c);

sort_by_t( cells, N );

// Create search dictionary

dict = new int[n_rev + 1];

for (int i = 0; i < (n_rev+1); i++)

dict[i] = -1;

// Construct helix

for (int i = 0; i < N; ) {

Record r = new Record();

r.t = cells[i].t;

// Store all consecutive cells with the same

// parameter t into record r.

while ( i < N && cells[i].t == c.t )

r.ids->add(cells[i++].id);

// Update search dictionary

rev = floor( r.t / t_rev );

if (rev != prev)

dict[rev] = n_rec;

helix->add(r);

n_rec++;

prev = rev;

}

}

Extraction

Desired isovalue q is the only parameter of the extraction method. Helix revolu-

tions are traversed in top-bottom order in the outer loop using search dictionary.

Active cells from current revolution are collected by the function add_cells in

the inner loop.

void Helix::search( float q ) {

int rev = n_rev + 1; // current revolution

int rec; // index of current helix record

float limit; // t limit for current revolution

float t_0 = ((q - min_min) / (min_max - min_min)) * t_rev;

float t_q = (q - max_min) / (max_max - max_min);

int final = ( t_q / t_rev ) + 1;
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while ( rev > final && rev > 0 ) {

rec = dict[--rev];

if ( rec >= 0 ) {

limit = ( rev * t_rev ) + t_0;

while ( helix[rec].t < limit && rec < n_rec )

isosurface->add_cells( helix[rec++].ids );

}

}

}





Appendix C

Practical applications and review

Within the scope of the research presented in this thesis the Z-Diamonds method

(section 3.7) has been used and validated by the engineers in practice. During two

months of cooperation the method has been applied on the 2D and 3D transient

CFD datasets from the combustion simulation generated by Dr. Randy Hessel

from the Engine Research Center, University of Wisconsin-Madison, USA.

Various pictures and movies of the evolving isosurface of the temperature,

pressure and AMU (total viscosity) have been produced. Accuracy and quality

of the produced isosurfaces have been validated and assessed by Dr. Hessel. His

review is provided in this appendix.
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List of author’s publications

Related publications

1. Petrik S., Skala V.: Space and time efficient isosurface extraction, Computers

and Graphics, 32(6):704-710, 2008 [Impact factor 0.787].

2. Petrik S., Skala V.: Z-Diamonds: A Fast Isosurface Extraction Algorithm for

Dynamic Meshes. Proceedings of the IADIS Computer Graphics and Visualiza-

tion 2007, Lisbon, Portugal, pp. 67-74, 2007, ISBN 978-972-8924-39-3.

3. Petrik S., Skala V.: Isocontouring in Time-varying Meshes. Proceedings of

SCCG 2007, Budmerice, Slovakia, pp. 216-223, 2007, ISBN 978-80-223-2292-8.

Also published by ACM Press.
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Technical Reports

7. Petrik S., Skala V.: Isosurface extraction in time-varying data (State of the

Art and Future Research), Technical Report No. DCSE/TR-2007-06, University

of West Bohemia in Plzen, Czech Republic, June 2007.

8. Petrik S., Skala V.: Report on Videoconferencing Systems, Technical Report

No. DCSE/TR-2006-04, University of West Bohemia in Plzen, Czech Republic,

June 2006. Updated on May 18, 2007.

Project assignment

• 2006 - present: VIRTUAL - Virtual Research-Educational Center of Com-

puter Graphics and Visualization, MSMT Czech Rep. No: 2C 06002,

http://virtual.zcu.cz,

• 2005 / 2006: 3DTV - Integrated Three-Dimensional Television - Capture,

Transmission and Display, FP6-2003-IST-2, Network of Excellence,

No:511568, http://3DTV.zcu.cz,

• 2005 / 2006: INTUITION - Network of Excellence on VIrtual Reality aNd

VirTUal Environments ApplIcaTIONs for Future Workspaces, FP6-2003-

IST-2, No:507248-2, http://intuition.zcu.cz.
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