

University of West Bohemia in Pilsen

Faculty of Applied Sciences

Department of Computer Science and Engineering

DIPLOMA THESIS

Pilsen, 2003 Ivo Hanák

University of West Bohemia in Pilsen
Faculty of Applied Sciences

Department of Computer Science and Engineering

Diploma Thesis

Pilsen, 2003 Ivo Hanák

Graphical Interface OpenGL for
C# in scope of ROTOR project

Abstract

Abstract

Graphical Interface OpenGL for C# in scope of ROTOR project
Few years back Microsoft released first release version of runtime environment called
.NET. However, the default library that is contained in .NET lacks classes for high
performance graphical output. OpenGL is worldwide known standard for hardware
supported high-performance graphical output. The goal of this works is to connect these
two together and provide comfortable environment for developer including improved
debugging capabilities. Documentation contains brief introduction into .NET runtime
environment, OpenGL, and languages used for both development and testing purposes. It
describes problems that need to be solved in order to allow cooperation of OpenGL and
.NET. It also contains list of possible solutions and explains which solution and why it was
chosen. Finally, measurement of performance in comparison with existing solution is
provided. It also contains set of examples that uses results of this work. Even thought this
work does not provide complete OpenGL interface (i.e., all version and all add-ons such as
GL Extensions), it describes possible approach, which forms a solution that allows use of
OpenGL in .NET environment

Contents

i

Contents

1 Introduction..1

1.1 The Document..2

1.2 Text Formatting Conventions ..3

2 .NET Framework ...4

2.1 Common Type System...5
2.1.1 Value and Reference Types ...6
2.1.2 Boxing and Unboxing..6
2.1.3 Identity and Equality..6
2.1.4 Location and Type Conversion..7
2.1.5 Compound Types...7
2.1.6 Methods ...7
2.1.7 Enumeration Types ..8
2.1.8 Names ..8
2.1.9 Scopes ..8
2.1.10 Visibility and Accessibility..9
2.1.11 Contract and Signatures ...10
2.1.12 Type Safety and Verification...11
2.1.13 Type Definition..11
2.1.14 Type Members ...13
2.1.15 Inheritance ...14

2.2 Common Language Specification..16
2.2.1 CLS Compliance..16

2.3 Common Intermediate Language...16

2.4 Virtual Executional System ...18
2.4.1 Built-in Types ..18
2.4.2 Pointers and References...18
2.4.3 Compound Value Types and Value Types ..19
2.4.4 Machine State and Evaluation Stack ...19

2.5 Memory Management..19
2.5.1 Garbage Collection ..19
2.5.2 Finalizers..20

Contents

ii

2.5.3 Optimization of Performance...21
2.6 Exception Handling ...21

2.7 Assemblies ...23
2.7.1 Manifest ...23
2.7.2 Versioning..24

2.8 Security ..24

2.9 Multithreading ...25
2.9.1 Thread Pool..26
2.9.2 Multithreading vs. Garbage Collection..26

2.10 Attributes ...27

2.11 Non-managed Code Interoperability ...27

3 Programming Languages for .NET..29

3.1 C#...29
3.1.1 Class and Class Members ..30
3.1.2 Example ...31

3.2 C++ Managed Extension ...31
3.2.1 Example ...33

4 Graphical Interfaces...34

4.1 .NET Framework Library ..34

4.2 OpenGL ...34
4.2.1 2D Object Support ...35
4.2.2 Basic Features ..35
4.2.3 Interface ...36
4.2.4 Inside of OpenGL ..37
4.2.5 Extensions and Other Libraries..37

5 The Goal ..38

6 Introduction to Porting and Difficulties...40

6.1 Porting × Wrapping ...40
6.1.1 Porting of Source Code..40
6.1.2 Wrapping of an Interface ...41

6.2 Difficulties ...42
6.2.1 Data Sharing ..42
6.2.2 Callbacks..43
6.2.3 Void Pointers ...44

7 Existing Solutions ..45

7.1 CsGL..45

7.2 GLSharp...47

8 Solution..48

8.1 Interface Structure..48
8.1.1 System Classes...49

Contents

iii

8.1.2 OpenGL Classes ..50
8.1.3 GLU Classes ..51
8.1.4 GL Extension Classes ..52
8.1.5 Additional Classes and Structures ...53
8.1.6 OpenGL/GLU/GL Extension Methods, Constants, and Enums54

8.2 Implementation Details and Difficulty Solution..55
8.2.1 Programming Language...55
8.2.2 Function Wrapper ..55
8.2.3 GL Extension Function Wrapper ...56
8.2.4 Additional Structures ...56
8.2.5 Enumeration Types ..57
8.2.6 Data Sharing ..57
8.2.7 Void Pointer...60
8.2.8 Callbacks..61
8.2.9 Parameter Checking...61

9 Automatic Conversion ...63

9.1 The Goal ..63

9.2 Design ..63

9.3 Implementation Notes..65

9.4 Output ..65

10 Verification and Validation ...67

10.1 Design Validation ..67

10.2 Functionality Verification..68

11 Results..70

11.1 Test 1: Built-in Value Types..71

11.2 Test 2: General Arrays...72

11.3 Test 3: .NET provided Data Sharing ...73

11.4 Test 4: General Arrays Stored ...74

11.5 Test 5: Different Data Sharing Approaches...75

11.6 Test 6: Scene..76

12 Conclusion ...77

Bibliography ..79

Abbreviations and Terminology ..81

Appendices...83

Appendix A Usage ...84

Appendix B Installation ...87

Appendix C Reference ...88

Contents

iv

C.1 Namespaces ...88

C.2 Classes ...89

C.3 Structures ...99

C.4 Enumeration Types ..101

C.5 Helper Macros..102

C.6 Preprocessor Directives ...104

Appendix D Interface Verification...105

D.1 Test...105

D.2 TestBase Class Reference..105

D.3 Configuration File..107

D.4 Quick User Manual..108

Appendix E Performance Tests..110

E.1 Test 1..110

E.2 Test 2..111

E.3 Test 3..112

E.4 Test 4..114

E.5 Test 5..114

E.6 Test 6..115

Appendix F Generator Tool...119

F.1 Data Classes and Interfaces ...119

F.2 Modification to ANSI C Grammar ..120

F.3 Data File...121

F.4 Quick User Manual..122

Statement

Statement

I hereby declare that this diploma thesis is completely my own work and that I used
only the cited sources.

Pilsen, May 20 2003, ……………………………..

Ivo Hanák

1 Introduction

1

1 Introduction

In year 2002, Microsoft has released the first non-beta version of runtime environment
called .NET. It allows an application to run no matter of current underlying platform. This
environment is aimed on distributed applications, i.e., applications where application parts
are not present on machines on which they shall run. Therefore, it provides facilities that
simplify this task.

However, .NET is not just environment that allows application to run. It also defines a
framework for languages that can be used by any language whose compiler aims .NET.
Such compiler then compiles source code to the special assembler that is called Common
Immediate Language (CIL).

Language framework, CIL, execution system, and memory management, as well as other
parts of .NET are standardized as ECMA standard (ECMA-335 CLI standard). This allow
developers around the world to create their own implementations that follow these
standards, e.g., Shared Source CLI (code name: “ROTOR”; see [SSCLI]), mono project
(see [MONO]), etc.

Essential part of the .NET Framework is a library (.NET Framework Library) of classes
that provide wide range of functionality. However, it has no advanced support for
graphical output. The only output that is supported is based on common capabilities of the
majority of windowing systems, i.e., it allows simple 2D output. The usual disadvantage of
such output is its performance, i.e., it is rather slow. This fact is a motivation of this work.

Currently there are two major common graphical interfaces for high performance
graphical output available: DirectX and OpenGL. Because DirectX is platform
dependent, this work uses OpenGL in order to provides high performance graphical output
that allows projecting of both 2D and 3D objects onto a screen. Even thought OpenGL is
platform dependent similar to DirectX, opposite of that it is implemented on many
platforms. Therefore, creating of class that allows .NET application to call OpenGL would
lead to the platform independent high performance graphical output. This is the goal of
this work.

Currently there exist projects that aim on introducing of OpenGL to .NET, i.e., porting of
OpenGL. However, these projects are usually based on a mechanism that is provided by
.NET and they lead to the exact copy of the original OpenGL interface. Therefore this
work shall not just create another port of OpenGL but it shall also answer a question
whether there is another reasonable approach that would allow to improve comfort of
programming and simplify debugging of application, i.e., improved programming safety.

1 Introduction

2

The result shall be a specification of framework rather then complete port of OpenGL, i.e.,
it shall not support both all version and all GL Extensions. This work shall summarize
benefits and drawbacks of this approach in comparison to both original OpenGL and the
most important port of OpenGL called CsGL. Comparing of results shall be performed
from the viewpoint of both performance and comfort.

1.1 The Document
This document introduces basics of .NET and graphical interfaces to a reader. It describes
difficulties, solutions, and results. It does not contain detailed description of .NET,
OpenGL, and programming languages that are used for implementation and/or testing
purposes. The reader shall be familiar with C++ language syntax.

First, there is an introduction to .NET that includes description of major features
because knowledge of .NET features equals to knowledge of C# language capabilities due
to C# was created especially for .NET in order to make all of its features available to the
user. Then the document contains brief introduction of languages that are used for both
implementation and testing purposes: C++ Managed extension (MC++) and C#. This
introduction covers basics of syntax (for both MC++ and C#) and summary of major
differences between MC++ and C++.

Next, the reader is introduced to graphic output possibilities available in .NET and basics
of OpenGL. This chapter does not contain detailed description of both .NET Framework
Library and OpenGL due to it is matter of specifications and reference manuals. After that,
the goal of this work is described in high detail. The chapter also contains explanation of
reasons for including particular sub-goals into the whole goal. Then, difficulties and
possible approaches are introduced including description of their advantages and
disadvantages.

In order to illustrate possible approaches, existing solutions are introduced to the reader.
This includes solution description of previously mentioned difficulties. However, only the
most important ports of OpenGL are mentioned due to creation of simple port is not
difficult and therefore they may exist many implementations based on similar mechanism.

Important part of this document is description of solution itself and results. In this part,
reasons for particular approach are explained and results are commented. It also contains
brief introduction into a tool that was designed to simplify creation of a OpenGL port.
Next, a verification of the interface functionality is introduced including description of
particular test source code structure.

The document is closed with a conclusion that summarizes results and compares major
features of this work to both CsGL and original OpenGL. It also contains
recommendations for future work. All references including namespace, class, and class
members reference is contained in appendices. These appendices also include examples of
source code that uses this work and summary information for developers who might extend
results of this work. Appendices do not contain reference for OpenGL functions, constants,
and enumeration data types.

1 Introduction

3

1.2 Text Formatting Conventions
• sans-serif for menu items or GUI control names (identifiers)

• monospace for source code, identifiers, language constructions

• bold for emphasis, important expression, or term

• italics for mathematical expressions and terms from figures

• sans-serif enclosed by brackets (e.g., <key>) for particular key of key combination on
keyboard

2 .NET Framework

4

2 .NET Framework

.NET Framework is an object oriented environment that provides facilities allowing
execution of platform independent code. The environment is often called as managed
environment, because it handles some tasks automatically (e.g. memory management).
There are two major parts of .NET: Common Language Infrastructure (CLI) and .NET
Framework class library, which is a large set of reusable classes that provide support for
networking, multithreading, user interface, etc.

CLI (Common Language Infrastructure; often referenced as CLR: Common Language
Runtime) is a foundation of the .NET Framework. It handles automatic memory
management, thread execution, code verification, code execution and security. The CLI is
aimed on distributed code, which can be called either locally or remotely. Due to that, a
security system is integral part of the runtime. It provides support for security permission
that may by based on a source of the code, i.e., code executed remotely may have larger
restriction then code executed locally. The support for signed code is also provided by CLI.

Code that is generated for CLI and runs completely under managed environment is called
managed code (managed application). Similar to the managed code, there exist managed
data. CLI provides automatic allocation and deallocation of such data. Deallocation of
managed data is performed by a process called garbage collection (see section 2.5).

Type system that is used by CLI is specified by Common Type System (CTS) and the code
that conforms CTS is strict typed. Generated code also contains description of itself (i.e., it
is self-describing). This feature is the simplification of code deployment and makes easy to
use third part components.

Specification of CLI and its parts is standardized by ISO/ECMA and therefore the
compilers for various programming languages that targets CLI may be implemented. It
makes possible to reuse the code that was created in programming language A in
programming language B without any restriction. This leads to faster development because
in order to use .NET there is no need to learn a new language: the developer may use
language that he is used to. There is already support (compilers) for various languages,
e.g., C#, C++ in a form of Managed Extension C++, Visual Basic, J# that is Java for .NET,
Eiffel, and others. C# is a programming language that was created especially for .NET in
order to make the most of features of CTS available to the user.

As it was mentioned, managed code is platform independent and uses Common
Intermediate Language (CIL). CIL is aimed on just-in-time (JIT) compilation, i.e. code is
compiled just before its execution. However, because of CLI construction it is possible to
mix it with interpreted code and native code (non-managed). CLI contains support for

2 .NET Framework

5

interoperability with native (binary; platform-dependent; non-managed) libraries with
support for COM technology.

.NET Framework provides support for web application in form of ASP.NET. This is
completely object-oriented approach and the output of ASP.NET application is plain
HTML with only few bits of Javascript (client-side script).

Currently .NET Framework is running on Windows, Linux (Unix), and Mac platform.
Linux platform support is provided by mono project by Ximian (see [MONO]). This
project is based on ECMA standards and it is possible to run managed applications
compiled under Windows on Linux platform. Mono project also provides compilers for C#
and Visual Basic .NET. All these three platforms are supported by SSCLI (see [SSCLI]
project). However, this project currently lacks few parts such as GUI, web services.

2.1 Common Type System
Common Type System (CTS) is the basic part of CLI and it provides support for data
handling. Because of it provides support not only for object oriented programming (OOP)
but also for procedural and functional programming there exist two types of entities:
objects (see Figure 2.2) and values (see Figure 2.1).

Values are stored in form of bit patterns and they can be used as representation for basic or
simple data types (e.g. integers, floats, etc.). They are defined by their type, which
describes not only storage and meaning of those bit patterns but also operations that are
allowed.

Figure 2.1: Value data types of CTS

Figure 2.2: Reference data types of CTS

2 .NET Framework

6

Objects, on the other hand, are more then values. Their type is explicitly stored in its
representation and it contains slot, which can be occupied by other entities (values or
objects). Object has an identity, which distinguishes it from others. This identity remains
the same even through the contents of the slot changes.

Type is often used as description of data representation. In CTS, a type means not only
representation of data but also behavior or possible operations. Two types are considered
the same only if they both have compatible representation and behavior. This makes
possible to substitute instance of the base type with instance of inherited type. Due to the
way the CTS is designed, it is possible to handle different approaches of several OOP
languages. CTS does not support “typeless programming”. It is not possible to call non-
static function (object member) without knowledge of the object's type.

2.1.1 Value and Reference Types
As it was mentioned, a value is described by type, which specifies not only its
representation but also allowed operations. Currently there exist two kinds of types: value
types and reference type. Value types describe values that are represented as sequence of
bits and reference types describe values that are represented as location. There are four
kinds of types: object, interface, pointer and build-in type.

Object type is self-describing value. In some cases (such as abstract classes), it describes
itself only partially. Interface type is similar to an object, but it describes itself only
partially. Pointer type is reference to a location (machine address) in memory. Built-in
type is integral part of CTS (i.e. basic types) with direct support from executional system
(VES; Virtual Executional System. Every value has only one exact type that provides full
description of operations available for the value and description of its representation. This
is also why is not possible to use interface type as exact type of the value because of it
provides description only for its functionality without description of its representation.

Every type can be used to describe representation of the value. This relation is transitive
only for object type (a reference type). On the other hand, this relation is not a transitive
relation in the case of value types. It is not possible to extract the exact type from an actual
value of the Value. For example built-in integer type fully describes its value (i.e. it is an
exact type) but it is not possible to determine the exact type just from its Value (i.e.
sequence of bits).

2.1.2 Boxing and Unboxing
It is possible to handle value type as a reference type. Every value type has a special
reference type defined that is called boxed type. Every value type also contains an
operation called box, which creates the corresponding instance of boxed type. This
instance contains bit copy of the original value and provides operation called unbox that is
reversal to the box operation. This makes possible to handle value types the same way as
reference type. However, use of above described operations leads to a slowdown and
boxed values are not CLS-compliant (Common Language Specification; see section 2.2).

2.1.3 Identity and Equality
One of the basic binary operation defined for values (for both reference and value types) is
identity and equality. Both of these operations return Boolean as a result and both are
mathematical equivalence operators, i.e. they are reflexive, symmetric and transitive. It is
also true, that if two values are identical, they are equal in the same time.

2 .NET Framework

7

To explain these two terms let us consider two variables of reference type. They are both
identical only if they refer to the same object, it also implies their equality. Identity is
implemented on System.Object via ReferenceEquals method.

On the other hand to have these objects equal, a reference to the same object is not needed,
just the value of the object shall be the same. If either of operands is a boxed value, the
equality could be computed by unboxing boxed operands and comparing of resulting
values. Equality is implemented on System.Object via Equals method. For floating
points values, when comparing two NaNs, this method returns true, which differs from a
standard (see [IEC]). In order to satisfy the standard an override of the method is required.

2.1.4 Location and Type Conversion
Every value is stored in a location. Location is typed and it contains only single value at
the time. This type specifies the usage of value loaded from the location. It means that the
allowed operations are the only ones specified by the location type even though the stored
type has larger capabilities.

When assigning to a location the assigned value have to be assignment compatible. In the
most of the cases, it is possible to perform this check during the compilation time. How
ever in few cases, involving objects and interfaces the check cannot be performed during
compilation due to the compiler is not able to determine the type, which would be
assigned. Type is always assignment compatible with itself.

In some cases is possible to assign a type that is not assignment compatible by performing
conversion. It is possible to convert via two operations: coercing and casting.

In the case of coercing the conversion is performed by creating of value of destination type
with an equal meaning to the original value. There are two kinds of coercing, widening,
and narrowing. Widening is an operation, which does not loose any information, and it is
often provided as implicit conversion. Compared to that, narrowing usually leads to
information loss and explicit conversion is usually needed in order to perform narrowing.
Both of these operations lead to modification of both value and type and do not preserve
identity of objects.

Casting, on the other hand, uses the fact that value can be of more than one type.
Performing casting operation means to cast value to one of its types (e.g. casting an object
to implemented interface). This operation does not modify type and value and preserves
identity of objects.

2.1.5 Compound Types
In a previous text, there was a description of types and their properties. Nevertheless, a
creation of structured types is allowed. These are called as compound types and they are
composed of array types or fields, whose can differ by their type.

Fields are named sub-values. If these sub-values are accessible by an indexing expression,
they are called as array elements. Array type is a type composed of array elements of
same type. Both fields and array elements are typed and their type cannot be changed.

2.1.6 Methods
Type can specify available operations. These operations are called as methods and they had
a signature (see subsection 2.1.11) that defines types for its argument and type of the return
value, if any. CTS supports static method, which is associated with the type itself, instance
method, which is associated with an instance of such type and virtual methods.

2 .NET Framework

8

The difference between virtual and instance method is based on their implementation.
Virtual methods are allowed to change its implementation in inherited classes by
overriding. Decision about the implementation, which will be invoked, is made during run-
time.

For virtual methods, it is possible to invoke them same way as in the case of instance
method by specifying a class and method within class. If there is no instance of the class,
the CTS allows object passed as this to be null. In other cases, this refers to instance of the
type or inherited type. In the case of virtual method, this is often used to invoke
implementation of the method inside the parent class. However, a virtual method can be
invoked by a mechanism called as virtual call, which chooses implementation of the
method based on the dynamically detected type of the instance. For detailed descriptions
see [CLI-I].

2.1.7 Enumeration Types
CTS provides support for enumeration type (enum). Enum is a value type, which is
assignment compatible with underlying type. This type is defined as an integer and
characteristics of this type are defined by CLS-rules.

As it was mentioned this type is a value type, however there are some restrictions, e.g., no
type members are allowed with exception of single instance field that defines underlying
type. Also all enums have to inherit from System.Enum class and they cannot be further
inherited (i.e., they are sealed).

As defined by CLS-rules, there are two kinds of enums. First kind is similar to the enum in
C++; i.e. its values are similar to integer constants. Second kind consists of single bit flags
rather then integer constants; i.e. values of this enum can be combined in order to create
group of flags.

2.1.8 Names
Each entity has to have a name. This name is used when referencing to such entity. Entity
of type system shall have exactly one name. Comparison performed on names is so called
code-point comparison, i.e. it is case-sensitive and locale-independent. The permitted
form of such names is described by CLS rules (see section 2.2). It uses Unicode and
therefore languages, whose characters are not contained in ASCII (7bit), are allowed. Form
of the identifier is described at Figure 2.3.

Figure 2.3: Valid identifier name

The first character of the identifier can be an uppercase letter, lowercase letter, title-case
letter, modifier letter, other letter, or letter number. As subsequent characters, any of those
mentioned above plus non-spacing marks, spacing combining marks, decimal numbers,
connector punctuator, and formatting codes are allowed. Before storing or comparing
formatting codes shall be filtered out. For details see [Dav99].

2.1.9 Scopes
As it was mentioned in previous text, every entity has to have a name. However, these
names are usually not unique. CTS allows same name to be used for multiple entities as
long as these entities differs in their kind (e.g. methods, fields, etc.). Such use is allowed
within a scope, where scope is a group of names.

2 .NET Framework

9

Each entity can be fully identified by a qualified name. The qualified name consists of
both scope and name of the entity. When referencing to a member of compound type,
scope contains also name of enclosing type. When these entities are types, situation is
similar except that types are grouped into assembly scopes. Only top-level types (i.e. not
nested types) are scoped by the assembly (see section 2.7).

2.1.10 Visibility and Accessibility
When referencing to an entity, it has to be visible. An access is then granted only if
referenced type is visible, referenced member of the type is accessible and all security
demands are satisfied. Both visibility and accessibility are relations between referent and
referenced entity. Visibility is property only of type names and there are three categories:

• Exported type is a type that can be visible outside the enclosing assembly. However,
such visibility depends on assembly configuration, which determines if the type is
really exported.

• Nonexported type is a type that is hidden from the outside world.

• Nested type visibility depends on visibility of enclosing type.

Accessibility, on the other hand, is a property of all entities and depends on visibility of
referenced type and a scope of referent. While inheriting, there is a possibility to modify
accessibility of inherited virtual member methods by access "widening". This means that
the inherited virtual method shall either have the same accessibility or permit more access.

• It is the same rule as in other languages (e.g., C++). Different approach of accessibility
modification would lead to a possibility to gain access to hidden virtual methods by
casting to a base class. To prevent overriding of virtual method in inherited class a use
of final (see subsection 2.1.15) is recommended. CTS provides support for seven
categories of accessibility:

• Compiler-Controlled members are accessible only through use of definition not
reference and they are accessible only within a single compilation unit under control of
compiler.

• Private members are accessible only for referents from within an implementation of
the same type that defines the referenced members.

• Family members are accessible for referents from an implementation of the same exact
type or type derived from such type. This access needs runtime check in some cases.

• Assembly members are accessible for referents in the same assembly that contains
implementation of such type.

• Family-and-Assembly members are accessible for those referents which fulfills both
family and assembly access requirements.

• Family-or-Assembly members are accessible for those referents which fulfills either
family or assembly access requirements.

• Public members are accessible for all referents.

Security permissions and demands also influence access. There exist two types of
demands: inheritance and reference demand. It is not allowed to inherit them and it is
possible to attach only one kind of the demand to a single item. Attaching it to the item
attaches the same security demand to all nested types and type members unless another
demand of same kind is attached to the item. This approach to security is called
Declarative Security (see section 2.8).

2 .NET Framework

10

Inheritance demand influences overriding of the method and inheritance of the type.
Type that wishes to inherit from the type or method that wishes to override the virtual
method, have to meet required security permission. Reference demand influences
references to the type. A referent needs have to have all required security permission in
order to refer such type.

Nested types have a full access to the members of enclosing type and family access to
members of the type from which it inherits. In order to access field, array element or
function that uses nested type (as a parameter or return value) such nested type shall be
both visible and accessible to the referent.

2.1.11 Contract and Signatures
Contracts are shared assumption on set of signatures between implementers and users and
are names. They define what shall be implemented and provide a possibility for
verification by checking implementation of enforceable parts of contracts. There are five
kinds of contracts: class, interface, method, property and event contract.

First is a class contract, which is specified by a class definition. It provides specification
of value representation of given class type and it also specifies what shall be implemented.
Class supports class contract. When a class supports a class contract of another class then it
means that the class inherits from that class type.

Interface contract is similar to class contract with exception that it does not support class
contract because of interface is not an exact type and contains only operation
specifications.

Next is method contract, it is a description of implementation of named operation and
specification of contracts of its parameters and return value, if any. It is always part of
contract of another type.

Property contract is a specification of set of method contracts that shall be implemented
by a type that supports given property contract.

The last is event contract, which is a specification of operations that manages given event.
This includes three standard methods, one for registering an event listener, one for
revoking of listener’s registration and one for invoking the event.

Signature adds constants that are limitation on use or list of allowed operation on values
and locations. Every value and location has a signature and while assigning, his
compatibility (including compatibility of constraints) is required.

Properties of constraints are defined by CLS-rules (see section 2.2). All types in signature
have to be CLS-compliant and whenever member is visible itself, all of types in member's
signature have to be visible too. There are five kinds of signature: type, location, parameter
and method signature.

Type signature is limitation and constraint on usage of the type. Type signature of the
value is determined neither by the value itself nor by the type, but is determined by
knowledge of the location signature where the value is stored.

Location signature is similar to type signature. It adds further restriction by location
constraints. Currently there are two location constraints: init-only and literal constraint.
Init-only constraint ensures that value of the location is set before the first use (i.e. during
initialization) and the value cannot be changed afterwards. This constraint can be applied
only to instance or static fields of compound types. Literal constraint means that all
references to such field are replaced by field's value at compilation time. It is applicable
only to static field of compound types and only build-in type values are permitted.

2 .NET Framework

11

Local signature is similar to location signature and can be applied only to local variables.
It adds byref constraint, which means that either content of location is managed pointer (if
possible) or content of location is handled by copy-in/copy-out mechanism (in the rest of
cases).

Together with local signature there exists special local signature: typed reference, e.g., a
local variable, which that states to be typed reference, contains managed pointer and
runtime representation of the type that is possible to store to the location. It provides
dynamical type info and it cannot be combined with other constraints. It is also limited
only to built-in types and can be used only for parameters and local variables. Boxing is
also not allowed as well as use as type of a field. Typed reference is not CLS-compliant.

Parameter signature is similar to local signature. It provides information on how are
parameters passed during method invocation. Method signature is composed of calling
convention, list of parameter signatures (if any) and type signature of a return value. This
includes additional constraint varargs constraint, that states all following perimeters to be
optional only. Varargs constraint is not CLS-compliant.

2.1.12 Type Safety and Verification
Type specifies contracts. If the code implements enforceable parts of the contract (the
names signatures), the code can be considered typesafe. Typesafe code stores values that
are described only by a type signature in location. This signature shall be assignment
compatible with location signature. In addition, operations that are not defined by exact
type are forbidden for typesafe code. Only visible and accessible locations are accessed. In
the case of typesafe code, exact type of value cannot be changed.

Verification is a mechanical process, which verifies an implementation to be typesafe or
not. It may fail for typesafe implementation but never success for implementation that is
not typesafe. In general, process of the verification cannot be performed in finite time with
no errors. Code marked as unsafe cannot be verified and therefore it has higher security
needs (see section 2.8). For more detailed description of verification see [CLI-I, CLI-II].

2.1.13 Type Definition
Type definers construct new type from an existing type. In the case of implicit types, a
type is defined when it is used because of implicit type signature provides complete
description of the type. Implicit type does not need user-supplied name.

Opposite of that, all other types needs to be defined explicitly and they need user-supplied
names. Explicit definers are interface definitions and class definition that can be used to
create either object types or value type including boxed version. It is good to note that not
all types defined by a class definition are objects (e.g. value types).

Array types are defined by specifying element type, number of dimensions (rank) and
lower and upper bounds for each dimension. These bounds shall be integer and their lower
bound for all dimensions shall be zeros (defined by CLS-rules). The signature may specify
information on lower bound, upper bound, or both bounds at compile time. Zero-
dimensional arrays as well as location signatures for array elements are not allowed.

All array elements shall be laid out in row-major order. The actual storage allocated for
each element may be platform-specific (i.e. a different padding of elements may appear on
different platforms).

Arrays are objects and are inherited from type System.Array (abstract class), which
represents all arrays regardless of element type, ranks, or bounds. Arrays are created
automatically when they are required. Operation defined by CTS on arrays provides array

2 .NET Framework

12

allocation, indexing, value read/write operations, computation of an element address (a
managed pointer), and querying for either rank, bounds, or total number of stored array
elements.

Unamanaged pointer types (also known as "pointer type") is defined by specifying a
location signature for the location to which pointer references. Because of signature of
pointer types includes location signature, no further definition of the pointer type is
needed. Pointer types are reference types but their values are not objects. CTS provide
basic typesafe operations on pointer types: loading a value from a location specified by the
pointer and storing the value to such location. Pointer arithmetic is also provided by CTS.
Pointer types are not CLS-compliant.

Delegates are object-oriented and typesafe version of function pointers. Each delegate
contains method named Invoke, which invokes a method associated with the delegate.
This associated method may be both static method or instance method. All delegates are
inherited from System.Delegate and they may optionally contain other static or
instance methods.

Interface type is an incomplete description of a value, i.e. it is not an exact type, class type
or object type. It contains set of methods, locations and other contracts. Only static fields
are allowed and only virtual or static methods are allowed. However only static methods
are possible to implement inside interface because of they are associated with the interface
itself rather then with any value of the type. Interface implementing static fields or
methods are not CLS-compliant. Events and property contracts are both allowed. The use
of such contracts follows the same rules as those of methods.

Only object types are allowed to support an interface. Support of the interface can be
declared but existence of all implementations that particular interface requires does not
imply support of that interface. The support of an interface means to provide complete
implementation of all methods, locations, and other contracts defined by the interface.
CLS-compliant interfaces shall not require implementation of non-CLS compliant
methods.

All interface members shall be fully visible and accessible (i.e. public). No security
permission shall be attached to any of them. This is because of interface only defines what
shall be implemented rather then the implementation itself.

Class type is an exact type due to it provides complete specification of both value
representation and representation of all contracts that are supported by the class type.
Contracts, which can be supported by the class type, are class, interface, method, property,
and event contract. Support for a class contract is synonymous with the object type
inheritance (see subsection 2.1.15). With an exception of abstract object type, a class type
provides definition as well as implementation for all contracts supported by the class type.

Not all classes require class definition, e.g., array types. Explicit class definition defines
either an object type or value type. Explicit class type definition also contains definition of
class type name. It implicitly assigns the class type to a scope (i.e., assembly), defines class
contracts of the same name, defines representation/operations of class members, supplies
implementation for supported contracts, and declares visibility for the type. Such visibility
can be either public or assembly.

Class type definition may also specify initialization method of the type and type members.
A type can be marked as BeforeFieldInit, i.e., initialization method can be executed
anytime before first access to any static field defined for that member. When the type is not
marked as BeforeFieldInit then type initialization method execution is triggered by first
access to any (static or instance) field or (static, instate, or virtual) method. Such execution

2 .NET Framework

13

of the initialization method does not trigger any initialization method of the base type. If
this is a requested behavior for particular language, special (hidden) static field and code in
class constructor, which touches that field of the parent class, shall be implemented.

Object type describes the physical structure of the instance and all allowed operations.
Object type is set when the object is created and all instances of the same object type have
same structure and allows same set of operations. Object type definition is class type
definition and therefore it specifies assembly as its scope.

Object type can be marked either abstract or concrete. Abstract object types may provide
definition for method contracts without implementation. It is similar to an interface with
possibility to use contracts, which are in the case of interface forbidden. Some of the
methods may have implementation in abstract object type. However, it is not allowed to
create instances of abstract object type, but it is possible to inherit a type and then create
instance of the inherited type. Such type shall provide implementation of all abstract
methods, i.e., it is concrete object type.

Every object may support zero or more interface contracts, where the support means
implementation of required set of methods (required by the interface contract). If two
interfaces have a method with identical method contract, then they share its
implementation. Class (value type or interface), that implements non-CLS-compliant
interface, is not CLS-compliant.

Value types are types defined by class definition. However, they are not object types.
When defining a value type, both unboxed (value type) and boxed type are defined. Boxed
type supports interface contracts and have a base type (opposite of value type, which does
not). Base type of a boxed type shall not have any fields. Value types do not requite a
constructor (see subsection 2.1.14) to be defined and called in order to create instance of
the value type. Instead of that, a special code shall be provided to initialize type members
to zero or null.

When a non-static method of value type is invoked, this pointer is filled with either
managed reference to the instance (for unboxed) or object reference (for boxed). Virtual
method receives this pointer filled with object reference no matter if it is value type or
boxed type.

2.1.14 Type Members
Object type definition contains also member definitions. These members are fields,
methods, properties, and events. All names of members of the type are scoped to the type.

Fields of the object type are used to store value and specify representation of values of
object type. They are named and typed via location signatures. There shall be no two fields
with the same name and type contained within one object.

Fields may be marked as static and in such case they are locations associated with the
object type itself. These locations are created when the object type is loaded and initialized
together with the enclosing type. Otherwise, locations for non-static fields are created and
initialized during construction of new of the given type. It is also possible to mark field as
serializable. Such field is then considered part of persistent state of a type value and is
serialized.

Method specifies allowed operation on values of the type and they have a method
signature. Method definition consists of name, method signature, and optionally an
implementation of the method. All methods in the object type shall differ by name and/or
signature.

2 .NET Framework

14

Methods may be marked as static in order to create a static method. Static methods are
operations associated with the whole type, while non-static methods are operations with
values of the object type. When calling non-static method, value of this (or this pointer) is
passed as an implicit parameter. If the method does not contain its implementation, it shall
be marked as abstract. Abstract Methods are allowed only in abstract object types and
interface types. It is also possible to provide support for modification of particular method
in derived type. Such method shall be both non-static and marked as virtual.

Properties defines accessing contract of a value. They are set of operations that provide an
access to the value. Operations are defined in a form of methods (accessors) that are used
to either store (setter) or retrieve (getter) the value. These methods are named and
are typed via method signature. Return value of the getter shall be the same as the last
parameter of the setter. The accessibility of accessors shall be equal to accessibility of
the property. Property and its accessors shall all be either static, virtual, or instance.

Events type specifies named state transitions in which subscribers register their interests in
the event via accessors. Accessors are methods that provide a possibility for the subscriber
either to register interest in the event (add) or to revoke the registration (remove).
Accessibility of the event and its accessor shall be identical, both accessors shall each take
one parameter, whose type defines the event, and it shall be derived from
System.Delegate, i.e. it shall be delegate. Firing an event is similar to invoking all
methods whose delegates are registered to such event. Both accessor methods are named
and are typed via method signature.

Constructor is a method used to create a new instance of an object type. It is an instance
method defined by a special method signature and it is a part of the object type definition.
Before the constructor is invoked a space for new value of the object type is allocated,
VES data structures of the new value are initialized, and user-visible memory is zeroed. A
constructor shall call constructor of the base class before the first access to inherited
instance data. Every object type, with exception of value types, shall define at least one
constructor method. There is no need for such method to be public.

Similar to constructors, there exist methods that are used when the instance is no longer
accessible. These methods are called as finalizers and they are used to free allocated
resource that is non-managed. However, their execution does not occur immediately after
instance is no longer accessible due to memory management (see section 2.5). Limited
control over finalizer execution is provided by System.GC class. It is possible to create a
finalizer for value type, however such finalize will be run only for boxed instances of the
value type.

2.1.15 Inheritance
Inheritance of a type means that derived type guarantees support for all contracts of the
base type, i.e., interface contracts, class contracts, event contracts, method contracts, and
property contracts. Also all locations defined in the base type are defined in a derived type.
The derived type also inherits all implementations of the base type and may extend,
override, and/or hide them. Because of that, it is possible to use value of the derived type
instead of base type value.

All object types have to declare support for exactly one object type, i.e. they have to be
derived from such type. This is a significant rule with one exception of
System.Object. This object type is the only root of graph of the inheritance hierarchy.
It is CLS-compliant class and all classes have to inherit at least from this class. To prevent
deriving from a particular type, such type shall be marked as sealed. Any CLS-compliant
class has to derive from a CLS-compliant class.

2 .NET Framework

15

Unboxed form of a value type does not inherit from any class. However, boxed value
types do have a base class. This base class is either System.ValueType or
System.Enum (for enumeration only). Even through boxed version of value type is
object type, there are more restrictive rules that are applied to it. The base type shall have
no fields defined and boxed value type is implicitly marked as sealed, i.e., no further
deriving from such type is allowed.

Interface types may inherit from multiple interface types. Types that implement support
for interface types have to provide support for all inherited interface types. Interface type
inheritance is similar to specification of additional contracts that shall be supported by an
implementing object type, i.e. it is possible to specify which interface types shall be
supported in object type in order to provide support for inherited interface type.

Only object types are allowed to inherit implementations, i.e. inherit all kinds of type
members (fields, methods, properties and events). In order to allow instances of the
derived object type to be used whenever instances of the base type are expected, object
type may inherit only non-static fields of the base type. Object may also inherit all instance
and virtual methods. Constructor methods are not inherited. It is possible to hide a non-
virtual method of the base type by providing a new method definition with the same name
or name and signature. Both methods may be invoked because type that contains the
method also qualifies the method reference.

Object type may also inherit virtual methods and provide new implementation of such
method. This includes possibility to modify accessibility of such method. Accessibility of
inherited virtual method shall either be the same or permit wider access, e.g., it is possible
to make new implementation of a family virtual method to be public, not private one. If the
virtual method is marked as final, then it shall not be overridden, i.e., no new
implementation of such virtual method is allowed in derived object type.

Properties and events are not directly supported by VES and therefore rules for both name
hiding and inheritance depend on source language compiler. The generated code shall
directly access methods named by the events and properties.

When deriving a new type there is a possibility to modify the layout of the instance. CTS
provides support for it in a form of hiding and overriding. While it is allowed to hide
every kind of class members, modification of layout is possible only through instance
fields and virtual methods. Each member of the class type may be marked hide by name.
This means that members of a same kind (fields, methods, etc.) in the base class with the
same name will not be visible in the derived class. If a member of the derived class is
marked as hide by name-and-signature, then all members of the same kind in the base
class with the same name and either type (for fields) or signature (for methods) are hidden
in derived class.

As it was mentioned overriding (i.e. modification of the layout) is available only for
instance fields and virtual methods. When an overriding member of derived class is
marked as new slot, such member always get new slot in layout of derived class. This
means that overridden method or field of the base class is available in the derived class by
the use of qualified reference. Qualified reference combines name of the base type, name
of the member, and either its type or its signature. If the overriding member of derived
class is marked as expect existing slot, an existing slot of the corresponding member (i.e.
same name, same king and same type) of the base class is reused. If there is no such slot
then a new slot is created.

2 .NET Framework

16

2.2 Common Language Specification
Common Language Specification (CLS) is a part of CLI and is set of rules, which shall
support language interoperability. Types generated for execution on a CLI implementation
have to conform to the CLI specification and additionally to the CLS rules. These
additional rules apply only to either types visible from the outside of the assembly or
members that are accessible outside the assembly, i.e., members with accessibility of
public, family, and family-or-assembly. It shall provide guidelines for writing high-level
programming language tool (e.g. compilers). It is possible to look the CLS and the rules
contained within from three possible viewpoints, which are called a framework, consumer
and extender.

Framework is a library, which contains CLS-compliant code. This means that, such
library is possible to use in wider range of programming languages than it would be in the
case of library with non-CLS-compliant code contained within. Framework should also
avoid use of names, which are usually considered keywords in common programming
languages. In addition, implementations of methods of the same name and signature in
different interfaces shall be independent and it should be not assumed that value types are
initialized automatically.

A consumer is a tool that allows an access to features supplied by the framework, i.e.
compilers. Consumer may have an ability to create CLS-compliant framework, but it is not
necessary. Also capability of metadata initialization for fields and parameters excluding
static literal fields is not required and consumers are allowed to ignore metadata of
anything but static literal fields.

The last possible viewpoint on CLS is the viewpoint of extender. An extender is tool that
provides a functionality of consumers plus makes extending of CLS-complaint frameworks
possible. Therefore, all rules and properties of the consumer are also applied to extender.
Except of these, the extender shall have a capability to extend any non-sealed CLS-
compliant class and to implement any CLS-compliant interface.

2.2.1 CLS Compliance
CLS defines a set of rules, which controls the properties of the visible of accessible entities
from the outside of the CLS unit, i.e. assembly. Inside the unit, there are no restrictions on
the programming techniques, which can be used. This is similar to the first rule of the CLS.
Complete list of the CLS rules and specification of their impacts on frameworks,
consumers and extenders can be found in [CLI-I].

A part of the assembly, which is CLS-compliant, shall be marked as CLS-compliant with
an attribute: System.CLSCompliantAttribute. This attribute (see section 2.10)
makes possible to explicitly specify CLS-compliance of a type. A type inherits this
attribute from either the enclosing type or enclosing assembly (for top-level types), but it is
possible to mark it individually. Members of the non-CLS-compliant types shall not be
marked as CLS-compliant (CLS Rule 2).

2.3 Common Intermediate Language
Common Intermediate Language (CIL) is specification for a code that can be executed by
executional system (Virtual Executional System; VES; see section 2.4). CLI code
generator that claims a conformance to standards specified by CLI ([CLI-I, CLI-II, CLI-
III]) shall produce output valid to CLI. The generator may also claim to generate verifiable
code.

2 .NET Framework

17

Validation is a test that checks file format, metadata, and CIL for its self-consistency.
Verification of a code means to test it for access outside program's logical space. It shall
ensure that the only resources (including memory) that are accessed are those with
appropriate access permissions, i.e. no code shall be able to corrupt the system by
accessing non-accessible resources.

The time, in which the test shall be performed, is not specified, as well as behavior in the
case of the test failure. However, it is possible to run unverifiable code (i.e., code that did
not passed the verification). In such case, administration security and trust control shall not
trust the unverifiable code. For a relationship between validated and verified visualized see
Figure 2.4.

Figure 2.4: Relationship between validated and verified code

One of the important properties of CLI is type safety. This shall prevent code from
corrupting of memory contents by writing inappropriate data. Everything is typed and due
to declaration is part of metadata a compiler (or interpreter) can check code's type safety.
All references are typed and both location and assigned object shall be assignment
compatible.

Compiler produces metadata while compiling. Metadata contain additional information
(i.e., declaration) and they are used for metadata driven-execution. This makes possible to:

• mix JITted code (i.e., code that is compiled into platform native code before its
execution), interpreted code, native code (i.e., native for particular platform), and
legacy code. It also allows use of uniform debugging and profiling tools for such
mixture of codes.

• provide support for serialization and inter-operability with existing unmanaged (native)
code.

• perform better optimization due to lack of physical offset, layouts, and sizes. This
makes optimization for current platform possible.

• handle versions of assemblies, i.e., the system searches for a version that satisfies the
current needs at the most (see subsection 2.7.2).

CIL specifies code that can be executed by VES. This means that CIL defines instructions
that perform allowed operations. Data types that are used by instructions including
description of their restrictions are defined by CTS (see section 2.1). CIL instruction does
not have (with a few exceptions) specified operands. Both its operands and result of the
operation are stored on a stack and CLI automatically keeps tracks of operand types.
Figure 2.5 shows short example.

2 .NET Framework

18

Figure 2.5: CIL code example

The example above is similar to the example in [CLI-II]. It is an example of simple output,
i.e, it writes ”Hello world” to the console. First it specifies assembly that is used (line 1)
and current assembly (line 2). The entry point of assembly (line 4) is specified in method
main (line 3). String "Hello world" is pushed on the stack (line 6) to be used as parameter
for output method call (line 7). After that, the method main exits (line8). Example shall
show syntax of CIL rather then to explain the instructions and rules of CIL. For detailed
information and list of CIL instructions see [CLI-II, CLI-III].

2.4 Virtual Executional System
This section contains brief overview of the Virtual Executional System (VES), for more
details see [CLI-I]. The purpose of the VES is to execute CIL instructions (refer to section
2.3) generated by a compiler. It has direct support for built-in types, i.e., integers (8 bits up
to 64 bits), floating-point types (32 bits or 64 bits), object references, and managed
pointers. Built-in types are the only types that are supported by CIL instructions. These
instructions use evaluation stack for store their arguments.

2.4.1 Built-in Types
The built-in types mentioned above are supported by VES and it is possible to store such
types inside a memory. However, evaluation stack, which is used for operations, supports
only a subset of built-in types: 32-bit integers, 64-bit integers, native integers, and native
float-point numbers that are uses for internal purposes only.

Even thought the evaluation stack (i.e. instructions) does support only 32-bit or 64-bit
integers, it is possible to use short integers (8-bit, 16-bit). Such integers need to be
converted into requested format, i.e. they are either widened or narrowed. Narrowing
operation is performed without overflow tests. The time of conversions and conversions
itself are CLI implementation dependent, so the behavior may vary.

There is support for 32-bit and 64-bit floating-point numbers. The format of the numbers
is specified in [IEC]. This includes definition for NaN, +infinity, --infinity values. NaN is
considered unordered for comparison operations. All operations do not generate an
exception in the case of unusual condition (e.g. overflow, invalid operand) rather they
produce infinity (for operations with value in limit) or NaN value. However, it is possible
to check the result for infinity and/or NaN. Such check is able to generate an exception if it
fails. Internal representation of the float-point value is implementation dependent and shall
have the same or greater precision then that of the variable that it is representing.

2.4.2 Pointers and References
Managed pointers and object references are directly supported by the VES. However, the
size of the pointer is not possible to determine during the compilation, i.e. they are not
fixed size. This makes the code portable to platform that uses different address width (e.g.,
32 bits per address).

2 .NET Framework

19

For unmanaged pointers VES uses native signed integers and they are similar to pointers
known in for example C language. Object reference is a pointer outside the object or
pointer to the whole object and it provides only limited set of operations. Managed
pointer is similar to object reference and it points to object members or elements of an
array. It is similar to by-ref type (i.e. managed pointer contains type description) and it is
possible to point unmanaged memory with it. Managed pointer shall not outlast the life of
the location that is pointing to.

2.4.3 Compound Value Types and Value Types
Compound value types are types that have sub-components and that are passed by copying
the value. Sub-components themselves do not have such restriction (i.e., they can be
managed pointers, object references, etc.). Properties of the compound value type are
similar to the value type as it was described in previous sections (see subsection 2.1.1).
This means that such type can be considered either as boxed or as unboxed. The boxed
version carries full run-time information (similar to instance of System.Object) and it
is allocated on heap. Unboxed version does not contain run-time information at all and it is
never allocated on heap.

2.4.4 Machine State and Evaluation Stack
Machine state is a state of the machine and evaluation stack. It consists of global state and
method state. Global state consists of several threads of control, which can be through of as
a singly linked lists of method state, state of multiple managed heaps, and state of a shared
memory address space.

Evaluation stack is part of the machine state and it is not addressable. Therefore, CIL
instructions operate only with the top of the stack. Return values of the CIL instructions are
also stored onto the stack. It is possible to store any data type, including unboxed instance
of a value type. However, due to restrictions (see subsection 2.4.1) a narrowing and
widening are sometimes needed. For detailed information, refer section 12.3 in [CLI-I].

2.5 Memory Management
Memory management (similar to resource management) is crucial part of an application. It
can be source of unpredictable bugs. These are usually caused by access of deallocated
block of memory or creation of memory leaks. Such bug can occur only time-to-time and
cause an unpredictable application crash. To solve it, there exist two major approaches: to
use either tools that help to debug the application or a facility called garbage collection.
The last approach that was mentioned above is the one used by the managed environment.
The subsections below contain overview of memory management, for full descriptions see
[Ric00, CLI-II].

2.5.1 Garbage Collection
Garbage collection is a task performed by garbage collector (GC). It provides mechanism
for memory management (i.e., allocation, deallocation, and optimization of memory
blocks), which is transparent to the user. All objects that are managed by GC are stored on
a managed heap.

Similar to non-managed environment (e.g., C language), all blocks on the heap are linked
by pointers. However, in the case of non-managed environment, an allocation means to
walk through the linked list of block and search for free block that is large enough to suit
the needs. Such block is then split and linked list of blocks is modified.

2 .NET Framework

20

In the case of managed heap, there is no linked list search. The managed memory is
assumed infinite and new objects are simply added to the tail of the list. This is faster then
searching of linked list. However, it needs additional mechanism mentioned above, i.e.,
garbage collection. This includes need of knowledge of pointer types. It means the
language shall not be able to perform unrestricted cast of pointer type from one type to
another. This is also explains it is not possible to implement garbage collection for
languages such as C/C++ and maintain the result to be able to perform all operations
described by specifications.

As it was mentioned, GC performs garbage collection. Currently there exist several
algorithms that solve the GC and that are tuned for optimal performance depending on a
used platform. Next text contains overview of GC implementation.

To make garbage collection possible, each application contains set of roots. These are
references to storage location, e.g., local variables, static object pointers, pointers to object
on managed heap, etc. This set is fully accessible to GC in order to allow modifications of
roots.

Only unused objects are deallocated, i.e., there is not reference to such objects. When GC
starts, it assumes that all objects on heap are garbage (i.e., are not referenced). It performs
recursive search of references starting at application roots. Every object is examined and
searched only once per garbage collection. This means that if the object was examined
while searching previous root and it is found again, its references are not searched again. It
shall solve infinite referencing loops.

All objects that were not referenced (i.e., they were not examined while searching the
graph) are considered for removal from memory. To perform it, GC walks linearly the
heap and searches for blocks that were previously owned by non-referenced objects. When
such block is found, blocks above are shifted down the heap to compact the memory. This
shifting means that references to the shifted blocks are no longer valid and GC has to
modify the application roots and references between objects. Compaction described above
is not performed on larger memory blocks due to the high CPU-time costs.

Use of memory compaction leads to higher memory needs and may cause possible
slowdown. However, this occurs only when the heap is full. Otherwise, the allocations are
faster then for non-managed heap. Garbage collection provides higher comfort and
decreases number of unpredictable bugs in managed code based on invalid use of the
memory.

2.5.2 Finalizers
Some objects, however, allocate resources (e.g., network connections, output/input device
communication, unmanaged memory, etc.) that need special handling while they are
released. To make possible to release them, GC allows the user-specified code in form of a
method to be called while the object is garbage collected. This process is called a
finalization and the method that contains user-specified code is called finalizer.

Finalizers are methods that are called at garbage collection of the object. These methods
are not similar to destructors (C++) even thought they perform similar task. The major
difference between destructors and finalizers is that the user has no control over the time of
finalizer’s execution. Order of finalizer calls is not specified and therefore it is not
recommended to access inner, member objects in it. It may also happen, that the finalizer is
not called at all in order to make the application to exit as fast as possible. To prevent this
happen, it is possible to force GC to execute the finalizer before the application exit.
However, it may change garbage collection behavior.

2 .NET Framework

21

Use of finalizers leads to GC performance loss while allocationg and deallocationg objects,
e.g., garbage collection of an array of object with finializers leads to a call of finalizer for
every object stored in the array. It is because of garbage collection of an object usually
leads to garbage collection of all referenced objects. Use of finalizer leads to unwanted
prolonging of a life of the object.

Internally are finalizers implemented by two queues: finalization queue, which contains
objects with finalizers, and freachable queue, which contains objects waiting for their
finalizers to be called. Dealocation of an object with finalizer means to move an object
from finalization queue to freachable queue. Freachable queue is similar to application
roots and therefore objects inside this queue cannot be removed from memory. This is also
the cause for unwanted prolonging of the life of the object mentioned above. Finalizers of
objects that are waiting for finalization are executed by a special thread. These thread calls
the finalizer and removes the object from freachable queue, i.e., object is ready to be
removed from the memory during next garbage collection session.

However, it is possible to perform a forced cleanup of an object. To perform it a special
method needs to be created. This method is usually called Dispose (member of
IDisposable interface) or Close and is called manually by the user. Managed
environment also provides a possibility (GC.SupressFinalize) to avoid execution of
the finalizer even thought it is specified for the object. This is often used while performing
forced cleanup manually.

One of the side effects of finalizers is a possibility to resurrect a finalized object, i.e., to
create a new reference to the object during execution of the finalizer. However, it is not
recommended to use this feature due to the object (and usually some of referenced objects)
is already finalized and therefore it needs to be registered for finalization again by calling
GC.ReRegisterForFinalize method. It is important to note that the call of this
method does not cancel the effect of CG.SupressFinalize call.

2.5.3 Optimization of Performance
To improve the performance of the garbage collection, GC uses generation mechanism. It
assumes that newer objects have shorter lifetime and are frequently accessed. Therefore,
every new object is marked to be of generation 0. After it survives garbage collection it is
marked as member of generation n+1, where n is generation number. Garbage collection
then occurs when generation 0 is full. If garbage collection of generation n does not create
block of free memory large enough, garbage collection is performed for generation n+1.

Next possibility how to improve the performance of an application is to use weak
references. In order to access an object a strong reference is needed. When the object is
referenced by the weak reference, it is allowed to perform garbage collection over the
object. However, it is still possible to retrieve the strong reference to it until its garbage
collection.

It is useful for large memory structures that are used only time to time. By using weak
references, these structures can be removed when a memory is needed, i.e., in the case of
low free memory. Weak references are represented by System.WeakReference class.

2.6 Exception Handling
To provide comfortable way of handling errors and exceptional situations, the CLI
supports exceptions and their handling. Only class instance is allowed for using as
exception object, i.e., while it is possible to use boxed type for such purpose, use of pointer
or unboxed type is forbidden. Class, which is used as exception object, shall be either

2 .NET Framework

22

instance of System.Exception or instance of derived class. The user is allowed to
create its own exceptions by deriving a class from either System.Exception class or
another class that is derived from System.Exception. This subclassing of exceptions
may used to provide more information for raised exception.

The support for exception handling is provided in form of protected blocks of code (also
called as ”try block”) and exception handlers. A single protected block shall have exactly
one handler. This handler can be associated with finally handler, fault handler, type-filtered
handler, and user-filtered handler.

Finally handler is executed whenever the block exists no matter if the exception was
thrown or not. Opposite of that, fault handler is executed only in the case of exception
being thrown. Type-filtered handler handles exception of specified class or exceptions that
are derived from specified class. User-filtered handler is used to determine whether the
exception is handled, ignored, or passed to the next protected block.

An exception can be raised either by the user or by CLI. In the case of CLI, exceptions are
usually raised when an instruction is executed. The exact time of a throw is not specified
but the exception shall be raised before an execution of the instruction that caused the
exception.

The CLI has its own set of exceptions (e.g., ArithmeticException,
DivideByZeroException, SecurityException, etc.), which are instruction
dependent (i.e., they can be raised only by a specific type of instruction). However, a
special exception can be raised by all instruction. It (i.e.,
ExecutionEngineException) is raised whenever inconsistency of CLI occurs. Only
unverified code can cause this exception to be thrown and it is usually caused by
corrupting a memory. Inconsistency is detected before such instruction is executed and
ExecutionEngineException is general way of handling it.

Next important exception is resolution exception. This exception occurs in the case of
using invalid or mismatched reference to an interface, a class, a base class, a method, or a
field. The time of a throw is implementation dependent. It is possible to raise the exception
during initialization of a type. In such case, the static initializer is not executed. It is also
possible to raise this exception at installation time or type loading time. In this case, the
type load may fail and appropriate exception is thrown, e.g., when a type fails to load, a
TypeLoadException is thrown. Another example is when the required method is
accessible, but violates declared security policy. It this case a SecurityException is
thrown.

The last possibility to throw this exception is before the instruction is executed. Such
exception has the highest priority possible, i.e. if there is a need to raise the resolution
exception, no other exception may be thrown. Further execution of instruction that passed
the test (i.e., no resolution exception was thrown while the instruction was executed for the
first time) shall not throw the resolution exception.

Exception handling is performed via table of handlers. Each method has such table that
contains list of handlers of specified types. The order of handlers is important. When an
exception is raised, CLI searches for a handler that suits raised exception, i.e., handler that
handles the exception. If the handler is found, an exception object that contains a
description of the exception is created and appropriate handler is executed. Both finally
and fault handlers are called before the corresponding exception handler is executed.

If there is no appropriate handler, table of calling method is searched. If it is a top-level
method (i.e., there is no calling method) and still there is no exception handler, CLI dumps

2 .NET Framework

23

a stack trace and aborts a program. A debugger can be used to inspect the contents of the
stack before any stack unwinding is performed.

2.7 Assemblies
Assembly is fundamental deployment unit that is part of managed environment. It is a
scope and security boundary for types contained within. It consists of modules and other
files. Module is a single file that contains executable content and it may contain description
of the assembly.

Assembly may be either static or dynamic. Static assemblies are stored in form of a file
and are loaded and then executed. Opposite of that, dynamic assemblies are created in a
memory during runtime. It is possible to store dynamic assembly outside the memory.
Both static and dynamic assembly shall contain its descriptions.

Assembly provides its description. Opposite of COM technology, the assembly does not
need additional registration or registry record. This fact simplifies installation,
uninstallation, and replication of an application.

2.7.1 Manifest
Each assembly contains description of self in form of a manifest. Only one manifest is
allowed per assembly and it is possible to read the information during runtime. Manifest
contains assembly name, strong name information (i.e., public key from publisher), list
of all files that are part of the assembly, cryptographic hash, culture information,
originator public key, and version number.

All files of the assembly shall be stored in the same directory as module that contains the
manifest. Cryptographic hash for the contents of the file applies only to assemblies that
consist of more then one file. It is coded by SHA1 algorithm and all CLI implementation
shall use it to provide compatibility with other implementations.

Culture information informs about the specific culture for which is the assembly
customized. It is case-insensitive string and follows format described in [RFC1766].

Originator public key is a public part of the key for RSA algorithm that is possible to use
to encrypt cryptographic hash. This key is then used while assembly loading to check
whether is a loaded assembly similar to an assembly that used while compilation.

Version number provides information about version of the assembly. It consists of four 32-
bit integers. These integers represent:

• major version: This number shall be changed only in the case of large modifications
(e.g., complete rewriting of assembly) to the assembly. Assemblies with different
major version are not interchangeable, i.e., they are not backward compatible.

• minor version: Change of this number while maintaining the same major version
number means that even though some significant enhancement were made, the
assembly is still backward compatible.

• build: This number is increased every time the new build from same sources is made.
Appropriate use of this number is to detect change of compiler or platform.

• revision: This number is changed every time a modification to source files is done. It
means that even thought some bug fixes or optimization to code were done, the
assembly is still fully interchangeable with previous version (revision).

2 .NET Framework

24

Standardized libraries do have last two numbers zeroed. First two numbers (major and
minor version) detects whichever functionality and additional featured of virtual machine
is needed. It may also detect the needed version of virtual machine. Non-standard libraries
shall either ignore it or fill it with appropriate information. Version information is used for
versioning (see subsection 2.7.2).

2.7.2 Versioning
In non-managed (e.g., win32) environment users are sometimes experiencing problems
with different versions of DLLs. It usually happens when some application during
installation rewrites the current version of DLL with either older or newer version. This
can then lead to a crash of the other application due to different versions of DLL usually do
not guarantee backward compatibly, i.e., they have modified interface. In addition,
applications usually expect only one version to be installed on a machine. This can lead to
problems with overwriting of DLLs described above. This is a problem of maintaining
consistency between set of components, which were used to build the application, and
components currently present at run-time.

Assembly versioning is an attempt to solve it. It is possible that the same assemblies,
which differ only by a version, will coexist at one machine without side effects. However,
versioning is available only for assemblies with strong names (i.e., signed assemblies; see
section 2.8).

When an assembly is requested to be loaded, system decides whichever version will be
picked. First system retrieves the information about needed assembly from manifest. Then
it checks applicable configuration files, looks for available assemblies, and finally
determines version that shall be loaded.

Configuration files, which influence the version determination, are stored in XML format
in order to make possible for the user to manually edit them. There are three kinds of
configuration files: machine configuration (it is applied to the whole machine), application
configuration (it specifies information about application, policy for assembly binding, and
among others it contains application settings), and security configuration (it provides
information about security permissions). Even though it is possible to modify the
configuration files by hand, it is not recommend approach due to corruption of such files
may lead to application failure. For more detailed information see [MSDN].

2.8 Security
In non-managed environment, an application or library usually needs to be installed on
local system in order to be used by the user. Opposite of that, managed environment allows
dynamic download and remove execute of a code. However, this means a possibility that
malicious code will be executed. Therefore, available security system shall prevent
damages to the system. Every application (assembly) has to interact with it and handle
possible security exceptions due to system may deny required permissions. It is important
to know that security system setting may differ from computer to computer.

The application (assembly) may specify permission that it either requires to run or does not
want. The syntax of permission declaration is either declarative or imperative. Declarative
syntax means use of attributes (see section 2.10). Permissions are then stored in metadata
and used while compiling. It is possible to express all security actions by declarative
syntax. However, it is not possible to change declarative security at run-time.

Imperative syntax is based on creating an instance of permission class and invoking its
methods in order to set the security permission. This approach allows constraints to be

2 .NET Framework

25

made at runtime. However, it is not possible to express all security actions by this
approach. Figure 2.6 shows simple example that is illustrative. It uses C# syntax.

Figure 2.6: Example of setting permission to read C:\Dir\File by declarative (upper) and

imperative (lower) security syntax

There are two kinds of security: code access and role-based. Role-based security is based
on knowledge of the user and the user's role. Code access security does specify permission
for an assembly. The assembly may declare either required permissions or permission that
it does not want. Permissions, which are granted to the assembly, are based on source of
assembly code (e.g., local intranet, internet, etc.) and it may restrict access to local file
system, registry, network, user-interface, or execution environment.

Permissions are provided in sets and managed environment contains predefined sets of
permission, e.g., FullTrush, SkipVerification that allows assembly to skip verification
process (see section 2.4), Nothing that grants no permission, Internet that represent non-
trusted source with restricted access to local machine (e.g., files), etc.

Permission granting is controlled by security manager. It uses supplied assembly
information (also called evidence) and it passes it through policy levels. There are four
policy levels: enterprise, machine, user, and application. Each level may modify set of
granted permission supplied by previous level, however, granting of a permission that was
denied by a higher level is not allowed.

Each policy level contains a tree of code groups (see Figure 2.7). It is a tree of conditional
expressions and permission sets. A permission set is granted if the condition is evaluated as
true. Evaluation of branch is stooped whenever the condition fails.

Figure 2.7: Example of tree of code groups

2.9 Multithreading
System uses process to separate applications. There exist multiple threads per process.
Managed environment creates further division of processes into managed sub-processes
called application domains. A system process may contain multiple application domains.
Each domain is started in single thread. Domain has own security permissions and it is
represented by System.AppDomain class.

2 .NET Framework

26

Within single application domain, multiple managed threads may exist and such threads
are represented by System.Threading.Thread. Managed environment also provides
support for asynchronous programming. This means that a thread does not need to wait for
results of an operation. It just initializes the operation and provides callback that handles
the result. Support for synchronization primitives is also provided by managed
environment. The primitives are:

• Synchronized methods: Methods containing a lock visible across all threads that
control entry point of particular method.

• Explicit locks and monitors: Managed environment provides support for basic
snychronization primitives, such as, monitors, mutexes, events (with either automatic
or manual reset of a status), and locks that support single-writer and multiple-reader
semantics.

• Atomic operations: Atomic operations are operations that cannot be interrupted by
switching of threads. Managed environment supports atomic operation with variable,
such as increment, decrement, exchange, and comporare-and-exachange (i.e., value is
compared with supplied one and if it is equal the exchange of value is performed).
Atomic operations are represented by System.Threading.Interlocked.

CLI itself shall guarantee that reading and writing of properly aligned memory location,
which is not larger then native integer, is atomic. However, a developer shall not assume
that values are properly aligned. Instead of that, the developer shall use class
System.Threading.Interlocked for atomic operations.

2.9.1 Thread Pool
To improve performance of multithreaded application, support for thread pool is provided
by managed environment. A thread pool is a group of threads that handle a request (job).
Number of threads in thread pool is dynamic and depends on current CPU usage in order to
gain maximum performance. Thread pools shall be used for relatively short tasks that do
not block other threads. Even thought multiple threads may exists in a single process, only
one thread pool is allowed per single process. This centralizes control over thread pool and
makes possible to gain maximum performance (i.e., there is no third party thread pool that
may decrease performance). All application domains in a process share the same thread
pool.

Thread pool also offers an effective way how to create a code that is executed when the
synchronization object is signaled. Only mutexes and events (both with manual and
automatic reset) are supported and it is possible to set the method to be executed either
every time the synchronization object becomes signaled or only once. The execution
scheme is then optimized for minimum CPU time leaks.

2.9.2 Multithreading vs. Garbage Collection
To make garbage collection possible in multithreaded application, all threads are
suspended while GC performs its task. It is also possible for GC to modify thread stack in
order to make thread to initialize the garbage collection. This approach is called hijacking.

Another approach uses so-called safe points. It is based on a fact that GC can perform
garbage collection undisturbed when a thread is executing unmanaged code. This
concurrent run of GC and the thread is possible due to unmanaged code cannot access the
most of managed objects with exception of pinned objects. Pinned objects are objects that
cannot be moved or removed by GC. When then the thread returns back to manage code, it
is suspended until the GC finishes its task.

2 .NET Framework

27

2.10 Attributes
Attribute is a facility that allows an additional property to be specified for either an
assembly or code elements, such as types, fields, methods, and properties. It may also
provide further information and affect run-time behavior, e.g., it is possible to mark a
particular code element to be obsolete, it is possible to allow an enum to be used as a field
of bit flags, etc. Attributed are also used to specify declarative security permissions. Use of
an attribute modifies metadata.

Metadata contain additional information to code elements or an assembly. This makes
possible for a file to provide its description (i.e., self-describing file). It is used for
assemblies and due to that, the assembly, opposite of COM, does not need registration in
order to specify its functionality.

All attributes are derived from System.Attribute class and it is possible to specify to
which code element can be such attribute applied. It is allowed for the user to create its
own attributes that may provide user-specific information. Example of an attribute can be
found at Figure 2.8. Example is illustrative and uses C# syntax.

Figure 2.8: Example of attribute applied to method FooMethod. It causes a compiler

warning with specified string to be generated at compilation time

2.11 Non-managed Code Interoperability
Due to the fact that there exist many non-managed libraries that are useful, managed
environment (.NET Framework) provides support for accessing non-managed code and
COM (Compound Object Module; see [MSDN]) that has direct support. When managed
code accesses COM, a so-called Runtime Callable Wrapper (RCW; see Figure 2.9) is
created. RCW handles COM interface querying, method calls, and data conversion,
because of caller and called code may have different representation of data and data
structures.

Figure 2.9: COM interoperability scheme

It is also possible for a non-managed code to call a COM that is implemented in managed
code. In such case, managed environment creates wrapper called COM Callable Wrapper
(CCW) that is similar to RCW, i.e., it handles method calls and data conversions. This
feature provides a backward compatibility for older applications that are based on COM
technology.

2 .NET Framework

28

Even thought time costs of COM calls are considered low, it is not recommended to use
COM interoperability for components that perform only short tasks. In this case, complete
rewrite of this COM component to managed environment is recommended.

Sometimes are non-managed libraries available only in from of set of C-style functions
stored in DLL (e.g., Win32API). Therefore, managed environment provides support for
invoking of C-style functions. It is called as Platform Invocation (also P/Invoke)
mechanism. This mechanism performs data conversions of function parameters and
provides support for callbacks. However, it is not possible to directly call managed code
from non-managed one. In such case, use of COM is recommended.

Code that uses P/Invoke mechanism cannot be verified and therefore it has higher security
requirements, i.e., FullTrust set of permission is needed in order to run application or
assembly that uses non-managed code. In order to use P/Invoke mechanism a function
header has to be specified together with target DLL by DllImportAttribute.

The third approach that is available when interoperating with non-managed code is to use
language that supports mixture of managed and non-managed code. Due to that, it is
possible to link non-managed library similar to a usual approach for library linking and call
non-managed code. This approach is usually called as "It Just Works" (IJW) and example
of language that provides support for IJW is Managed Extension C++ (MC++).

3 Programming Languages for .NET

29

3 Programming Languages for .NET

.NET is not only an environment that handles memory management and runs generated
CIL code, but it is also specification of interface that can be used by programming
languages. It specifies type system (CTS; see section 2.1) including allowed operations
over specified types. It also describes recommended library interface construction
including naming conventions and recommended usage of namespaces, classes, interfaces,
etc.

This means, that .NET specifies interface and property of such interface and therefore it is
possible to create compilers for various languages to aim .NET. This is also one of the
purposes of .NET: to make cooperation of various languages as easy as possible.

Currently there exist compilers for Eiffel, Ada, Visual Basic, C++, C#, etc. This chapter
contains brief introduction into languages that were used for implementation and testing,
i.e., C++ and C#. Rather then complete description of both syntax and semantics; this
chapter is an introduction into the most important language features and properties.

3.1 C#
C# (pronounced C Sharp) languages is a special object-oriented language. It is special
language, which was created for .NET in order to make most of CLI capabilities available
to user. Its design is aimed on simplicity (those of Visual Basic) and the shorted learning
time as possible. Therefore is syntax very close to syntax of C/C++. C# is ECMA standard
and for detailed syntax and semantics description see [CSharp]. This section describes
major aspects of the language.

C# does have preprocessor similar to C/C++. However, it is not possible to use compile-
time constants (#define) as macros, i.e., to replace portions of code before code is
compiled. These compile-time constant are used for conditional compilation only, i.e., to
exclude blocks of source code using preprocessor directives #if or #elif.

Next major difference in comparison to C/C++ is an absence of header files. It is situation
similar to Java, i.e., single source code file contains both declaration and implementation.
However, single source code file may contain more both accessible and visible classes.

Language fully supports Unicode even for identifiers. It also has support for multithreading
in form of lock keyword that allows to put block of source code under protection of
critical section.

3 Programming Languages for .NET

30

C# also contains special keyword (foreach) that simplifies iteration through arrays or
linked lists. Language includes implicit boxing of value type whenever it is needed, e.g.,
when performing type casting of value type (Int16, Int32, etc.) to System.Object
type. Next interesting property of the language is that it is possible to add explicit overflow
checking for arithmetic operations (checked keyword).

Language itself has support for unmanaged code interoperability (see section 2.11) in form
of unsafe and fixed keyword. However, code that uses these keywords require high
security permission to run and therefore it may cause security policy exception to be
raised. For details see [CSharp].

3.1.1 Class and Class Members
Class is a fundamental language construction of C#. Class type and class type properties
are described by CTS (see section 2.1). Class type does support attributes that may
specify additional properties such as security permission, structure members memory
layout, etc.

Class is declared similar to C++, i.e., by using class keyword. However, opposite of
C++, only one parent is allowed for a single class and each class (excluding
System.Object) is implicitly derived from System.Object. C# supports abstract
classes (abstract keyword) together with classes and class member whose overriding is
not allowed (sealed keyword).

Value types are declared using struct keyword. Both class types and value types (with
exception of nested ones) shall have their visibility and accessibility specified. Only two
modifiers are supported for them: public and internal that is similar to assembly
accessibility permission (see subsection 2.1.10).

Similar to C++, current instance of class is reference by this keyword. However, unlike
C++, base class is reference through base keyword. Next difference is that each class
member including nested types shall have both its accessibility and its visibility specified.
It is possible to choose from four accessibility modifiers: private, protected, internal, and
public. Similar to C++, if accessibility modifier is not specified then class member is
private.

Opposite of C++, C# does not allow default values for method parameters and each
method parameter may be specified to be input, output (out keyword), or input/output
(ref keyword). This together with compiler checking for use of local variable, which was
not initialized, shall increase programming safety, e.g., during method call it is not possible
to use uninitialized variable for input/output parameter while its use as output parameter is
allowed.

C# support virtual methods, however, syntax of their overrides differs from C++. When
virtual method is first declared keyword virtual is used. While overriding it, keyword
override needs to be used instead of virtual. Operator overload is also supported,
however, the syntax is slightly different that those of C++.

Language supports destructors, but they are similar rather to finalizers then to C++
destructors, i.e., they are called during finalization of object. It has also support for
exception handling in form of try-finally, try-catch, and try-catch-finally blocks (see
section 2.6).

3 Programming Languages for .NET

31

3.1.2 Example
To illustrate some properties of language a short example is included (see Figure 3.1). In
this example, first class MyClass is defined (line 1) that supports interface
IDisposable. The class contains protected field (line 3) that is initialized to value 7,
public method (line 4), public constructor (line 5), and property (line 6) with its getter (line
8) and setter (line 9) method defined.

The entry point of an application is specified in form of Main method (line 12) with an
attribute (line 11). This method first creates instance of MyClass (line 14), writes value of
StoredValue property to standard output (line 15), and calls method Dispose (line
16).

Figure 3.1: C# source code example

3.2 C++ Managed Extension
C++ is one of the languages that have compilers for .NET. However, language itself does
not contain construction that would support .NET capabilities. Therefore, C++ is supported
in form of C++ Managed Extension (MC++) that differs from plain C++ in few details.

MC++ supports attributes, properties, delegates, etc. It also widens accessibility permission
of C++. It is possible to specify accessibility rights of class type members for both
assembly and outside world by declaring two accessibility modifiers at once. The modifier
with more restricting accessibility permission is valid for outside world, while the other is
valid for the assembly, e.g., public private accessibility right means, that the member is
private to the outside world and public for referents that are members of same assembly
(i.e., it is similar to internal; see subsection 3.1.1).

Managed version of C++ also adds a few new keywords that are prefixed with two
underscores. These new keywords allows usage of managed environment capabilities:

• __nogc is used when declaring non-managed type (class, structure). It is implicit for all
types and it is inherited, i.e., it is not possible to derived managed class from non-
managed one.

• __gc specifies managed (garbage collected) reference type (see subsection 2.1.1). Such
class is allowed to have only one parent, but may implement multiple interfaces. This
keyword is possible to use to define managed pointers and managed arrays. These
arrays are similar to C# arrays, i.e., they have boundary control and automatic

3 Programming Languages for .NET

32

initialization of array members. It is possible to have non-managed members of
managed class. However, it is not permitted to have managed members of non-
managed class. Similar to __nogc, it is not possible to derive non-managed class from
managed one.

• __value denotes managed value type. It can be used with struct, class, or enum
keyword. Its use with struct or class keyword is similar to struct keyword
in C#.

• __abstract denotes abstract class.

• __sealed protects class or method from being overridden.

• __interface declares managed interface. It is similar to interface keyword in C#.

• __delegate declares delegate that is roughly comparable to C++ function pointers.

• __property denotes getter or setter method of property or indexer. Return value of
getter method shall have same type as one of the setter method parameters. Usage of
property is possible either by calling method or similar to C# (i.e., by specifying
property name together with assignment operation).

• __pin specifies pinned pointer. This pointer is similar to __gc pointer, but it prevents
garbage collector from moving of an object during garbage collection. Object is then
unpinned by setting pinning pointer to 0 or by running out of scope where wan pinning
pointer defined. It is allowed to use pinning pointer only for local variables.

• __box performs boxing operation of value type.

• __identifier allows use of C++ keyword as identifier.

• __try_cast tries to perform type conversion. If it fails then it raises an exception.

• __type_of gets type (System.Type) of specified type.

The important advantage of MC++ is that it allows mixing of managed and non-managed
code. It uses IJW (see section 2.11) and therefore its cooperation with non-managed code
is very easy.

The use of MC++ may also lead to higher performance then in the case of C#. It is also
little bit more flexible (e.g., it allows C/C++ macros for preprocessor), however, the syntax
is somehow cumbersome in comparison with C#. Also the fact that is allows to mix
managed and non-managed code means that there is no verifier for MC++ (see
subsection 2.1.12).

3 Programming Languages for .NET

33

3.2.1 Example
To illustrate how does MC++ code actually look like, a short example is included at Figure
3.2. This example is similar to example at Figure 3.1 and shall provide an opportunity to
compare C# and MC++ syntax. Example contains both declaration and implementation
even thought they are usually placed in separated files.

Figure 3.2: MC++ source code example

4 Graphical Interfaces

34

4 Graphical Interfaces

The goal of this work was is to introduce common graphical interface to .NET
environment. This chapter contains brief introduction to graphical interface (OpenGL). It
also describes possibilities of graphical output provided by .NET Framework library. This
chapter is a not a complete guide to interfaces that were used, rather it is an introduction.

4.1 .NET Framework Library
Managed environment (.NET) provides facilities to compile, manage, and run code. It
includes .NET Framework library that contains huge set of classes. This set includes
classes that allow user to use GUI of underlying operating system and because of GUI
usually allows simple graphical output, support for such output is provided. Classes that
provide graphical output are members of System.Drawing namespace and encapsulate
services of GDI (graphics device interface) and GDI+ (for Windows platform).

GDI itself is part of Win32API (see [MSDN]) and it is aimed on drawing operating system
GUI. Therefore, it provides simple 2D output. It is possible to draw basic primitives (e.g.,
point, line, rectangle, etc.), to display images, and to write text using available fonts. It also
includes possibility of simple adjustments of images.

GDI+ is improved version of GDI. It adds additional functionality that improves the
output. This includes possibility to use of alpha channel in images in order to support
translucency, support for more 2D graphical primitives (e.g., Bézier Splines), tools for
anti-aliasing of drawn primitives (e.g., lines, curves, etc.), etc. GDI+ also supports
transformation of drawn primitives that is similar to that of OpenGL (see subsection 4.2.2).

Even thought GDI+ improves functionality of GDI it does not support features that are
implemented in current graphical hardware. It provides just enough functionality that
meets needs of GUI. This means that only 2D output is supported and performance does
not usually meet capability of used hardware.

4.2 OpenGL
OpenGL is a graphic library based on commercial graphical system by SGI and was
introduces first in 1992. It is worldwide known interface and is used in both industry and
games for graphical output. Opposite of GDI (GDI+) it is aimed on performance and it
makes possible for the user to use available features of installed graphical hardware. It
provides support for displaying of 3D and 2D object.

4 Graphical Interfaces

35

4.2.1 2D Object Support
The main aim of OpenGL is visualization of 3D objects. Support for 2D objects is limited
and it is based on 3D objects, i.e., drawing of line as 2D graphical primitive is similar to
drawing of line as 3D object on a surface. It is also possible to use OpenGL for pure 2D
operations (image processing) because the interface contains functions for setting and
retrieving values of pixels inside a specified area (rectangle) at the target frame buffer.

Unfortunately, these functions do not have good hardware support and their capabilities are
not sufficient. This usually leads to lower quality of output (e.g., nearest-neighbor
approach is used for scaling) or performance loss. Therefore it is better to use simple 3D
objects with texture mapping instead of these pure 2D objects and because of features that
are commonly supported by the hardware, the use of simple 3D object instead of 2D ones
leads to improvement of performance.

4.2.2 Basic Features
OpenGL library provides complete rendering pipeline. This pipeline supports facilities for
visualization of 3D objects, i.e., it handles clipping, lighting, texturing, transformations,
and visibility solving. It may handle more tasks, however, these ones are fundamental and
are supported by all versions of OpenGL. The result of 3D world projection is then
rendered to the given frame buffer or window of current (underlying) GUI; i.e., projecting
on render target.

Each object is described by its surface. Geometry of such surface can be specified using
few basic render primitives, such as points, lines, triangles (including triangle strips and
fans), and quads (including quad strips).

The library also provides light and lighting computation as a standard part of the rendering
pipeline. It is possible to choose from common light types, such as point light, directional
light and reflector and to set up their parameters. These light types are often supported by
the hardware. If such support is not available on current graphic hardware, OpenGL
implementations provide software emulation.

It is also possible to cover surface of every rendered primitive with user-defined material.
The material describes interaction of surface and light, i.e., it describes its color. The
description of surface may also include texture specification.

Texture is an image that is mapped on the surface (i.e., surface is covered with the
texture). Each object may be covered with 2D or 1D texture. Use of multiple textures on
single object (i.e., multi-texturing) is also supported as well as techniques that shall
improve the result of texture mapping (e.g., mip-mapping, perspective correct mapping).

To allow object geometry manipulations, OpenGL provides support for transformations
of rendered geometry (i.e., vertices) before its rasterization on target (screen, image)
surface. Transformations are provided in form of matrices. Thanks to mathematical
background (for detailed descriptions see [Wat00]) of such form, it is possible to combine
simple transformations by multiplication of transformation matrices.

OpenGL uses it and provides support for combining of simple (particular) transformations
into complex one. Particular transformations can be set either by the user (e.g. in the form
of matrix) or by standard library functions. Such functions offer a possibility to
parameterize basic transformations, such as rotation around given axis, translation by a
given vector and scaling by given coefficients. The output of such functions is
automatically combined with results of previous combinations.

4 Graphical Interfaces

36

Currently there are two matrices in OpenGL: projection matrix, which is used for final
projection of transformed 3D objects on 2D surface, and modelview matrix, which is used
to transform rendered 3D objects before their projection and rasterization (see [GL13]).
User is allowed to retrieve, to paste, or to store current transformation (both projection and
modelview) matrix on internal stack. The latest mentioned feature simplifies rendering of
hierarchical object (e.g., robot arm, human body, etc.).

OpenGL also provides support for solving visibility of rendered objects in form of Z-
buffer. This approach of visibility solving is based on pixel basis, it is supported by
common graphical hardware, and therefore its use does not decrease performance. Similar
to Z-buffer OpenGL also supports stencil-buffer that is used to mask parts of render target
on per pixel basis. However, stencil-buffer is not supported by older graphical hardware
and therefore its use may lead to significant performance degradation in some cases.

4.2.3 Interface
Interface is the most important part of a library. It is the only part visible to the user. In the
case of OpenGL, this interface consists of a group of functions and constants. These
functions are not grouped into classes and therefore it is possible to use the library in non-
object-oriented languages (e.g., C). However, this construction may lead to disadvantage of
not-well readable source code that uses OpenGL.

Interface structure (i.e., contained functions and constants) is defined by specifications (see
[GL13, GL14]) that are open to the public. These specifications also describe behavior and
prescribed reaction of the library to calls of its interface functions.

One of the important advantages of OpenGL interface is its stability. This means that each
new version is full backward compatible and it neither adds a complete set of functions nor
modifies existing ones. It just enlarges the existing set of functions (and/or constants) by
new ones. OpenGL implementation, which fulfills particular specification, provides all
functionality described. This means that even thought it may benefit from hardware
support of features described by specification, it shall also provide software emulation if a
feature is not available in hardware.

The additions and changes that are introduced by a new version usually follow common
features that are implemented in the available graphical hardware. However, the version of
OpenGL is not updated fast enough to reflect evolution of the hardware and therefore latest
features are supported in the form of OpenGL Extensions (see subsection 4.2.5).

To show how an actual source code using OpenGL interface looks like, there is a short and
simple example at Figure 4.1. Example uses C language and it does not contain platform
specific (e.g., initialization) code.

Figure 4.1: OpenGL code example

Output of the example is a white triangle on black background. Fist function in the
example sets color (black) for clearing the background. Then the background is cleared
with such color. Afterwards the color of the triangle is set. The following block of the
source code defines the triangle (i.e., sets coordinates of its vertices). The last function

4 Graphical Interfaces

37

ensures that all functions above are actually performed (i.e., they do not stay waiting in the
queue or buffer to be performed later).

4.2.4 Inside of OpenGL
From inside view behavior of OpenGL is similar to a state machine. Each function
(excluding function used to retrieve data and state) modifies the current state of the
machine. This state then influences the result of the rendering and modifies function
behavior.

Interface functionality and behavior are described by standardized specification. However,
a real implementation is something a little bit different. It follows behavior described in the
specification but in some cases (usually error handling), it slightly differs.

Some implementations provide robust and very stable background so they are able to
absorb user's mistakes without any visible feedback while others strictly follow the
specifications and in the case of such mistake, they provide an unpredictable output.

This depends also on the used graphical hardware and sometimes on the used version of
the device drivers. It can lead to difficulties while debugging when user develops his/her
application using robust implementation and then get strange output using another, less
robust.

4.2.5 Extensions and Other Libraries
OpenGL provides functionality for rendering of basic primitives with defined properties
(e.g., lights, texture, etc.) Unfortunately, this functionality is sometimes not sufficient or its
use is too difficult. Therefore, together with OpenGL there exist several libraries (GLU,
GLUT) or add-ons (GL Extensions).

One of these is the GLU (OpenGL Graphic System Utility Library; see [GLU13]) library.
It provides hi-level functions and functionality for OpenGL. It simplifies setting of
projection transformation and provides facilities for rendering and tessellation of
parametric surfaces (e.g., NURBS) and quadrics (e.g., sphere).

Another case of such library is the GLUT library. It aims at simplification and unification
of OpenGL initialization and its cooperation with currently available GUI. This is because
OpenGL interface itself is standardized by specifications while its initialization and
cooperation with current GUI is not. In addition, OpenGL does not contain any facilities
for input because it handles output only.

Due to that, the initialization may not be simple enough and it is as well as user input
handling platform specific. Therefore, it may complicate porting of an application to
another platform. The GLUT library provides environment, which unifies these tasks and
makes source code portable to different platforms.

Add-ons such as GL Extensions were mentioned last. These are part of the OpenGL
library and provide a possibility to use the latest hardware features, although they are not
available in specifications yet. However, the main drawback of GL Extensions is that, they
are not part of the specification and that each graphical hardware vendor usually creates its
own set. Due to that drawback, OpenGL implementations do not support their software
emulation in the case they are not supported by graphical hardware.

5 The Goal

38

5 The Goal

This chapter describes in detail goal of this work and it explains the reason for particular
goals. The chapter does not contain description of difficulties and description of current
state of the art.

In the beginning of year 2002, the final release version of .NET Framework was released.
The .NET Framework is collection of libraries and runtime environment (for more details
see chapter 1). This environment is quite comfortable and together with libraries that are
shipped as a part of .NET Framework it offers quite powerful environment.

However, none of these libraries offers hi-speed graphical output that would be
comparable to OpenGL/GLU or DirectX. Therefore, the goal of this work is to connect the
comfort of .NET and performance of OpenGL together. The result shall benefit from both
of them, i.e., from managed memory (.NET) and from worldwide known interface of
OpenGL/GLU.

The result shall completely avoid use of unsafe blocks of code in a code that will use the
result. This shall increase a possibility of code verification for languages that have verifiers
and can lead to better code optimization during compilation.

Next goal of the work is that the result (library) shall be CLS-compliant, i.e., it shall
follow CLS rules mentioned in [CLI-I]. This shall make an interface of the library usable
in languages whose compilers aim .NET (for more details see [CLI-I]).

Due to .NET is aimed on object oriented languages, the result shall be object-oriented
even thought the OpenGL/GLU is not. The result shall not be just encapsulation of all
OpenGL functions into single object as static methods but it shall split it into a few classes
based on the meaning of functions.

This shall make possible to separate various OpenGL/GLU versions in order to make
possible for the user to select and use just the version that it is needed. It shall increase
flexibility. However, the split shall not create an interface, which is completely new. The
result shall maintain the highest possible compatibility with original OpenGL
specification. This shall simplify learning of this interface.

Next important goal of the work is to increase programming safety, i.e., simplify
debugging. This will achieved by additional method parameter checking and by replacing
constants with enumeration data types.

5 The Goal

39

Parameter checking shall be aimed on use of arrays as the source of many application
crashes, e.g., the application rewrites wrong part of a memory due to user passed too short
array to retrieve data.

Replacing of constants with enumeration data types is similar to parameter checking, i.e.,
it shall prevent user from passing invalid data to a method (e.g., parameter value that is not
valid for particular interface version).

It is clear that this additions increase library port overhead, i.e., it may cause such code to
be somewhat slower that its non-managed counterpart. Therefore, the result will be
available in two versions:

• debug version, that will be used for debugging purposes and will contain full
parameter checking mechanism. This version will be aimed on programming safety
rather then on performance.

• release version, that will be stripped of parameter checking and other additional code.
This version will be aimed on performance rather then safety. The recommended use
of this version is for a code that was developed with debug version.

The next important goal of the work is to simplify porting of a new version or GL
Extension. This simplification shall minimize need of manual input in the form of a tool.
The tool shall create a template for particular OpenGL version/GL Extension that can be
then adjusted manually.

This work includes creation of set of examples that shall test selected functions for
correct behavior. These examples may be used for testing of correct implementation of an
interface. They may be used in the case when the inner implementation of port changes and
there is a need to check whether the new implementation behaves same as the previous
(correct) one.

The result will be measured in order to compute slowdown due to overhead of porting.
The measurement shall be done for selected functions and few scenes. The values then
will be compared to other existing solutions (see chapter 1) and non-managed version. It
shall prove whether is the slowdown of the result significant for single functions and
whether is the slowdown significant for whole scene as mixture of previously measured
functions.

The result shall not be complete port of all OpenGL/GLU versions and GL Extensions. It
shall rather prove if the selected solution is useful and it shall create mechanism for porting
of newer OpenGL/GLU versions and GL Extensions.

6 Introduction to Porting and Difficulties

40

6 Introduction to Porting and Difficulties

This chapter contains introduction to porting of library. It shall describe possibilities,
advantages, and disadvantages of this process. It shall also describe difficulties that occur
when creating non-managed library port. This chapter is not aimed strictly on OpenGL. It
is general introduction, which shall explain majority of terms used in next chapters.

6.1 Porting × Wrapping
The goal of this work was described in previous chapter (see chapter 1). It was mentioned
there, that the result is a port of OpenGL library. This section describes possibilities of
porting without aim at any particular library. However, it does not contain description of
COM-based libraries that have direct support from .NET Framework.

For non-managed libraries that are not based on COM technology, there are two ways how
to achieve the needed port:

• porting of a source code,

• wrapping of an interface.

6.1.1 Porting of Source Code
Porting of source code means to rewrite original library from non-managed code to the
managed one. Unfortunately, this means that there must be changes done at source code
level: changes, which are not trivial, and changes that may lead to significant modification
of internal library structure.

Syntax of source code needs to be changed as well as the structure of the library including
an implementation of algorithms. This is because managed environment (.NET) has
different requirements. Compared to non-managed environment that was used for
implementation and development of the library, managed environment has several
restrictions, e.g., memory access, memory management, etc.

It means that it is not possible to use pointer arithmetic similar to non-managed
environment in order to create fully verifiable (i.e., without non-managed blocks) library. It
also means that it is possible neither to make port just by compiling the source code with
compiler that aims managed environment nor to convert it to language that aims .NET
(e.g., C#) and then compile it. That is why the automation of this process is not trivial.

6 Introduction to Porting and Difficulties

41

These libraries are usually huge. This means that it would take too long to rewrite the code
and therefore it could happen that the next version of library would be released before the
old one is ported. In addition, this approach is possible only for libraries whose source
code is available to a developer.

Next problem of this approach is the fact that some libraries are heavily system-dependent
or low-level (e.g., OpenGL). Therefore porting of such libraries on the source code level is
either not possible (i.e., original library uses block of machine code) or leads to libraries
that may not execute on another platform (i.e., library depends on operating system calls).
Both of these cases lead to library that may contain non-managed code and therefore it
cannot be considered verifiable.

The major advantage of this approach is that the result may be fully platform independent
and verifiable. This means that it would be possible to execute such code with lower
security permissions (see section 2.8) and thanks to executional system, it may be
optimized for particular platform more effectively.

6.1.2 Wrapping of an Interface
Opposite of that is the second approach of porting of non-managed library to the managed
environment. This approach does not need source codes of original library because of it
uses binary form of the original library. The approach is based on a fact that the only
important thing for a developer/user is an interface of such library. The knowledge of
inside mechanisms is not needed for the user that uses such library. User just needs to
know the behavior from the view of the outside world, i.e., to know the interface.

Thanks to that, the only thing that needs to be ported is the interface. This approach is
more flexible in comparison with the previous one. It has one major advantage: it is
possible to automate the task of porting in order to minimize manual input during porting.
It means that ports of new version of the library can be created fast enough and therefore
this shall avoid the situation, where new version is released before the old one is ported.

Next important advantage is that low-level and heavily system-dependent libraries can be
ported with this approach. This means that it is possible to port wide range of system
and/or low-level libraries that usually provide highly useful services for the user (e.g.,
OpenGL).

However, this approach leads to non-verifiable result due to it is a wrapper. A wrapper is
a set of functions (or methods) that are usually similar to functions of the original library.
These functions allow cooperation of managed and non-managed code, i.e., they handle
data sharing, needed conversions, and type casting. Each of these wrapper functions
usually contains call of particular original library function that is non-managed.

This means that binary form of original library needs to be available and therefore such
port of the library is able to run only on specific CPU and/or operating system platform.
This disadvantage is quite significant because every new platform (operating system and/or
CPU) on which managed environment runs needs new port of the library.

It is somehow against the idea of managed environment, where the compiled application
created on one platform can run without any changes on another one. However, it is the
only possibility for porting of low-lever or system libraries. The example of such low-level
library is OpenGL.

Another example is VTK library (refer to [Fra03]). This library is not low-level or system
dependent, however, it is quite huge library and therefore it is not possible to port it as it
was described in the first approach (see subsection 6.1.1). Use of the first approach
together with the fact that the library is quite huge may lead to the problem that was

6 Introduction to Porting and Difficulties

42

described before, i.e., new version of the library can be released before the old one is
ported.

6.2 Difficulties
This section contains description of common problems when porting (i.e., creating a
wrapper) non-managed library similar to OpenGL (i.e., group of static functions and
constants) to managed environment. It briefly describes facilities of .NET that solve (at
least partially) the problem.

However, solution that was used for the work is not part of this section. This section shall
prepare reader for description of existing solutions (see chapter 1) and solution used by this
work (see chapter 1).

6.2.1 Data Sharing
Data sharing is the fundamental role of an interface. It is the only way the library
communicates with the code that uses it therefore it is very important to achieve simple
and effective data sharing between the code and the library. In the case of this work, data
are shared between managed and non-managed environment. The approach to the data
sharing depends on used data type, i.e., value data types are handled differently then
referenced data types or callbacks.

Sharing of built-in value data types (see section 2.1.1) is simple and it is fully handled by
P/Invoke mechanism. It is simple because of the memory layout of such types is usually
similar to a memory layout of appropriate non-managed data types (for ix86 compatible
platforms).

Similar situation governs other value types and structures that are passed same way as
built-in value types, e.g., they are copied onto the stack when particular function is
invoked. However, the major difficulty of data sharing is use of arrays whose members
are value types. This difficulty is caused by managed memory of .NET environment.

In the case of .NET environment, the memory is managed, i.e., there is a facility called
Garbage Collector (see subsection 2.5.1) that handles memory deallocation and
optimization of free memory layout. This means it can release allocated memory blocks
and move allocated blocks of memory in order to compact allocated ones.

The automatic deallocation happens whenever there is no reference (e.g., managed pointer)
to such block of the memory. The deallocation may happen even thought there is active
reference to such block of the memory in the form of non-managed pointer because of non-
managed pointers are not registered by managed environment. From viewpoint of managed
environment, non-managed pointers are considered integers no matter the meaning of the
value.

For data sharing between managed and non-manage environment the next important
disadvantage of automatic memory deallocation and layout optimization (garbage
collection) is the fact that it can happen anytime. Therefore, this can be source of
unpredictable access violation exceptions and application crashes.

This means that passed array needs to be protected from garbage collection before it is
passed inside of the library. This is a task that is handled either by P/Invoke mechanism
(see section 2.11), pinning pointers (MC++ __pin keyword; refer to section 3.2), or by
GCHandle structure (i.e., System.Runtime.InteropServices.GCHandle).
Each of these approaches has its advantages and disadvantages that are described in
subsection 8.2.6.

6 Introduction to Porting and Difficulties

43

Similar problem is when array members are reference types or callbacks. This leads to
the need of handling every array member separately and therefore it may cause significant
slowdown. However, this is not case of OpenGL/GLU and therefore it is not handled by
this work or by existing solutions.

To illustrate the problem a short example is included. Let us consider that an array is
passed to the wrapped library and is stored inside of the library for later use. In order to
allow non-managed code to access data stored inside of managed array, a pointer (non-
managed one) has to be retrieved. Such pointer is then passed to the library.

However, let us consider this wrapped function call was made in a method, the passed
array was allocated in the method locally, and the only reference to the array was stored
into the local variable. After the method exits, the reference became invalid and therefore
the array is a next candidate for garbage collection even thought there is reference in the
form of non-managed pointer that is stored inside the library.

After an application invokes a function that uses stored pointer, three situations may occur:

• Function exits properly without any harm to the system, i.e., garbage collection has not
occurred yet.

• Function exits properly but may cause memory corruption, i.e., garbage collection was
performed and referenced memory block may contain different data structures of same
application. This may cause an application crash (or raise an exception) in completely
different part of the code due to some other data were corrupted.

• Function causes access violation, i.e., garbage collection occurred and referenced
memory block is invalid (e.g., it is not longed owned by the application). This usually
crashes the application.

6.2.2 Callbacks
Callback (or callback function) is construction used by interfaces to provide feedback to
the user. In the case of this work, callbacks are used by some GLU functions. Callback
itself may be implemented either by a delegate or by an interface. Its call from non-
managed environment is handled by P/Invoke mechanism. For description of callback
implementation, see section 8.2.8.

P/Invoke mechanism uses delegates and handles data marshaling, e.g., it is possible to
convert non-managed pointer to managed array of given (static) size. The difficulty of
callback use is that some callback functions allow user to pass so-called user data. These
data are then passed as one of the callback parameters and may be used to reference user
data structures. In such case there is a question whether to allow any reference data types
(i.e., classes inherited from System.Object) or to allow just simple integer data types
for user data.

First approach (i.e., allowing generic reference data type) is more comfortable for the
user and does not need any additional structures create by the user because. All structures
are contained within a library port and therefore they are transparent for the user. However,
it causes slowdown due to maintaining of structures that are used for storing user data.

Second approach (i.e., allowing integers only) is less comfortable for the user. It causes
need of additional data structures that are managed by the user. However, this approach
minimizes slowdown due to the structures are handled by the user and therefore the user
may choose the optimal implementation for particular case.

6 Introduction to Porting and Difficulties

44

6.2.3 Void Pointers
Last major difficulty of the interface implementation is a void pointer. In non-managed
environment, it is very useful language construction. A function that uses void pointer as a
parameter can easily get various data structures via void pointer without need of explicit
data conversion. The rest of function parameters provide description of passed data
structure.

However, in non-managed environment there is no direct equivalent of void pointer. The
closest construction to void pointer is use of IntPtr structure. This structure contains
integer number that can be interpreted either as integer (32 or 64 bits) or as void pointer.

The major disadvantage of use of this structure is that its size is platform dependent, i.e., its
size may differ on 32-bit and 64-bit machines. Therefore it may be source of difficulties,
e.g., when working on 64-bit machine with a code that assumes address has length of 32
bits this may cause access violation due to narrowing of 64-bit value to 32-bit.

Important thing to note is that the use of IntPtr structure usually causes need of unsafe
(non-verifiable) blocks of code. Such application then needs higher security permission in
order to be executed (refer to section 2.8).

7 Existing Solutions

45

7 Existing Solutions

OpenGL is worldwide spread interface for graphical output and it is standardized.
However, .NET Framework library lacks interface for high performance graphical output
and therefore there were efforts to create port of OpenGL library to .NET environment.
This section describes existing ports together with their major advantages and
disadvantages. For timing comparison of this work and selected existing solution (CsGL)
see chapter 1.

7.1 CsGL
The most spread port of OpenGL to .NET environment is called CsGL (for further
information and downloads see [CsGL]). It has been developed for about two years; first
version was released at August 14, 2001. It implements both OpenGL and GLU interfaces.

Interface of CsGL consists of static OpenGL/GLU functions that are grouped into few
classes. However, due to inheritance between these classes, final class contains OpenGL,
GLU, and GL Extensions functions.

OpenGL/GLU constants are implemented as static members of particular class. They are
not grouped into enumeration data types due to static member of the class is the closest
equivalent to C/C++ symbolic constants, i.e., #defines.

The major advantage of CsGL interface is that it is very close to original OpenGL/GLU
interface, i.e., all functions are static and constants are not members of any enumeration
data type. The fact, that all OpenGL/GLU functions and constants are encapsulated into
single class shall simplify porting of already existing applications.

The recommended use of CsGL is via inheritance. This means that user has to derive
class, which uses OpenGL/GLU, from CsGL class. Thanks to the inheritance, all functions
becomes members of user’s class and therefore it is possible to call them from such class
without need of specifying their qualified name (see subsection 2.1.9). Resulting code is
then similar to original OpenGL/GLU code.

Interface construction allows its use via composition. However, this means that qualified
name of each function and constant needs to be specified. Therefore, this way of use is not
recommended. For example of such code can be found at Figure 7.1. Example uses C# and
it does the same as example at Figure 4.1, i.e., it draws white triangle on black background.

7 Existing Solutions

46

Figure 7.1: Example of CsGL use via composition

Disadvantage of such interface construction is that, the user cannot separate different
OpenGL and GLU versions. However, because of interface’s resemblance to original
OpenGL/GLU interface is this disadvantage not significant.

CsGL itself is interface wrapper, i.e., it provides just connectivity between non-managed
OpenGL/GLU library implementation and managed environment. It uses P/Invoke
mechanism (see section 2.11) that allows cooperation of managed and non-managed code.

The major advantage of P/Invoke use is that simple automation is possible, i.e., it is
possible to port new GL Extension or OpenGL/GLU version just by executing prepared
script and/or application that is easy to create. Next advantage of P/Invoke mechanism is
that it is possible to use it any programming language including C# or MC++.

However, its use may lead to somewhat slower code than in the case of IJW (see section
3.2) and may cause need of unsafe (i.e., not verifiable) blocks in application’s code. This is
also case of CsGL: code that uses CsGL needs unsafe blocks. The use of unsafe blocks
may lead to faster code due to user’s optimization of data manipulation, i.e., the user is the
one who can decide whether and when protect data structures from garbage collector.
However, it may allow unpleasant bugs due to use of pointers to appear in the same time
and user needs knowledge about managed and non-managed code cooperation in order to
work with the interface.

CsGL does not implement any parameter checking and it also does not contain any
additional code in wrapper functions that may increase programming safety, e.g., it does
not checks if there is available current OpenGL Render Context, it does not perform
parameter checking, etc.

This may lead to unpleasant bugs similar to those of non-managed code that uses OpenGL.
For example, user may call OpenGL function with no current OpenGL Render Context.
The result of such function call depends on current OpenGL implementation of hardware
drivers (see section 4.2). Therefore, it may vary from machine to machine.

CsGL is implemented using C# and C programming language. System dependent parts are
written in C due to simplicity and possibility to create non-managed DLL. Such DLL is
then used via P/Invoke mechanism. OpenGL/GLU functions and constants are
implemented in C# via P/Invoke mechanism. As it is mentioned in CsGL documentation
(see [CsGL]), this shall simplify mechanism of porting CsGL to another platform.

CsGL interface is full functional and is open source. It implements OpenGL version 1.1,
1.2, 1.3 and 1.4, GLU, and at least 90 OpenGL Extensions. This includes additional helper
classes that allows operations with fonts, mouse cursors, etc.

It also includes tool to port new extension. User just needs C language header files for GL
Extensions that can be downloaded from OpenGL site [OpenGL]. From this view CsGL is
ready to use.

7 Existing Solutions

47

7.2 GLSharp
GLSharp is the next project that aims creation of OpenGL/GLU port for managed
environment. Even thought the interface construction differs from CsGL, inner mechanism
is the same. This means that GLSharp is an interface wrapper and uses P/Invoke. All
OpenGL/GLU functions (constants) are static members of class but opposite of CsGL
OpenGL functions (constants) are separated from GLU functions.

Currently this project is under development and therefore it is not complete. It lacks
documentation and it does not follows naming conventions described in [CLI-V]. For more
details on development and source code snapshots see [GLSharp]. Because the project
(GLSharp) was inspired by CsGL and it uses same mechanism as CsGL, it is not used for
timing comparison with this work.

8 Solution

48

8 Solution

This chapter describes interface implementation and design of this work. It contains
examples how were specific parts of the solution designed and implemented. Even thought
this chapter describes the solution it does not contain complete list of all structures and
classes that were implemented (see Appendix A).

8.1 Interface Structure
This section describes interface of OpenGL library port. It explains reasons for using of
particular approaches and specifies naming conventions used by this work. Even thought it
contains implementation notes, it does not contain details of actual implementation and
lists of all class members. Only important class and/or structure members are mentioned.

For details on actual implementation and solutions of difficulties refer to section 6.2 and
section 8.2. For detailed description of all namespaces, classes, structures, and members
see Appendix A.

Interface was designed to benefit from comfort of managed environment. Design was
influenced by the fact that it shall maintain the highest possible compatibility with original
OpenGL/GLU specifications ([GL13, GLU]). Interface is object oriented, however, due to
specification compatibility issue it was not possible to further divide OpenGL/GLU
functions into classes.

It is implemented as a wrapper for OpenGL/GLU functions, i.e., it needs binary form of
the library in order to work. It is an approach similar to those of CsGL (refer to section
7.1), but it is the only one possible due to OpenGL is low-level and system dependent
library.

Interface benefits from use of namespaces. All classes with a few exceptions of additional
structures (classes) are member of single namespace. Additional structures as well as
enumeration data types and callbacks are grouped into nested namespaces that will be
described later.

Naming convention of nested namespaces containing items (classes, structures,
enumeration types, and callbacks) that are owned by the particular class is based on a name
of the owner class. The scheme for such name is then XMembers where X is name of the
owner class, e.g., GL11Members contains items owned by GL11 class.

Use of such namespace system leads to ambiguous item’s identifier due to it allows
modifying of existing items for newer OpenGL/GLU version without modification of

8 Solution

49

item’s identifier. However, it suppresses need of names that contain version information
(e.g., RenderPrimitive11).

Classes that are members of the interface implementation are not thread-safe, i.e., it is not
possible to use them in multithreaded application without further synchronization
primitives. The reason for this constraint is the fact, that synchronization of threads (i.e.,
critical sections and monitors) is quite CPU time consuming task and generic
implementation of it is less effective then particular mechanism implemented by the user.
It is good to note that even OpenGL is generally not thread-safe and therefore additional
thread-safety would be addition to already fulfilled specification.

Interface implements OpenGL, GLU, and GL Extensions. It does not contain functions of
GLUT [GLUT] due to its purpose. Purpose of GLUT is to isolate window system
dependencies from OpenGL, i.e., it make possible for OpenGL to be independent on
current windowing system. It also makes OpenGL applications to be portable on source
code level, i.e., such application just needs recompilation on destination platform in order
to run.

However, application that uses managed environment does not need unification of window
systems because it already contains unified window system with support for window event
handling that is simple enough. Eventual port of GLUT to managed environment will lead
to something similar to classes that handles GUI (System.Windows.Forms
namespace). Another issue is the question of efficiency, stability (newer version of GLUT
is not stable enough on Windows platform), and difficulty of such interface use. Due to
that, the port of GLUT library is not part of this work.

Interface consists from five major groups of classes:

• System classes that handle underlying GUI (window system) cooperation.

• OpenGL classes that handle OpenGL calls.

• GLU classes that handle GLU calls.

• GL Extension classes that handle GL Extensions calls.

• Additional classes and structures that are used to either store internal data or provide
additional functionality and/or comfort.

8.1.1 System Classes
System classes are a fundamental part of the interface implementation. These classes
handle underlying GUI cooperation and OpenGL initialization. The base class (i.e.,
remaining classes are derived from this class) is named BaseRenderContext (in the
next text references as RC). This class wraps API (i.e., Win32API and GDI) of underlying
windowing system and is independent on forms that are provided by .NET (i.e.,
System.Windows.Forms namespace). This allows derived classes to use either .NET
GUI or native GUI of underlying windowing system whenever there is no .NET like GUI
available (e.g., SSCLI; see [SSCLI]).

RC class provides initialization of OpenGL including possibility of automatic detection of
available bit depths of color buffer, depth buffer, and stencil buffer. This automatic
detection is used in the case the user does to set these bit depths manually (i.e., as
parameters of RC class constructor). It also handles use of multiple RCs and switching
between them. However, it does not handle thread synchronization tasks.

8 Solution

50

This class provides a reference to the current RC that is used for parameter checking. This
reference is exposed in a form of static field (CurrentRC) and it is intended only for
internal use (i.e., it has Assembly accessibility permission; see subsection 2.1.10).

Similar to current RC reference, it also contains reference to internal data structures
(classes) used by OpenGL/GLU implementation. Naming convention of these references is
XData where X is name of owner class, i.e., class that owns these data. Even thought
reference to them is stored in RC class, their allocation (i.e., instance creation) is not
handled by the RC class.

The allocation of internal data structures is handled by classes that own these structures.
The advantage of this is that it increases performance of RC class initialization and saves
memory due to internal data structures of classes that are not used by the application are
not allocated. Internal data structures and their references are intended for internal use only
and therefore they are not exposed to the user, i.e., they have Assembly accessibility
permission.

8.1.2 OpenGL Classes
OpenGL classes are classes that handle OpenGL functions calls, i.e., they encapsulates
functions and constants (see subsection 8.1.6) of particular OpenGL version. Opposite of
original OpenGL or CsGL, single OpenGL class instance belongs to exactly one instance
of RC (in following text this instance will be reference as an owner), i.e., it is not possible
to use similar OpenGL class instance with multiple instances of RC (owners).

The reason for that is that some OpenGL functions may needs internal data that are valid
only for specific instance of RC. Reference to owner of OpenGL class instance is stored in
protected field named rc and is used for parameter checking purposes.

Each version of OpenGL is encapsulated into separate class that is derived from class of
previous OpenGL version. Exception to this is GL11 class that contains OpenGL
version 1.1 and that is a root of inheritance relations between OpenGL classes.

Naming convention of class that contains new version of OpenGL is then GLMm where M is
major version number and m is minor version number, e.g., class GL11 implements
OpenGL version 1.1. The reason for this is to allow separation of different OpenGL
version in order to make possible for the user to use exactly the version that suits user’s
needs.

Every class may need internal data structures. These are used to store references to
arrays or objects that are passed inside of OpenGL library and are stored there for later use,
e.g., function glVertexPointer. Storing references (in managed meaning) shall
prevent the array or the object from being garbage collected because the only reference
passed inside OpenGL library is non-managed pointer (see section 6.2.1). These internal
data structures also allow retrieving of managed references to arrays or objects that were
passed inside the library.

Internal data structures are implemented in form of managed classes because non-managed
class cannot have class members of managed types. Their name shall have form of
XInternalData where X is a name of class that uses them, e.g.,
GL11InternalData contains internal data structures of GL11 class. They are intended
for internal use only. Therefore, they have Assembly access permission and are not visible
for the user. There may exist only one instance per each RC instance.

Even thought these classes contain data for classes that inherit from a newer version,
internal data classes are derived only from System.Object class similar to any other

8 Solution

51

managed class. This means that they are not derived from older version of internal data
class. This approach shall simplify both construction and initialization of newer internal
data class versions due to lack of copy constructors and complicated data copying.
Therefore, this fact may lead to lower slowdown.

Reference to internal data structure is stored in protected field that is member of particular
class. However, the approach described in previous text needs separated storage of these
parameters for different versions. For GL11 class (i.e., base class for all OpenGL classes)
is the reference stored in field named data. Higher versions of OpenGL need to add
additional fields for their own internal data. Such storage shall be named as data with
suffix of version number, e.g., for GL12 class (OpenGL version 1.2) this field shall be
named as data12.

In a few cases, there may be need of common internal data structure, i.e., data structure
that is shared across OpenGL versions. This shall solve differences of stored data handling
between newer versions. Illustrative example can be problem of storage of reference to
multiple texture coordinates used by multi-texturing.

Setting of such reference may be provided by the same function, which is used in OpenGL
version that does not allow multi-texturing. Such function then needs to access common
internal data structure in order to set reference properly because it is allowed to use
instances of different OpenGL versions (i.e., classes that implements OpenGL versions)
over single RC class instance.

Common internal data structure is managed class and is accessible only from inside of the
assembly, i.e., it has Assembly accessibility permission. This class is named as
GLInternalData.

To simplify use of OpenGL classes, there is added one special class. This class is derived
from the latest implemented OpenGL version and it is named as GL. It shall simplify use of
the interface, i.e., user does not need to know which is the latest implemented version.

8.1.3 GLU Classes
GLU class design is similar to OpenGL. This means that GLU class (in next text
referenced as GLU) may have internal data structures (including common internal data
structures) whose reference is stored in class members similar to OpenGL. Also a single
instance of GLU may be used with the instance of RC that was used to create instance of
GLU, i.e., similar to OpenGL, it is not allowed to use single instance of GLU with multiple
instances of RC.

Similar to OpenGL, class that implements newer version of GLU inherits from previous
version of GLU. Naming convention is very close to those of OpenGL: each GLU class is
named as GLUMm where M is major version number and m is minor version number (e.g.,
GLU11 is name of class that implements GLU version 1.1).

Opposite of OpenGL, there exist special structures in GLU called GLU objects (e.g.,
GLUquadric). These objects are close to system handles (e.g., to open files). Only GLU
functions may manipulate with these objects and user is not allowed to directly access their
members. Currently (GLU version 1.3) there exist three GLU objects: GLUquadric,
GLUtesselator, and GLUnurbs.

All these three objects are implemented by the same way. Each of these objects is
encapsulated into separated object. These objects are managed and are derived from
GLUobject due to all of these objects have similar properties. This approach then allows
sharing of routines thanks to inheritance and simplifies future improvements.

8 Solution

52

Objects themselves are used to store internal data that cohere with these objects, i.e., they
are similar to internal data structures that were mentioned above. Currently they are use to
store references to callbacks.

Opposite of OpenGL, GLU needs callbacks. Callbacks are implemented in a form of
delegates due to delegates are closest possible equivalent of function pointers that is
available in managed environment. Names of GLU callbacks are similar to original.

Delegates are stored in GLU object in order to protect them from Garbage Collector. The
next important reason is due to setting of a callback needs valid GLU object reference.
This means that the callback belongs only to particular GLU object. Current
implementation of GLU callbacks including user data handling is described in detail in
subsection 8.2.8.

8.1.4 GL Extension Classes
GL Extensions classes are implemented similar to OpenGL classes. Each GL Extension is
encapsulated into a single managed class and is owned only by single RC, i.e., it is not
possible to use GL Extension class with different instance of RC then those that was
current during initialization of GL Extension class instance.

The reason for this limitation is that GL Extensions are both hardware and current OpenGL
instance dependent. Addresses of all GL Extension functions need to be retrieved in order
to used them and this address is RC instance (OpenGL instance) dependent, i.e., it may
differ for different OpenGL (RC) instances. GL Extensions functions implementation is
described in subsection 8.2.3.

Even thought GL Extensions are implemented similar to OpenGL, there exists no
inheritance similar to OpenGL versions. All GL Extension classes are derived from
Extension class in order to allow sharing of common functionality such as routines for
checking whether GL Extension is available.

Some GL Extensions may add or enlarge existing enumeration types in order to be used for
OpenGL functions (e.g. GL_ARB_imaging) and they do not specify new functions. In
such case, GL Extensions class also contains OpenGL function that uses new and/or
modified enums as parameter types.

Naming convention of GL Extension class is based on original GL Extension name
(see [Kil02]) and it uses “PascalCasing” (see [CLI-V]). This original name has form of
GL_X_NAME where X indicates developer of this extension and is uppercase. NAME is
actual name of extension, e.g., imaging for GL_ARB_imaging.

Class name is then created by removing GL_ prefix and underscores. All characters
become lowercase. Exception of this is X and each character that follows underscore in
original name, such characters them become uppercase (e.g., GL_ARB_imaging
transforms to ARBImaging). The result then follows naming convention
recommendations (see [CLI-V]).

GL Extension classes are stored in nested namespace that is called GLExtensions. It is
replacement for GL prefix, which was removed from original GL Extensions names. All
modified and/or new enumeration types are grouped into namespace that is nested in
Extensions namespace. Naming convention of such namespace is then equal to naming
convention of similar namespace for OpenGL classes, i.e., XMembers where X is name of
a class that caused creation of grouped types (e.g., ARBImagingMembers).

8 Solution

53

8.1.5 Additional Classes and Structures
In order to improve comfort of OpenGL and to solve a few cases of void pointers,
additional classes and structures were added. These classes/structures are not part of
OpenGL standard specification even though several of them are based on OpenGL
functions parameters. Currently there are three groups of these add-ons:

• exceptions,

• additional classes,

• additional structures.

Exceptions are used for exception handling. Currently there exist only one class, which is
used for this purpose. This class is called GLException and it is derived from
System.ApplicationException. The reason for its creation was an effort to make
possible to distinguish exceptions that are raised by OpenGL implementation from
exception raised by other utilities including CLR.

Additional classes are added in order to simplify initialization and handling of common
events (e.g., window resizing, window redrawing). These classes are grouped into nested
namespace Forms and shall be partial replacement for GLUT functionality. Example of
these classes is GLForm class that simplifies creation of standalone window including
improved event handling (see section C.2).

Additional structures increase programming comfort and shall replace use of arrays. The
basic idea came out from the fact that glInterleavedArrays function parameters
accept array of structures in a form of void pointer. Structure is then described by function
parameters. Therefore, a logical step is to replace the void pointer with an actual array of
predefined structures.

These structures are replacement for void pointers and simplify passing of data, such as
color, position, transformation matrix, etc. They also avoid need of additional user
structures that have to be created in order to improve source code readability.

In order to improve their practicability each structure have implementation of constructor
that allows to fill all structure members with value that is either set by the user or copied
from similar .NET Framework Library structure. E.g., it is possible to set up Color3f
structure either by specifying value for all color components (red, green, blue) by hand or
use value of System.Drawing.Color structure, which already offers many predefined
colors (e.g., gold).

An illustrative example of additional structure use with comparison to original OpenGL
interface can be found at Figure 8.1. Code in example sets diffuse color of a light to blue.
Example uses C# syntax for managed version and C for original OpenGL function call. It
does not contain specification of all parameters because they are not important in this case.

Figure 8.1: OpenGL function call in managed environment that uses additional structures

(top) in comparison with original C-style code (bottom)

8 Solution

54

Additional structures are grouped into nested namespace Structures in order to
organize interface structure. Complete list of implemented structures can be found in
section C.3.

8.1.6 OpenGL/GLU/GL Extension Methods, Constants, and Enums
Opposite of CsGL, all OpenGL/GLU/GL Extension methods (referenced as ‘methods’ or
‘functions’ in this subsection) are neither static nor virtual members of particular class.
Methods are not static due to they may to access internal data structures and this design
allows to add checking if an object is called with current RC similar to the RC that was
current during creation of instance (e.g., GL11).

Even thought OpenGL specification may modify implementation of functions for newer
versions in order to improve functionality (e.g., support for multi-texturing), methods that
wrap functions are not marked as virtual. It is due to virtual methods are slower and it is
possible to replace use of virtual methods by modifying of common internal data
structures.

Naming convention of functions differs from original function name. This difference is
caused by removing of ‘gl’ (‘glu’) prefix for OpenGL/GLU functions and removing of
suffix that indicates GL Extension for GL Extension functions (e.g., glWeightbvARB is
transformed to Weightbv).

This modification is because these prefixes (suffixes) shall prevent name collision due to
lack of object structure in original OpenGL/GLU interface. In object-oriented environment
are functions grouped into classes that prevent name collision of class members with
members of another class.

Next reason for this modification is that it improves source code readability. For
comparison of code both with and without removed prefixes (‘gl’) see Figure 8.2. Example
is illustrative and its functionality is similar to example at Figure 4.1.

Figure 8.2: Example of code with (left) and without (right) ‘gl’ prefix

Constants are implemented as static read-only fields. However, their use is only for
exceptional cases because all constants are grouped into enumeration types. Names of
constants are similar to original OpenGL in order to be close to OpenGL specification.
This approach also solves problem of names that would not be valid if GL_ prefix would
be removed, e.g., GL_2_BYTES.

Enumeration types (enums) are members of nested namespaces of particular class (e.g.,
GL11Members namespace for GL11 class). They replace constants in order to increase
programming safety (i.e. it shall prevent user from passing invalid value) and programming
comfort due to enumeration type describes values that are available for particular
parameter.

Names of enumeration types shall follow recommendations described in [CLI-V].
However, in a few cases, there is need to use possible unusual abbreviations. These
abbreviations shall minimize name collision with identifies of .NET Framework Library.

8 Solution

55

When minimizing name collision, there shall be emphasis on System.Drawing
namespace due to this namespace is used at the most in windowing application, e.g.,
PxlFormat is used instead of PixelFormat due to it collides with an enumeration
type of the same name that is member of System.Drawing namespace.

Naming convention of enumeration type members is similar to naming convention of
constants with exception of constants that belong to particular GL Extension. In such case
extension developer suffix is stripped, e.g., GL_TEXTURE0_ARB become
GL_TEXTURE0.

8.2 Implementation Details and Difficulty Solution
This section describes in detail implementation issues and solutions of difficulties
described in section 6.2. Descriptions contain examples of source code. These examples
use MC++ syntax and are similar to templates used to solve particular implementation
issue. It also discusses possible solutions including description of their advantages and
disadvantages. In order to make these examples simple and short, the source code may not
be complete, i.e., parts that are not important to particular issue are eliminated.

8.2.1 Programming Language
CLI (.NET Framework) allows sharing of compiled code (CIL) between languages, i.e., it
is possible to implement managed library in whatever programming language whose
compiler aims .NET. The language that was selected for this work is MC++. Its brief
description can be found in section 3.2.

The advantage of this language (opposite of C#, Visual Basic .NET) is that it allows
mixing managed and non-managed code very easily. It supports IJW (It Just Works; see
section 2.11) mechanism that is quite powerful. It allows wrapping non-managed libraries
very easily and it shall be aimed on performance at the same time, i.e., it shall minimize
managed and non-managed code cooperation overhead.

It allows to mix managed and non-managed code very easily, therefore there was a high
probability to unify language used for whole solution, i.e., not to mix various programming
languages even thought .NET itself allows that and it is its important feature. This
unification simplifies developing of implementation and its compilation.

8.2.2 Function Wrapper
Function wrapper is a method of particular class. It wraps OpenGL/GLU functions that are
available in non-managed OpenGL/GLU library (e.g., opengl32.lib for OpenGL on
Windows platform) without need of retrieving their address. The wrapper contains
checking for current instance of RC and checking of selected parameters.

For illustration, there is an example at Figure 8.3. It wraps glBegin function. It is an
example of function that has single parameter that is neither array nor structure and does
not return any value. All other functions, including those with array and/or structure as
parameter type, have similar structure even thought they contain additional parts (e.g., data
sharing mechanism, temporary storing of return value, etc.)

8 Solution

56

Figure 8.3: Simple function wrapper example

8.2.3 GL Extension Function Wrapper
GL Extension function wrapper is very close to function wrapper described in previous
section, i.e. it contains similar parts. It wraps functions that are not contained within non-
managed library, i.e., functions whose starting address needs to be retrieved. Therefore, an
essential part of GL Extension function wrapper is pointer to original function.

Both pointer type and pointer itself are non-managed and are protected members of
particular class. Naming convention for a pointer type is similar to those defined in GL
Extensions header file. This means that it is based on original function name including ‘gl’
prefix and developer suffix with all characters uppercase. Such name is then completed
with ‘PFN’ prefix and ‘PROC’ suffix (e.g. pointer type for GL Extension function
glSampleCoverageARB is named as PFNGLSAMPLECOVERAGEARBPROC). Naming
convention for pointer (to particular function) consists of ‘pfn_’ prefix and string that
similar to pointer type identifier, e.g., pfn_PFNGLSAMPLECOVERAGEARBPROC is
identifier of pointer to glSampleCoverageARB function.

Example of this wrapper can be found at Figure 8.4 and it contains a wrapper for
glSampleCoverageARB function. This function is member of ARB_multisample
GL Extension.

Figure 8.4: Simple GL Extension function wrapper example

8.2.4 Additional Structures
Additional structures are added to the interface in order to improve programming comfort.
They are managed value types and therefore their use may lead to better performance.
These structures need special memory layout due to they are accessed from non-managed
code.

Their members shall have sequential layout and shall be aligned on exactly one byte
boundary, i.e., in the memory they shall be laid in the same order that was used for their
declaration with no gaps between each other. This layout can be set up using
StructLayout attribute (see Figure 8.5 line 1).

Structure members (fields) have public accessibility and they are accessible directly (i.e.,
there are not properties). This direct access is violation of recommendations [CLI-V] but it
may lead to better performance due to missing accessor (getter and setter) functions.

8 Solution

57

Each structure contains constructor that allows filling of all members at once. Simple
additional structures that have already existing equivalent in .NET Framework library also
contains additional constructor (e.g., see Figure 8.5 line 4) and implicit type conversion
operator overload (e.g., see Figure 8.5 line 6). These additional members shall improve
comfort and allow construction similar to a function call at Figure 8.1 (top).

Example of such additional structure definition can be found at Figure 8.5. This structure
(Vertex2f) is similar to PointF structure of .NET Framework Library and is used in
glVertex2fv function and structures for glInterleavedArrays.

Figure 8.5: Example of additional structure definition

8.2.5 Enumeration Types
Enumeration types are managed value types. They are similar to non-managed C++
enumeration type. The underlying type of enumeration type is set to Int32 similar to
recommendations [CLI-V]. Example of enumeration type definition can be found at Figure
8.6. Preprocessor directive (#undef) used in example prevents from name collision of
enum members and predefined symbolic constants.

Figure 8.6: Example of enumeration definition

8.2.6 Data Sharing
Data sharing between managed and non-managed code is essential part of the interface.
Approach that solves data sharing depends on purpose of data. There are five kinds of data
purposes:

• value types (struct): These are data that are passed as input value. Their value is
copied and used similar to local variable. There is no need for garbage collection
protection and it is possible to retrieve non-managed pointer without any additional
code. Structures used by this approach shall be value types and have sequential
memory layout with all members aligned to one byte boundary, i.e., these structures
shall be additional structures described in subsection 8.1.5.

It is faster the fastest approach possible and illustrative example can be found at Figure
8.7. Example is function wrapper of glVertex2fv and provides an example of
additional structure use.

8 Solution

58

Figure 8.7: Value type (structure) use example

• output value type: These data are value types that are used as output parameters, i.e.,
function sets its value that is then passed outside the function. Its handling is similar to
value type. Data sharing is handled by additional local variable that is non-managed
type and that is used as a temporary storage.

This approach is faster then use of arrays and comfortable for user. An illustrative
example is at Figure 8.8. Example is a function wrapper for glGetDoublev.

Figure 8.8: Example of value type used as output parameter

• return value: These data are passed out of the function as return value. Usually is this
return value a value type. In such case is return value either returned directly from a
function (e.g., return ::glGenLists(...);) or if there is additional code for
data sharing, the return value is stored to local variable and then returned. Figure 8.9
shows example of the last mentioned approach.

Figure 8.9: Example of return value handling

In a few cases (e.g., glGetString) is not the return value a value type that is usually
a pointer to zero ended string. Each of these cases needs to be solved individually
depending on meaning of return value.

• arrays not stored inside: These are data passed in the form of array of value types
(including structures) that are used only once, i.e., they are not stored inside OpenGL
library (non-managed code) for later use. This fact allows use of faster approach (e.g.,
pinning pointers) in order to protect these data from memory layout optimization done
during garbage collection.

• arrays stored inside: These are data in a form of value type arrays that are passed and
stored inside OpenGL library (non-managed code) for later use. They need to be
protected from both memory layout optimization and garbage collection due to they

8 Solution

59

may loose all their references from application. Implementation requires use of either
internal data structures or common internal data structures.

Arrays need special handling for data sharing between managed and non-managed code.
There is a need to protect these arrays from Garbage Collector. It is possible to solve
sharing of arrays in three ways:

• P/Invoke mechanism: This approach is supported directly by managed environment
and it allows creation of ”link” to non-managed (static) function in external DLL
library. This ”link” includes routines for data sharing that are transparent for the user.
Due to it is supported directly by managed environment and therefore it is possible to
use it in majority of .NET language.

Use of this mechanism is declared by DllImport attribute and example can be found
at Figure 8.10. This approach is slower than pinning pointers and allows use of type
arrays only, i.e., it is not possible to use instance of System.Array with this
approach even thought it is an array of value types (e.g., Double).

Figure 8.10: P/Invoke mechanism use example

The only use of P/Invoke mechanism is for functions that set up GLU callbacks. It is
used because of it solves calling of callback functions and it is quite simple.

• pinning pointers: This approach uses pinning pointers that prevents memory block
from being moved by garbage collector and from their garbage collection. Primary
purpose of pinning pointer is to retrieve non-managed (__nogc) pointer to an array.

Use of pinning pointers together with IJW mechanism provides better performance
than codes that use P/Invoke mechanism. However, pinning pointers have certain
limitations: it is possible to use them only as local variables and it is not possible to
create pinning pointer for general array (i.e., instance of System.Array). Therefore
are pinning pointers used only for arrays that are not stored inside non-managed
OpenGL library.

The advantage of pinning pointers is that they provide automatic releasing of pinned
objects during exiting of a scope (e.g., function) in which they were declared. This
leads to simple and short source code. Example of pinning pointer use can be found at
Figure 8.11.

Figure 8.11: Pinning pointer use example

• GCHandle: This approach provides more functionality then pinning pointers, e.g., it
has support for weak pointers (see subsection 2.5.3), etc. It is applicable only to
blittable types, i.e. types that have static and well-defined memory layout (e.g., built-
in value types, value structures with sequential layout, arrays of those value types).

In order to protect itself from pinning of invalid type, it performs runtime checks. This
allows using GCHandle for general arrays (instance of System.Array). However,
these runtime checks lead to slower code. Such code can be then significantly slower

8 Solution

60

then code that uses P/Invoke or pinning pointers, but it is the only way for handling of
arrays that are stored inside OpenGL library for later use.

Disadvantage of this approach is that it needs manual releasing and it does not allow
operating with references that are not initialized, i.e., null reference. Therefore, use of
GCHandle leads to additional code in a wrapper function. Example of GCHandle use
can be found at Figure 8.12. Example also illustrates possible solution of void pointer
problem.

Figure 8.12: GCHandle usage example

8.2.7 Void Pointer
Void pointer is a difficulty that was described in subsection 6.2.3. It is useful for specifying
a parameter of general array or structure type. There is no direct equivalent in managed
environment, but it is possible to replace void pointer in three ways by using:

• IntPtr: This approach is very close to void pointer in non-managed environment.
However, the disadvantage of this approach is that it requires the user to handle
protection of data structures from Garbage Collector. Next disadvantage is that it needs
unsafe blocks in an application or code that uses it.

Advantage of this approach is that it may lead to faster code. However, due to
disadvantages mentioned in a previous paragraph, this work does not use IntPtr
structure as replacement for void pointers.

• general array: This approach is based on a fact, that void pointer is often used for
arrays with unknown array member type. Therefore a possible replacement for void
pointer is general array in a form of System.Array class instance due to all arrays
are derived from this class.

Disadvantage of this approach is that it requires use of GCHandle in order to protect
the array from Garbage Collector. This and the fact that there is implicit type casting to
System.Array may lead to slowdown. However, it is possible to use this approach
for array of any value type (i.e., built-in value type and structures) and of any rank (i.e.,
it is possible to use it for 1D arrays as well as for nD arrays where n is rank of array).

• overloading: This approach means to create overloads for all possible combinations of
array member types and structures that can be passed for void pointer. It is useful only
for arrays whose references are not stored inside of OpenGL library (non-managed)
for later use due to it allows to use of pinning pointers in order to gain performance. It
is possible to automate creation of these overloads. It also causes limitation of possible
array member types and therefore it disables invalid types from being used.

However, this limitation is major disadvantage of this approach is that it is not possible
to create all combination of function wrapper parameters that are replacement of void
pointer due to an array may have larger number of ranks.

8 Solution

61

8.2.8 Callbacks
Callbacks (or callback functions) are special case functions. Similar to void pointer it is a
difficulty described in subsection 6.2.2. They are used in GLU to provide user feedback for
situation that may occur.

Callbacks are implemented in a form of delegate because delegate is the closest equivalent
to non-managed function pointer. The implementation uses P/Invoke in order to set up
callback in non-managed GLU library and callback itself is stored to GLU object. The
reason for use of P/Invoke is that it provides simple and effective way of handling
callbacks, it does not need any additional structures and non-managed classes, and it
simplifies creation of callbacks that have no user data parameters.

The major difficulty of callbacks is that it allows the user to pass own data inside the
system. Such data are then used as input parameter of a callback in order to identify the
caller of the callback. Therefore, the user can reuse single function for multiple callbacks.
In non-managed environment, void pointer type is used for user data parameter type. This
allows the user to pass various data types.

However, in managed environment there is no such possibility. The available solution is
either to provide mechanism that is transparent for the user and that allows the user to pass
generic object (i.e., System.Object) as instance or to use integers (i.e., Int32) instead
as an index to storage structures (e.g., array, collection).

Transparent mechanism approach (i.e., first approach) is comfortable for the user
because together with the fact that all objects are inherited from System.Object it
creates a situation similar to non-managed code. However, this approach needs additional
and complicated data structures including additional code in order to handle them.

It also leads to two layered callbacks, where the first layer prepares user data and then call
user supplied callback (second layer). It may lead to significant both memory and CPU
time overhead and therefore it is not used by this approach.

Opposite of that, approach that uses integers instead of System.Object provides better
performance. It is based on a fact, that these callbacks are used for tessellation operations
in GLU. There is a high probability that the user would create own data structures in order
to store value. Therefore, it is reasonable to allow the user to pass index to these data
structures instead of content. This approach leads to simple implementation and much
better performance then the first one.

8.2.9 Parameter Checking
Parameter checking is included in interface in order to improve programming safety. It is
aimed on debugging purposes and it uses C/C++ preprocessor directives (e.g., #ifdef,
#endif) in order to simplify their disabling during compilation. If a parameter check
fails, it raises an exception.

Parameter checking is implemented in a form of C/C++ macros (i.e., it uses #define
directive). The reason for this approach is that a code, which performs the checking, is
quite short and therefore placing it into will lead to slowdown. In addition, the
implementation benefits from features of MC++ macros, i.e., it is possible to use parameter
name for both referencing to a parameter and creating of exception message string that
contains such name.

Example of code with parameter checking can be found at Figure 8.13. Parameter checking
is capable to perform these six kinds of tests:

8 Solution

62

• Checking of current RC: It prevents a method to be executed if current active
instance of RC class differs for owner (i.e., instance of RC that was used to create
particular OpenGL/GLU/GL Extension class instance). This macro is named
CheckCurrentRC.

• Checking for null param: It prevents from passing reference that is not initialized
(i.e., it has null value). It is used for GLU objects and the macro is called
CheckNull.

• Checking for validity: It prevents from passing of invalid (i.e., not initialized or
already released) GLU object. Macro is called CheckValid.

• Checking for value types: It prevents the user from passing a general array with array
members that are not value types. Macro is called CheckValue.

• Checking for required size: It prevents the user from passing array of invalid (e.g., to
small) size. Macros are called CheckSize and CheckByteSize.

• Checking for given value: It prevents the user from passing either invalid value
(macro CheckParamValue) or invalid enumeration value (macro
CheckEnumValue). In a case of invalid enumeration value, it is used to prevent the
user from passing an invalid description for parameter value.

Figure 8.13: Example of parameter checking

9 Automatic Conversion

63

9 Automatic Conversion

This chapter briefly describes design and implementation for a tool that was created during
implementation of OpenGL function wrappers. Even thought this tool is part of this work
its creation was not requested. Therefore, only a short description is included.

Purpose of this tool is described in section 9.1. All other sections contain just brief
overview. Due to the tool is not essential part of the work detailed lists, descriptions, and
user manual, are part of appendices (see Appendix A).

9.1 The Goal
Creating of function wrappers is quite monotonous task and therefore it would be good to
have a tool that would create either complete wrappers or templates for wrappers. This is
also goal of this tool. Original motivation is based on the fact that there exist too many
GL Exceptions (100+) and without this tool each extension have to be wrapped completely
by hand. The tool shall simplify creation of wrapper functions and enumeration data types
that are based on existing constants.

The tool shall be able to read ANSI C header files provided for OpenGL (i.e., gl.h,
glu.h, and glext.h) and extract stored items (i.e., functions, constants, etc.). Design
and implementation shall be as generic as possible. However, this tool is not intended to
consume neither generic ANSI C code nor generic ANSI C header files because it is helper
tool created just for purposes of this work. It also shall be able to store data into human
readable files in order to allow manual modifications and simplify reuse of extracted
information.

9.2 Design
This section contains overview of basic ideas of tool’s design. It mentions only major ideas
and properties of design, for complete list of classes including their relations see section
F.1. Tool can read information from either data file or ANSI C header files, i.e., gl.h,
glu.h, and glext.h. It is the most important part of the whole tool. Flow of data and
important components of reader can be found at Figure 9.1.

9 Automatic Conversion

64

Figure 9.1: C Header file reader data flow scheme

Due to simplification of implementation glu.h header file have to be modified. This
modification simplifies extraction of functions. It consists of definitions of particular
symbolic constant and modification of function’s headers: symbolic constant WINGDIAPI
has to be added in front of every function header. Thank to the nature of GLU header
files, it is possible to perform this by simple Cut/Paste All operation. The result shall be
similar to function headers of gl.h header file.

Tool provides simplified version of C-style preprocessor in order to read ANSI C files. It
also allows macro expansion even thought none of OpenGL header files uses it.
Preprocessor does not handle evaluation of #if conditions and assumes them to be
false. It also assumes symbolic constants prefixed with ‘__’ (double underscore) to be
not defined in order to unify the approach, i.e., there is no need for special handling of
construction at the beginning of the header file and it allows to mask out all C++ stuff.

Preprocessor also assumes a few symbolic constants to have default values. These
constants are WINGDIAPI (=extern), APIENTRY (= empty), and GLAPI (=extern).
They have to be defined in every read header files. Their presence simplifies item
extraction from header files because every function header has to be prefixed with either
WINGDIAPI (for gl.h) or GLAPI (for glext.h).

All items are grouped into groups. A group consists of items that are enclosed into
#ifndef–#endif blocks. This construction is based on format of file that contains GL
Extensions: all GL Extensions are contained within single header file (i.e., glext.h) and
all items of single GL Extension are grouped into a block that is enclosed by #ifndef–
#endif preprocessor directives. Each group then contains constants, headers for
functions, and function pointer definitions. Whole file is enclosed by a root group. While
groups are assumed GL Extensions, root group is not.

Due to the fact, that GL Extensions are contained within single file and are enclosed by
preprocessor directives it is not possible to filter out these directives similar to common
C/C++ preprocessor. Therefore, preprocessor provides special set of symbols that
represents the beginning and the end of such block (i.e., group marks).

Extracted data are stored into structures and classes. There is a single class for each
language item (e.g., enums, functions, etc.) and such class is not derived from any .NET
Framework Library class but System.Object class. Inheritance of these classes is
based on their common functionality, e.g., function and pointer to function shares similar
set of routines. For complete list of such classes see section F.1.

9 Automatic Conversion

65

If such language item can be used as a type (e.g., structure, enums, etc.) then it has to
implement IType interface. This interface contains set of methods that provides
information about kind of a type (e.g., array, structure, etc.) and performs conversion
between non-managed (C) and managed (MC++) syntax.

Exporting and storing is quite simple. It is similar to copying of existing structure to
defined format (i.e., data file or MC++ source). MC++ source format is based on examples
provided in chapter 1.

Data can be stored into a data file that contains human readable structure in form of valid
XML, which is exact copy of existing relations between instances of objects (references
are replaced by names). XML tags used in this file are described in section F.3. Description
includes list of their attributes and values. It is good to note that backward references are
not allowed, e.g., it is not possible to use type that was not defined before. This limitation
is based on properties of OpenGL header files and it simplifies implementation of file’s
reader.

9.3 Implementation Notes
Event thought the design allows this tool being generic, implementation does not. It is
because this tool is created as a helper tool aimed on simplification of function wrapper
and enumeration types creation. Implementation follows ideas described in previous
section. Therefore, this section contains just brief overview of interesting parts.

The tool is implemented in C# due to comfort of both the language and managed
environment. It uses finite machine in order to perform lexical analysis of ANSI C header
files. Finite machine was create by application flex [Flex] using modified ANSI C
grammar. Modifications enlarge set of symbols by preprocessor directives in order to allow
their processing. For modifications see section F.2.

Implementation provides simple GUI that allows the user to operate the application by
mouse clicking. Descriptions of control’s meaning including usage notes can be found in
section F.4.

9.4 Output
Tool allows exporting of data in form of MC++ source file. It generates multiple header
files in order to improve source code organization. Naming of these particular header files
is based on a name of a generated class (e.g., GL11) with suffix that identifies content of
such header file. Tool then generates files:

• main source file: This file contains constructor implementation (e.g., GL11.cpp).

• main header file: This file (e.g., GL11.h) contains class definition and includes
majority of other generated header files. It is the only file, which needs to be modified
whenever user modifies generated templates.

• enum, constants: These files contain definition of enums (e.g., GL11Enums.h) and
constants (e.g., GL11Constants.h). Constants that are grouped into enums are
excluded from compilation. In order to include them back a symbolic constant
INC_CONST_IN_ENUMS needs to be defined in main header file.

• functions: This file (e.g., GLU11Functions.h) contains wrapped functions. Each
function is enclosed into #ifndef–#endif block in order to allow for the user to
mask out functions whose implementation was done manually by simply defining of

9 Automatic Conversion

66

particular symbolic constant. Such symbolic constant then have form of FN_X_Y,
where X is name of class and Y is name of method (e.g., FN_GLU11_GetString).

• delegates: This file (e.g., GLU11Delegates.h) contains definition of delegates, i.e.,
managed version of function pointers. If there are not delegates present, this file is not
generates. This file is not included by generated main header file due to use of delegate
needs additional code that has to be generated manually.

• structures: This file (e.g., GLU11Structures.h) contains definition of generated
structures. Similar to file containing delegates is this file generated only if there are
some structures present and is not included by generated main header file due to similar
reason.

10 Verification and Validation

67

10 Verification and Validation

This chapter describes verification and validation of interface implementation. It explains
its designs and reasons for particular steps. However, this chapter does not contain
complete class reference. It also does not contain user manual and class reference for tool
that was designed in order to provide at least particular automation of this task. These
topics are covered in Appendix A.

Verification and validation of this work is quite important task because it could prove
whether is the result usable and whether it supports features described by OpenGL
specification. From this viewpoint it is possible to divide this task into two parts: validation
of interface design and verification of interface functionality.

10.1 Design Validation
Interface structure that is used by this work differs slightly from original OpenGL
specification because it attempts to use object-oriented approach. Due to that it is not
possible to validate structure design by simple comparing it to OpenGL specification.
Possible approach for this task is to prove whether is this object-oriented design useful in
praxis and easily extendable.

The question of simple extendibility is one of the most important ones because this
implementation is a wrapper. This means that primary development is done in non-
managed environment using different language and therefore every new version needs
additional work in order to create wrappers.

It seems that the best way, how to gain answer for extendibility question, is to implement
all available versions of OpenGL and all available GL Extensions. However, task of port
creation is not easy to automate due to design decisions consequent upon goals of this
work (see chapter 1). Therefore creating of such large number of OpenGL/GL Extension
classed would take too long even thought this work provides a tool (see chapter 1) that
allows automation of at least parts of this task. Due to these reasons, the extendibility
question is solved only upon theoretical basis.

Second part of design validity question has importance similar to extendibility. It is
question of usability. The answer shall prove whether expecting improvement of
programming comfort and safety does not mean too complicated source code.

The answer for this question is matter of examples implementation. Then, these examples
shall be compared to either their original (non-managed) versions or CsGL versions

10 Verification and Validation

68

whenever possible. This shall prove whether does the usage of this work lead to code that
is more complicated and whether is its usage comfortable as it is expected.

Disadvantage of that is the fact that it cannot be done by author of this interface himself
due to his knowledge about intended usage of the interface. It is matter of getting feedback
from the users that are familiar with original OpenGL interface.

10.2 Functionality Verification
Second important thing that needs to be proved is functionality. It is a question whether
the functionality (i.e., behavior) follows specifications and therefore whether the
implementation can be marked as certified. However, it is good to note that this
implementation is a wrapper. Therefore, the output depends on underlying binary OpenGL
library, device drivers, and hardware capabilities. It could then happen that output
(behavior) is different even thought the code inside wrappers follows specification.

It is true, that it is possible to distinguish between difference caused by incorrect
implementation and difference caused by invalid combination of drivers and hardware.
However, it needs additional knowledge, i.e., it has to be sure that either combination of
drivers and hardware is valid or implementation is correct. Therefore, it is possible to
create set of tests that could be used whenever either new driver/hardware was installed or
implementation was modified, e.g., a new version required modification of existing code or
port to new platform was created.

Such test is then based on comparing of generated image and reference image. Reference
image is an image that was created by the same test on trusted hardware and that was then
checked visually whether it is equal to expected image. For testing purposes, only still
images are used. Use of animations would lead to complicated framework and the results
would be the same because animation is set of still images. They would be useful only for
performance testing purposes, i.e., to test how much frames per second can the system
generate.

Both generated and reference image have to be generated with same resolution and color
bit depth. Images that uses palette are not allowed due to possible difference in optimized
palette generation. Reference images are not stored using loss compression algorithms
(e.g., JPEG) in order to minimize differences based on different storage approaches.

Comparison is then performed on per pixel basis by comparing of color components, i.e.,
red, green, and blue. The result of this comparison is then value of maximum of all
founded differences, mean of these differences, and standard deviation of these values. For
computation purposes a size of difference is used (i.e., absolute value) and the difference is
scaled to range of <0.0; 1.0>. Results are then compared with user’s selected thresholds.
Test fails whenever one of values (i.e., maximum, mean, or standard deviation) is greater
then given threshold.

Design and implementation of single test is aimed on isolation test itself from common
tasks that needs to be handled for every application (e.g., OpenGL initialization, window
event handling). Each test is standalone (console) application or assembly that contain
exactly one class that is derived from TestBase class. This class is an abstract class that
handles common tasks and prepares an environment for automatic processing of tests and
test results. For class member list and test application framework see Appendix A.

Thanks to that, developing (debugging) of the test is simple (i.e., it can be executed as
standalone application) and automation is possible. It also simplifies enlarging of existing
set of tests: it is just matter of copying test application executable/assembly to specified
directory and modifying text configuration file (see section D.3). After that, the new test

10 Verification and Validation

69

can be processed by simple tool (see section D.4) that uses reflection mechanism for
creating instances of dynamically loaded types.

Currently there are two tests available: texture object test and pixel read test. These tests
are base on personal experience of author with various combinations of hardware and
drivers. However these tests are rather examples due to there are too many combinations of
hardware and versions of drivers. Also the fact that many problems depends on particular
situation and such problems usually appear in complex applications, make nearly
impossible to reproduce the behavior without knowledge of application’s source code and
situation in which did it occurred.

11 Results

70

11 Results

This chapter contains results in a form of performance comparison between selected
implementation, non-managed version, and implementation provided by this work.
Sections of this chapter contain only results and comments, for source code of particular
test and outputs refer to Appendix A.

These tests shall provide a possibility to compare different approaches to data sharing
because data sharing is crucial part of interface implementation. First, different approaches
to data sharing are compared. This comparison is done between CsGL, this work without
parameter checking, and this work with parameter checking.

It is assumed that the version with parameter checking would produce the worst results
(i.e., highest slowdown). All measured time intervals are referenced to results of non-
managed version of this test. In this case, results are referenced to Win32 version of
particular test.

In order to provide similar environment for time measurement, all three versions of the
tests uses Win32API function QueryPerformanceCounter. It is used to measure the
time interval and in managed environment is this function accessible via P/Invoke
mechanism. This function offers high resolution that usually depends only on speed of
actual CPU.

It is good to note that all results depend on status of both hardware and underlying
operating system because most of OpenGL’s facilities are implemented in hardware.
Therefore, the results may vary even for high number of test repeats. None of tests
provides measuring of initialization and startup routines performance because these
routines depend heavily on status of operating system and they are usually called only
during application startup.

All tests are repeated for various numbers of calls (or objects) in order to check whether is
the implementation dependent on number of calls. It is assumed that for ideal situation the
slowdown shall be the same no matter the number of calls or objects. In order to allow the
user to check this behavior, results are displayed in a form of graphs.

Horizontal axis of single graph contains number of calls or objects. This number is
considered parameter for particular test function. It is good to note that horizontal axis has
logarithmic scale because it allows comfortable display of values that differ quite
significantly.

Vertical axis then contains measured results (time intervals). However, only relative
values are displayed because of they can be compared between each more easily. These

11 Results

71

relative values (speed) are computed from results of non-managed (Win32) version (TWin32)
and managed version (Tresult) of particular test:

Relative value then means percentage non-managed version speed, i.e. value equal to 1.000
means no slowdown and no speedup at all, value that is less then 1.000 means slowdown.

11.1 Test 1: Built-in Value Types
First test is based on that fact that majority of OpenGL functions uses built-in value types
as their parameters. This means that built-in value types are used quite often and therefore
significant slowdown of sharing them between managed and non-managed code would
cause significant decrease of whole OpenGL code performance. Test uses glVertex2d
function that has two parameters that both are double. Test results can be found at Figure
11.1.

Figure 11.1: Test 1 results

Results of this test leads to a conclusion that there is no significant slowdown due to data
sharing of built-in value types. Average results are very close to speed of non-managed
version for both CsGL and this work even for version with parameter checking.

0.980

0.985

0.990

0.995

1.000

1.005

1.010

1.015

1.020

1000 10000 100000
log(Call No.)

Sp
ee

d

This*
This
CsGL
Non-managed Win32

Call No. 1000 1600 2500 4000 6300 10000 16000 25000 40000 63000 100000 average
CsGL 1.000 1.002 1.000 1.001 1.001 1.001 1.001 1.000 1.000 1.000 1.000 1.000
This 1.000 1.003 1.001 1.001 1.002 1.002 1.002 1.001 1.001 1.001 1.001 1.001
This* 0.997 1.000 0.998 0.999 1.000 1.000 1.000 0.999 0.999 0.999 0.999 0.999

Test 1 Results

* version with parameter checking

11 Results

72

11.2 Test 2: General Arrays
Second test deals with the next most used type for parameter of OpenGL functions, i.e.,
arrays. It is aimed on general array as replacement of void pointer, i.e., it tests how
influences usage of System.Array (as parent of all managed arrays) performance of the
code. In fact, it compares approaches that use P/Invoke (i.e., CsGL) and GCHandle
structure (i.e., this work).

It is assumed that functions that use general arrays as parameter are not called as often as
in the case of built-in value types. Test uses glTexImage2D function because this
function is called quite often and it allows comparison of results with situation where
.NET provided data sharing is used instead of general arrays (see section 11.3). It is good
to note that even this function uses built-in value type as parameter. Test results can be
found at Figure 11.2.

Figure 11.2: Test 2 results

Both CsGL and this work are slower then non-managed code. It is caused by the fact that
managed array needs to be protected from garbage collector (i.e., pinned). In the case of
this work the slowdown of wrapper is even greater then those of CsGL.

This slowdown is caused by GCHandle structure because it performs runtime checks of
handled data type in order to prevent user from operating with inappropriate data type.
However, these runtime checks consumes quite significant amount of time and the overall
influence depends on ration of times consumed by wrapper and function itself.

It the case of this function is the consumed time greater then time consumed by the
wrapper and therefore is slowdown not significant. For opposite situation (i.e., time
consumed by the wrapper is greater then time consumed by a function itself) refer to
section 11.4.

Results of this test are comparable to results of third test (see section 11.3) because it uses
same OpenGL function with different approach to data sharing. For comparison of various
data sharing approaches used, both by this work and by CsGL refer to section 11.5.

0.500
0.550
0.600
0.650
0.700
0.750
0.800
0.850
0.900
0.950
1.000

1000 10000 100000

log(Call No.)

Sp
ee

d

CsGL
This
This*
Non-managed Win32

Call No. 1000 1600 2500 4000 6300 10000 16000 25000 40000 63000 100000 average
CsGL 0.807 0.809 0.813 0.816 0.813 0.806 0.828 0.806 0.809 0.809 0.808 0.811
This 0.685 0.685 0.688 0.690 0.689 0.687 0.705 0.687 0.686 0.686 0.686 0.689
This* 0.528 0.529 0.532 0.531 0.530 0.530 0.546 0.533 0.533 0.533 0.533 0.532

Test 2 Results

* version with parameter checking

11 Results

73

11.3 Test 3: .NET provided Data Sharing
This test is similar to previous test (see section 11.2), i.e., it uses same function
(glTexImage2D). However, it differs in approach to data sharing. In this case both
versions (i.e., this work and CsGL) use functionality provided by .NET itself.

This means they use a method that allows locking contents of the image (instance of
System.Drawing.Bitmap) without need of additional language constructions. Results
can be found at Figure 11.3 and graph is formatted similar to those of previous test in order
to simplify their comparison.

Figure 11.3: Test 3 results

In comparison with previous test, results are better for both CsGL and this work. In the
case of this work are results not even significantly better then for previous test but also
slightly better then CsGL (for this test). It is caused by the fact that wrapper does not use
GCHandle structure in order to perform data sharing and uses capabilities of MC++ (i.e.,
IJW mechanism).

0.500
0.550
0.600
0.650
0.700
0.750
0.800
0.850
0.900
0.950
1.000

1000 10000 100000
log(Call No.)

Sp
ee

d

CsGL
This
This*
Non-managed Win32

Call No. 1000 1600 2500 4000 6300 10000 16000 25000 40000 63000 100000 average
CsGL 0.815 0.814 0.814 0.821 0.818 0.817 0.837 0.817 0.818 0.817 0.817 0.818
This 0.851 0.855 0.851 0.856 0.855 0.852 0.873 0.851 0.854 0.855 0.854 0.855
This* 0.816 0.826 0.832 0.833 0.831 0.830 0.850 0.830 0.831 0.831 0.830 0.831

Test 3 Results

* version with parameter checking

11 Results

74

11.4 Test 4: General Arrays Stored
Fourth test deals with data sharing similar to second test (see section 11.2), i.e., it uses
general arrays. The only difference is that these data (i.e., pointers) are stored inside
OpenGL for later use. This means that in the case of this work these data (their references)
need to be stored inside wrapper’s internal data structures in order to protect them from
garbage collection.

Similar to the second test, this test compares two approaches on data sharing: P/Invoke
used by CsGL and GCHandle structure used by this work. Test uses
glVertexPointer function that itself consumes only a very short time. Therefore, it is
assumed that result of this test will be example of the worst case, i.e., situation when the
wrapper overhead is significant in comparison to function itself. Test result can be found
at Figure 11.4.

Figure 11.4: Test 4 results

Results are significantly slower then non-managed version even thought they should be
close to results of the second test (see section 11.2). The reason for that is an assumption
from previous paragraph, i.e., time consumed by OpenGL function itself is much shorter
then time consumed by wrapper.

However, it is good to note that these functions (i.e., functions that stores reference to data
for later use) are not called too often and time interval consumed by single function is quite
short. Therefore, when mixed with another OpenGL function calls, the overall impact on
application performance shall not be significant (see section 11.6).

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

1000 10000 100000
log(Call No.)

Sl
ow

do
w

n

CsGL
This
This*
Non-managed Win32

Call No. 1000 1600 2500 4000 6300 10000 16000 25000 40000 63000 100000 average
CsGL 0.163 0.161 0.160 0.153 0.159 0.158 0.159 0.158 0.158 0.158 0.158 0.159
This 0.059 0.059 0.058 0.054 0.058 0.057 0.057 0.058 0.057 0.057 0.057 0.058
This* 0.023 0.022 0.022 0.021 0.022 0.022 0.022 0.021 0.021 0.021 0.021 0.022

Test 4 Results

* version with parameter checking

11 Results

75

11.5 Test 5: Different Data Sharing Approaches
This test compares different approaches of data sharing used either by this work or by
CsGL. It aims on a large group of OpenGL functions that are used to set up specific parts
of rendering pipeline such as particular light parameters, material, etc. It is assumed that
the time consumed by wrapper is greater or equal to time consumed by function itself. Test
is uses glColor4fv function. Results of the test can be found at Figure 11.5.

Test compares P/Invoke mechanism (CsGL) and MC++ capabilities (this work) to mix
both managed and non-managed code. In the case of P/Invoke mechanism, version that
uses unsafe block (i.e., unsafe and fixed keyword in C#) is compared to a version
without unsafe blocks. It is assumed that version with unsafe block shall be faster then
version that lacks them.

In the case of this work, the test compares version that uses array of doubles and pinning
pointers with version that uses simple structure (i.e., value type) instead of the array. It
shall prove whether the use of simple structures leads to performance loss. It is good to
note that use of these structures is more comfortable for developer then use of arrays. It is
assumed that there is performance trade off for comfort. However, it shall not be
significant. All time intervals were measured for version without parameter checking.

Figure 11.5: Test 5 results

Results show that both CsGL and this work are significantly slower then non-managed
version. The cause of that is similar to the assumption that was made above, i.e., time
consumed by the function itself is either less or equal to time consumed by the wrapper.

Both pinning pointer and structures are faster then CsGL even using unsafe blocks. It is
good to note that structures are only slightly slower then pinning pointer. Therefore,
application that uses structures instead of arrays shall experience only slight performance
loss as trade off for more comfortable source code developing.

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

1000 10000 100000
log(Call No.)

Sl
ow

do
w

n

CsGL*
This**
This***
CsGL****
Non-managed Win32

Call No. 1000 1600 2500 4000 6300 10000 16000 25000 40000 63000 100000 average
CsGL* 0.198 0.202 0.199 0.200 0.201 0.199 0.200 0.197 0.200 0.198 0.198 0.199
This** 0.556 0.583 0.563 0.567 0.574 0.564 0.576 0.568 0.577 0.572 0.570 0.570
This*** 0.531 0.557 0.523 0.534 0.545 0.543 0.548 0.540 0.548 0.544 0.542 0.541
CsGL**** 0.202 0.207 0.200 0.198 0.200 0.199 0.200 0.197 0.200 0.198 0.197 0.200

**** version that uses unsafe + fixed keyword

Test 5 Results

* version that uses P/Invoke
** version that uses pinning pointers
*** version that uses structures

11 Results

76

11.6 Test 6: Scene
Last test provides a comparison of both CsGL and this work used to render a simple scene
that shall be close to real-world situation. Scene that is used for this test consists of three-
dimensional array of textured spheres (see section E.6). Number of spheres is parameter of
the test. Each sphere is considered independent object, i.e., there is setting of material,
geometry (it uses vertex array; refer to section 11.4), texture (it uses texture objects), and
transformation (i.e., sphere position and rotation) for each sphere.

Test shall prove whether is the performance loss of this work significant in comparison
with both CsGL and non-managed version. Results of the rest can be found at Figure 11.6.

Figure 11.6: Test 6 results

Results of both CsGL and this work are comparable and very close to performance of non-
managed version. Even version with parameter checking provides reasonable results and is
only slightly slower then both version without parameter checking and CsGL version.
Therefore, there is an assumption that real-world application that uses OpenGL in managed
environment will suffer from only minimal performance loss.

0.950

0.960

0.970

0.980

0.990

1.000

1000 10000 100000
log(Object No.)

Sl
ow

do
w

n

This
This*
CsGL
Non-managed Win32

Call No. 1000 1600 2500 4000 6300 10000 16000 25000 40000 63000 100000 average
CsGL 0.964 0.963 0.964 0.966 0.966 0.965 0.965 0.965 0.965 0.965 0.965 0.965
This 0.965 0.963 0.964 0.967 0.964 0.965 0.964 0.965 0.965 0.964 0.964 0.965
This* 0.962 0.960 0.962 0.962 0.962 0.961 0.962 0.962 0.962 0.962 0.963 0.962

Test 6 Results

* version with parameter checking

12 Conclusion

77

12 Conclusion

The goal of this work was to verify the approach rather then create complete port of
OpenGL. The reason for that is that OpenGL including all of GL Extensions is quite large
library and porting of GL Extensions and OpenGL versions is matter of applying
approaches that were verified by this work.

Interface that was designed and implemented differs from original OpenGL specification
only slightly. It is more object oriented and uses enumeration types instead of constants. It
is true that is approach makes porting little bit difficult, however, it allows to handle non-
managed and managed code cooperation easily.

It is good to note that comfort of use is one of the things that is paid attention to:
enumeration types, improved debugging capabilities, and additional structures.
Enumeration types are more comfortable in comparison with constants because it is
easier to select the value from limited set of value (i.e., enumeration type members) then to
select the value from a huge list (i.e., all constants).

Improved debugging capabilities shall simplify debugging of OpenGL code by checking
parameters of OpenGL functions. Current implementation does not check all parameters
due to number of functions together with the fact that the developer has to manually edit
the code in order to provide parameter checking for particular function.

Additional structures solve problem of pointers including void pointers. They are basic
structures (e.g., vertex, color, etc.) that are usually implemented by user himself during
developing of OpenGL code.

Implementation verifies solution introduced in this work. Therefore, it does not provide
complete set of all available OpenGL versions and GL Extensions. This work contains
implementation of OpenGL version 1.1, GLU version 1.1, and few GL Extensions such as
ARB_multitexture, ARB_texture_cube_map, EXT_vertex_weighting.

It is good to note that one of the parts of this work is a tool that allows semi-automatic
conversion of OpenGL function to managed code based on OpenGL C/C++ header files.
The tool suits needs of this work and therefore is quite simple because more general tool
would have complicated design and operation of it would be complicated too.

This work also provides a framework for verification and validation of implementation.
This framework consists of a simple template for test and tool that allows automation of
testing. Currently this work contains two sample tests. They are both based on problems of
various applications. However, they are examples rather then real tests. Construction of

12 Conclusion

78

next tests (i.e., real tests) will depend on particular experience of users with different
device drivers and/or future implementations of OpenGL interface.

A result of this work is interface that allows using OpenGL in managed environment. It
tries to be more comfortable and easier to debug. It is an alternative to existing approaches
and performance of this work is close to CsGL that is example of existing solution and
comparable to non-managed version (i.e., Win32). Implementation was tested on various
OpenGL tutorials and examples.

Bibliography

79

Bibliography

[MONO] Mono project. [WWW] http://www.go-mono.com (March 1 2003).

[SSCLI] Stutz, D., Neward, T., and Shilling, G. (2003). Shared Source CLI
Essentials. Sebastopol: O’Reilly.

[IEC] IEC 60599:1989. Binary Floating-point Arithmetic for Microprocessor
Systems. Previously designated IEC 599:1989.

[CLI-I] Common Language Infrastructure Partition I: Concepts and Architecture.
(2002). [WWW] http://msdn.microsoft.com/net/ecma/ (March 28 2003).

[CLI-II] Common Language Infrastructure Partition II: Metadata Definitions and
Semantics. (2002). [WWW] http://msdn.microsoft.com/net/ecma/ (March 28
2003).

[CLI-III] Common Language Infrastructure Partition III: CIL Instruction Set. (2002).
[WWW] http://msdn.microsoft.com/net/ecma/ (March 28 2003).

[Dav99] Davis, M. and Dürst, M. (1999). Unicode Technical Report #15. Revision
18.0. [WWW] http://www.unicode.org/unicode/reports/tr15/tr15-18.html
(March 28 2003).

[Ric00] Richter, J. (2000). Garbage Collection: Automatic Memory Management in
the Microsoft .NET Framework. MSDN Magazine, 11/2000. [WWW]
http://msdn.microsoft.com/msdnmag/issues/1100/GCI/default.aspx (March
28 2003).

[Car02] Carmona, D. (2002). Programming the Thread Pool in the .NET
Framework. [WWW]
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndotnet/html/progthrepool.asp (March 28 2003).

[Ric03] Richter, J. (2003). Safe Thread Synchronization. MSDN Magazine, 1/2003.
[WWW] http://msdn.microsoft.com/msdnmag/issues/03/01/net/default.aspx
(March 28 2003).

[WL02] Watkins, D. and Lange, S. (2002). An Overview of Security in the .NET
Framework. [WWW] http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/dnnetsec/html/netframesecover.asp?frame=true (March 1
2003).

Bibliography

80

[RFC1766] IETF RFC1766:1995. Tags for the Identification of Languages. [WWW]
http://www.ietf.org/rfc/rfc1766.txt (April 20 2003).

[MSDN] MSDN Library. (2001). [WWW] http://msdn.microsoft.com (April 10
2003).

[CLI-V] Common Language Infrastructure Partition V: Annexes. (2002). [WWW]
http://msdn.microsoft.com/net/ecma/ (March 28 2003).

[CSharp] C# Language Specification. (2002). [WWW]
http://msdn.microsoft.com/net/ecma/ (March 28 2003).

[Watt00] Watt, A. (2000). 3D Computer Graphics. Harlow: Addison-Wesley.

[GL13] Segal, M. and Akeley, K. (2001). The OpenGL Graphics System: A
Specification Version 1.3. [WWW]
http://www.opengl.org/developers/documentation/version1_3/glspec13.pdf
(March 28 2003).

[GL14] Segal, M. and Akeley, K. (2002). The OpenGL Graphics System: A
Specification Version 1.4. [WWW]
http://www.opengl.org/developers/documentation/version1_4/glspec14.pdf
(March 28 2003).

[GLU13] Chin, N., Frazier, C., Ho, P., Liu, Z., Smith, K. P. (1998). The OpenGL
Graphics System Utility Library (Version 1.3). [WWW]
ftp://ftp.sgi.com/opengl/doc/opengl1.2/glu1.3.pdf (March 28 2003).

[SGI] SGI web-site. [WWW] http://www.sgi.com/ (March 10 2003).

[Fra03] Frank, M. (2003). VTK for .NET. M. A. thesis, University of West Bohemia
in Pilsen, Pilsen.

[OpenGL] OpenGL web-site. [WWW] http://www.opengl.org/ (February 18 2003)

[CsGL] CsGL project web-site. [WWW] http://csgl.sourceforge.net/ (February 20
2003).

[GLSharp] GLSharp project web-site. [WWW] http://www.headbits.com/ (April 4
2003).

[GLUT] Kilgard, J. M. (1996). The OpenGL Utility Toolkit (GLUT) Programming
Interface (API Version 3). [WWW] http://www.opengl.org/developers/
documentation/glut/spec3/spec3.html (May 4 2003).

[Kil02] Kilgard, J. M. All About OpenGL Extensions. [WWW]
http://www.opengl.org/
developers/code/features/OGLextensions/OGLextensions.html (May 4
2003).

[Flex] Flex project web-site. [WWW] http://www.gnu.org/software/flex/ (April 16
2003).

[ANSI-C] ANSI C Grammar for Lex. 1985. [WWW] http://www.lysator.liu.se/c/ANSI-
C-grammar-l.html (April 3 2003).

Abbreviations and Terminology

81

Abbreviations and Terminology

Assembly Enclosing construction over types. It is the smallest distributable unit of code
in .NET Framework.

Delegate Managed (.NET) equivalent of function pointer.

CIL Common Immediate Language. Low-level language used by .NET.

CLI Common Language Infrastructure. Specification of .NET Framework.

CLR Common Language Runtime. See CLI.

CLS Common Language Specification. Specifies rules for outer interface of
assembly, which shall simplify language interoperability.

CTS Common Type System. Specification of data types and rules for their use. Part
of CLI.

GDI Graphics device interface. Simple 2d graphic output provided by Windows
operating system.

GDI+ Advanced version of GDI. See GDI.

GL Extensions Additions to OpenGL library function that might not be available on all
hardware that supports OpenGL.

GLU OpenGL Graphic System Utility Library. Additional library that enhances
capability of OpenGL library.

GLUT The OpenGL Utility Toolkit. Additional library that simplifies initialization of
OpenGL and makes OpenGL code completely platform dependent. This
dependency includes OpenGL initialization and system events handling.

GUI Graphical User Interface such as windowing system.

IJW “It Just Works”. Name for capabilities of MC++ to mix managed and non-
managed code. Use of IJW shall lead to higher performance then use of
P/Invoke.

MC++ C++ Managed Extension. Extended version of C++ language that aims .NET.

Managed code Code (CIL) that is fully under control of .NET.

Manifest Additional informational data for assembly. Contains description of assembly
and all types enclosed inside.

Abbreviations and Terminology

82

P/Invoke Platform Invoke. Mechanism that allows for managed code to execute non-
managed code such as function in libraries.

Render Context Represents instance of OpenGL. It needs to be created in order to use
OpenGL functionality.

Unmanaged (non-managed) code Code that is not under control of .NET such as native
binary code of particular machine.

Win32API Windows Application Programming Interface. Basic interface that is provided
by Windows operating system for applications, which uses services of this
operating system.

Appendices

83

Appendices

Appendix A Usage

84

Appendix A Usage

This appendix contains templates for applications that use this work. All templates use C#
syntax. Templates may not a handle all common tasks, e.g., window resizing. Application
that uses such template have to reference to ZCU.Graph.OpenGL.dll assembly in
order to perform compilation. In the case of Visual Studio .NET (2002) this assembly
shall be added to list of references.

When compiling in command line the /reference option of C# compiler (csc.exe)
shall be used. In such case, assembly file (i.e., ZCU.Graph.OpenGL.dll) has to be
situated on one of three possible locations (for detailed information see [MSDN]):

• directory in which the compilation is performed,

• directory specified by /lib option of the compiler,

• directory specified by the LIB environment variable.

Example of command line compilation can be found at Figure A.1. It compiles single file
that (i.e., myfile.cs) that contains C# source code. In example it is assumed that
assembly file is situated at one of locations specified above. The result of compilation is
stored to myfile.exe file. Example produces console application. However, it is
possible to create pure window application. In such case add /t:winexe option before
source file name.

Figure A.1: Command line compilation example

In order to run application that uses this assembly, the assembly has to be situated in the
same location (i.e., path) as application executable. However, there is another option that
uses Global Assembly Cache (see [MSDN]). Due to assembly itself is strong-named (i.e.,
it is signed) it is possible to insert it to Global Assembly Cache so applications can be
executed without need to have local copy of assembly file. For details, refer to Appendix
A.

Executing of application that does not have access to assembly file produces unhandled
exception (e.g., System.IO.FileNotFoundException). Due to security policy
reasons it is allowed to execute assemblies that contain non-managed code (such as this
assembly) only from local storage, i.e., it is not possible to execute it from network-
mapped disk. Attempt to execute assembly from invalid source leads to occurrence of
unhandled security exception.

Appendix A Usage

85

Due to simplification reasons, only templates for window application are contained within
this appendix. All examples uses .NET classed for windowed output.

Figure A.2: Windowed application template

Appendix A Usage

86

Figure A.3: Windowed application template that benefits from prepared GLForm helper

class

Appendix B Installation

87

Appendix B Installation

Installation of assembly (i.e., ZCU.Graph.OpenGL.dll) is very simple and thanks two the
fact that this assembly is strong-named there are two options. The user has to provide local
copy and/or install the assembly into Global Assembly Cache. In both cases .NET
Framework has to be installed prior to this assembly. Installation and management of
.NET Framework is beyond the range this documentation and this work; for such
information refer to [MSDN].

Approach that uses local copy of the assembly (i.e., copy of assembly file situated in
current working directory) is the most simple and straightforward. The major advantage of
this approach is the fact that it is suitable for both compilation and execution of application
which references to this assembly.

However, previous approach (i.e., local copy) requires an assembly file to be copied
together with every application executable. This leads to redundant copies of the same and
may cause difficulties while providing updated (bug fixed) version of the assembly file. In
such case it is better to use Global Assembly Cache.

It is a special storage for assemblies that are shared by multiple applications. These
assemblies must have strong name and any user with sufficient security permissions can
install (see Figure B.1) and uninstall (see Figure B.2) the assembly with help of gacutil
tool that is part of .NET Framework. It is good to note that installed assembly is then
accessible only for execution of application not for compiling of the source code.

Figure B.1: Assembly installation to Global Assembly Cache

Figure B.2: Uninstallation of assembly previously inserted into Global Assembly Cache

Appendix C Reference

88

Appendix C Reference

C.1 Namespaces
ZCU.Graph.OpenGL

Base namespace. Contains system class (e.g., Render Context) and enumeration types. All
namespaces and types created for this work resides inside this namespace or nested namespaces. Due
to that all namespace identifiers are striped of the base namespace name in this section.

Examples
Contains examples of OpenGL applications that were converted from non-managed version to
managed version. Examples are grouped via their source.

Forms
Contains classes that simplifies OpenGL instance creation and window management, e.g., GLForm.
All classes that have similar functionality to GLUT library shall be nested inside this namespace.

GL11Members
Contains types (e.g., enumeration types) that are used for implementation of OpenGL version 1.1 in a
form of GL11 class.

GLExtensions
Contains OpenGL extensions. All extensions shall be derived from Extension class that resides in
this namespace.

GLExtensions.ARBMultitextureMembers
Contains enums of ARB_multitexture GL Extension.

GLExtensions.ARBTextureCubeMapMembers
Contains enums of ARB_texture_cube_map GL Extension.

GLExtensions.EXTVertexWeightingMembers
Contains enums of EXT_vertex_weighting GL Extension.

GLU11Members
Contains types (e.g., GLU objects) that are used for implementation of GLU version 1.1 in a form of
GLU11 class.

Structures
Contains additional structures that improve comfort of programming, e.g., Matrix, Vertex2d, etc.

Tests
Contains types used for testing and verification purposes.

Appendix C Reference

89

Tools
Contains tools that help with either port creation or programming under OpenGL. Currently it
contains tool that creates source code templates for OpenGL port.

C.2 Classes

C.2.1 ARBMultitexture
Public. ARB_multitexture GL Extension implementation. Class contains OpenGL functions and
constants., however, they are not listed here due to their number and the fact that they are described by
particular OpenGL specification.

C.2.1.1 Constructors

ARBMultitexture()
Public. Creates instance of GL Extension. Requires current instance of OpenGL (RenderContext
class instance) to be valid. It is then considered owner of this instance.

C.2.2 ARBTextureCubeMap
Public. ARB_texture_cube_map GL Extension implementation. Class contains OpenGL
functions and constants., however, they are not listed here due to their number and the fact that they
are described by particular OpenGL specification.

C.2.2.1 Constructors

ARBTextureCubeMap()
Public. Creates instance of GL Extension. Requires current instance of OpenGL (RenderContext
class instance) to be valid. It is then considered owner of this instance.

C.2.3 BaseRenderContext
Public. OpenGL render context class. Represents OpenGL instance. Instance of this class or derived
class needs to be created in order to use OpenGL/GLU/GL Extension. Used for windowed rendering,
i.e., it has no support for fullscreen rendering.
This class is base class for all classes representing OpenGL instance.

C.2.3.1 Constructors

BaseRenderContext()
Protected. Initializes internal data structures.

C.2.3.2 Methods

Dispose()
Public. Destroys render context, releases resources, and disposes object. Users are required to call this
method.

DoneCurrent()
Public. Virtual. Sets this instance of OpenGL to be not current. Used in pairs with MakeCurrent.
All OpenGL/GLU/GL Extension method calls and class instance constructions shall be performed in a
block encapsulated by this pair.

MakeCurrent()
Public. Virtual. Makes this instance of OpenGL to be current one. Used in pairs with DoneCurrent.
All OpenGL/GLU/GL Extension method calls and class instance constructions shall be performed in a
block encapsulated by this pair.

SwapBuffers()
Public. Virtual. Swaps current buffer with buffer that is displayed on screen. Shall be called outside
block enclosed by MakeCurrent and DoneCurrent pair.

Appendix C Reference

90

Dispose(bool)
Protected. Virtual. Destroys render context, releases resources, and disposes object. Users are required
to call this method.

disposing True to dispose both managed and non-managed resources. False
to dispose only non-managed resources (e.g., HWND, DC, etc.).

InitializeRC(HWND, ColorBitDepth, BitDepth, BitDepth,
RCProperties)

Protected. Creates instance of OpenGL with specified properties.
hWnd Win32 window handle.
color Color bit depth.
depth Depth buffer bit depth.
stencil Stencil buffer bit depth.
properties Properties that are used for this instance of OpenGL (e.g., double

buffering, etc.).

SetPixelFormat(ColorBitDepth, BitDepth, BitDepth,
RCProperties)

Private. Sets pixel format of target window device context. It also performs automatic selection of
color, depth, and stencil buffer bit depth if required. Analogous to Win32API function
SetPixelFormat.

color Color bit depth.
depth Depth buffer bit depth.
stencil Stencil buffer bit depth.
properties Properties that are used for this instance of OpenGL (e.g., double

buffering, etc.).

C.2.3.3 Properties

IsInitialized
Public. Read-only. True if this instance of OpenGL is valid (i.e., it was initialized and it was not
disposed).

ColorDepth
Public. Read-only. Color buffer bit depth of this OpenGL instance.

DepthDepth
Public. Read-only. Depth buffer bit depth of this OpenGL instance.

StencilDepth
Public. Read-only. Stencil buffer bit depth of this OpenGL instance.

IsDoubleBuffered
Public. Read-only. True if this instance uses double buffering.

IsStereo
Public. Read-only. True if this instance support stereo output, e.g., for stereo glasses.

C.2.3.4 Fields

hWnd
Protected. Win32 handle for output window.

hDC
Protected. Win32GDI device context of output window.

hRC
Protected. OpenGL instance render context handle.

Appendix C Reference

91

color
Protected. Color buffer bit depth.

depth
Protected. Depth buffer bit depth.

stencil
Protected. Stencil buffer bit depth.

properties
Protected. Properties of OpenGL instance output.

CurrentRC
Internal. Static. Current OpenGL instance.

stackRC
Private. Static. Stack for storing of current OpenGL instances. It allows the user changing of current
OpenGL instance without need of explicit storing of previous current one.

possibleColors
Private. Static. All possible color buffer bit depths. Used for automatic resolution of the best available
bit depth.

possibleDepths
Private. Static. All possible depth buffer bit depths. Used for automatic resolution of the best available
bit depth.

possibleStencils
Private. Static. All possible stencil buffer bit depths. Used for automatic resolution of the best
available bit depth.

C.2.4 DisplayModeInfo
Public. Contains specification of current and/or available display mode. It is used for setting of
fullscreen mode properties.

C.2.4.1 Constructors

DisplayModeInfo(System.Int32, System.Int32, ColorBitDepth,
System.Int32)

Public. Creates instance of this class.
width Width of screen resolution.
height Height of screen resolution.
colorDepth Color buffer bit depth, i.e., bits per pixel.
displayFrequency Frequency of refresh for fullscreen mode.

DisplayModeInfo(System.Drawing.Size, ColorBitDepth,
System.Int32)

Public. Creates instance of this class.
size Screen resolution.
colorDepth Color buffer bit depth, i.e., bits per pixel.
displayFrequency Frequency of refresh for fullscreen mode.

DisplayModeInfo(DEVMODE)
Internal. Creates instance of this class. Used for retrieving of current and/or available display modes.

Appendix C Reference

92

devMode WIN32 device mode information.

C.2.4.2 Methods

ToString()
Public. Overridden. Returns information about contents of instance, e.g., 640x480x24bppx75Hz.

returns Contents of instance.

EnumDisplayModes()
Public. Static. Enumeration of all available modes.

returns Available display mode.

ToDEVMODE()
Internal. Converts contents of instance into DEVMODE structure. Used for switching to display
mode.

returns Contents of instance in a form of DEVMODE structure.

C.2.4.3 Properties

Size
Public. Read-only. Screen resolution.

ColorDepth
Public. Read-only. Color buffer bit depth.

DisplayFrequency
Public. Read-only. Fullscreen mode screen refresh.

Current
Public. Static. Read-only. Current display mode.

C.2.4.4 Fields

size
Private. Screen resolution.

colorDepth
Private. Color buffer bit depth.

displayFrequency
Private. Fullscreen mode display frequency.

C.2.5 EXTVertexWeighting
Public. EXT_vertex_weighting GL Extension implementation. Class contains OpenGL
functions and constants., however, they are not listed here due to their number and the fact that they
are described by particular OpenGL specification.

C.2.5.1 Constructors

EXTVertexWeighting()
Public. Creates instance of GL Extension. Requires current instance of OpenGL (RenderContext
class instance) to be valid. It is then considered owner of this instance.

C.2.6 FullscreenRenderContext
Public. OpenGL render context class with possibility to render on fullscreen. Derived from
RenderContext.

Appendix C Reference

93

C.2.6.1 Constructors

FullscreenRenderContext(System.Windows.Forms.Form)
Public. Creates instance of OpenGL. Uses current color bit depth and screen resolution for fullscreen
mode. Chooses the best possible bit depth for depth buffer and stencil buffer. Created instance uses
double buffering and is not in fullscreen mode implicitly.

form Form that is used for output. It have to be application top-most
form. Class may modify properties of such window in order to
perform switching between fullscreen and windowed mode.

FullscreenRenderContext(System.Windows.Forms.Form,
DisplayModeInfo)

Public. Creates instance of OpenGL. Uses user supplied color bit depth and screen resolution for
fullscreen mode. Chooses the best possible bit depth for depth buffer and stencil buffer. Created
instance uses double buffering and is not in fullscreen mode implicitly.

form Form that is used for output. It have to be application top-most
form. Class may modify properties of such window in order to
perform switching between fullscreen and windowed mode.

mode Display mode (i.e., resolution, color buffer bit depth, and refresh
rate) used for fullscreen mode.

FullscreenRenderContext(System.Windows.Forms.Form,
DisplayModeInfo, BitDepth, BitDepth, RCProperties)

Public. Creates instance of OpenGL. Uses user supplied display mode for fullscreen mode, depth
buffer bit depth, stencil buffer bit depth, and render output properties.

form Form that is used for output. It have to be application top-most
form. Class may modify properties of such window in order to
perform switching between fullscreen and windowed mode.

mode Display mode (i.e., resolution, color buffer bit depth, and refresh
rate) used for fullscreen mode.

depth Depth buffer bit depth.
stencil Stencil buffer bit depth.
properties Properties that are used for this instance of OpenGL (e.g., double

buffering, etc.).

FullscreenRenderContext(System.Windows.Forms.Form,
System.Drawing.Size, ColorBitDepth, BitDepth, BitDepth,
System.Int32, RCProperties)

Public. Creates instance of OpenGL. Uses user supplied display mode for fullscreen mode, depth
buffer bit depth, stencil buffer bit depth, and render output properties.

form Form that is used for output. It have to be application top-most
form. Class may modify properties of such window in order to
perform switching between fullscreen and windowed mode.

size Resolution for fullscreen mode.
color Color bit depth.
depth Depth buffer bit depth.
stencil Stencil buffer bit depth.
refresh Refresh rate for fullscreen mode.
properties Properties that are used for this instance of OpenGL (e.g., double

buffering, etc.).

C.2.6.2 Methods

EnterFullscreen()
Public. Enters fullscreen mode.

Appendix C Reference

94

LeaveFullscreen()
Public. Leaves fullscreen mode.

Dispose(bool)
Protected. Overriden. Destroys render context, releases resources, and disposes object. Users are
required to call this method.

disposing True to dispose both managed and non-managed resources. False
to dispose only non-managed resources (e.g., HWND, DC, etc.).

Init(DisplayModeInfo)
Private. Performs initialization of data structures.

mode Display mode (i.e., resolution, color buffer bit depth, and refresh
rate) used for fullscreen mode.

C.2.6.3 Properties

IsFullscreen
Public. Read-only. True if it is in fullscreen mode currently.

DisplayMode
Public. Read-only. Retrieves fullscreen display mode parameters.

C.2.6.4 Fields

form
Protected. Contains reference to output form. Its contents is similar to those of
RenderContext.control.

origDesktopBounds
Protected. Output form's original desktop bounds. Used for fullscreen mode switching, i.e., it allows
to restore original window.

origFormBorderStyle
Protected. Output form's original border style. Used for fullscreen mode switching, i.e., it allows to
restore original window.

origWindowState
Protected. Output form's original state. Used for fullscreen mode switching, i.e., it allows to restore
original window.

displayMode
Protected. Fullscreen display mode.

C.2.7 GL
Public. Latest implemented version of OpenGL (currently 1.1). Inherited from GL11.

C.2.7.1 Constructors

GL()
Public. Creates instance of OpenGL functions. Requires current instance of OpenGL
(RenderContext class instance) to be valid. It is then considered to be owner of this instance.

C.2.8 GL11
Public. OpenGL version 1.1 interface implementation. Class contains OpenGL functions and
constants., however, they are not listed here due to their number and the fact that they are described by
particular OpenGL specification.

Appendix C Reference

95

C.2.8.1 Constructors

GL11()
Public. Creates instance of OpenGL functions. Requires current instance of OpenGL
(RenderContext class instance) to be valid. It is then considered to be owner of this instance.

C.2.8.2 Properties

RenderContext
Public. Read-only. Owner instance of RenderContext.

C.2.8.3 Fields

rc
Protected. Owner instance of RenderContext.

data
Protected. Internal data.

C.2.9 GLException
Public. Exception for OpenGL exception. Derived from System.ApplicationException.

C.2.9.1 Constructors

GLException()
Public. Constructor.

GLException(System.String)
Public. Constructor.

strErr Error message.

C.2.10 GLU
Public. Latest implemented version of GLU (currently 1.1). Inherited from GLU11.

C.2.10.1 Constructors

GLU()
Public. Creates instance of GLU functions. Requires current instance of OpenGL (RenderContext
class instance) to be valid. It is then considered to be owner of this instance.

C.2.11 GLU11
Public. GLU version 1.1 interface implementation. Class contains GLU functions and constants.,
however, they are not listed here due to their number and the fact that they are described by particular
GLU specification.

C.2.11.1 Constructors

GLU11()
Public. Creates instance of GLU functions. Requires current instance of OpenGL (RenderContext
class instance) to be valid. It is then considered to be owner of this instance.

C.2.11.2 Properties

RenderContext
Public. Read-only. Owner instance of RenderContext.

Appendix C Reference

96

C.2.11.3 Fields

rc
Protected. Owner instance of RenderContext.

C.2.12 RenderContext
Public. OpenGL render context class. Represents OpenGL instance. Instance of this class or derived
class needs to be create in order to use OpenGL/GLU/GL Extension. Used for windowed rendering,
i.e., it has no support for fullscreen rendering.
This class is base class for classes representing OpenGL instance for .NET. Derived from
BaseRenderContext.

C.2.12.1 Constructors

RenderContext(System.Windows.Forms.Control)
Public. Creates instance of OpenGL. Uses current color bit depth and the best possible bit depth for
depth buffer and stencil buffer. Created instance uses double buffering.

control Control that is used for output.

RenderContext(System.Windows.Forms.Control, RCProperties)
Public. Creates instance of OpenGL. Uses current color bit depth and the best possible bit depth for
depth buffer and stencil buffer.

control Control that is used for output.
properties Properties that are used for this instance of OpenGL (e.g., double

buffering, etc.).

RenderContext(System.Windows.Forms.Control, ColorBitDepth,
RCProperties)

Public. Creates instance of OpenGL. Uses specified color bit depth and the best possible bit depth for
depth buffer and stencil buffer.

control Control that is used for output.
color Color bit depth of output.
properties Properties that are used for this instance of OpenGL (e.g., double

buffering, etc.).

RenderContext(System.Windows.Forms.Control, ColorBitDepth,
BitDepth, RCProperties)

Public. Creates instance of OpenGL. Uses specified color and depth buffer bit depth. Select the best
possible stencil buffer bit depth.

control Control that is used for output.
color Color bit depth.
depth Depth buffer bit depth.
properties Properties that are used for this instance of OpenGL (e.g., double

buffering, etc.).

RenderContext(System.Windows.Forms.Control, ColorBitDepth,
BitDepth, BitDepth, RCProperties)

Public. Creates instance of OpenGL. Uses specified color, depth, and stencil buffer bit depth.

Appendix C Reference

97

control Control that is used for output.
color Color bit depth.
depth Depth buffer bit depth.
stencil Stencil buffer bit depth.
properties Properties that are used for this instance of OpenGL (e.g., double

buffering, etc.).

C.2.12.2 Methods

Dispose(bool)
Protected. Virtual. Destroys render context, releases resources, and disposes object. Users are required
to call this method.

disposing True to dispose both managed and non-managed resources. False
to dispose only non-managed resources (e.g., HWND, DC, etc.).

Initialize(System.Windows.Forms.Control, ColorBitDepth,
BitDepth, BitDepth, RCProperties)

Protected. Creates instance of OpenGL with specified properties.
control Control that is used for output.
color Color bit depth.
depth Depth buffer bit depth.
stencil Stencil buffer bit depth.
properties Properties that are used for this instance of OpenGL (e.g., double

buffering, etc.).

C.2.12.3 Fields

control
Protected. Control used for displaying of OpenGL output.

C.2.13 Forms.GLForm
Public. Abstract. Simple standalone OpenGL output window for .NET. Replacement for some of
GLUT capabilities. Derived from System.Windows.Forms.Form. Class protects all user's
OpenGL overrides calls with critical section.

C.2.13.1 Constructors

GLForm()
Public. Creates instance of form. Uses current color buffer bit depth, the best available depth and
stencil buffer bit depth, and double buffering.

GLForm(ColorBitDepth, BitDepth, BitDepth)
Public. Creates instance of form with given parameters.

color Color bit depth.
depth Depth buffer bit depth.
stencil Stencil buffer bit depth.

C.2.13.2 Methods

OnGLDestroy()
Public. Virtual. Called at window closing with OpenGL instance of this form set as current.

OnGLInitialize()
Public. Virtual. Called at window initialization with OpenGL instance of this form set as current.

Appendix C Reference

98

OnGLPaint()
Public. Abstract. Called at window painting with OpenGL instance of this form set as current.
Rendered image is then automatically displayed on screen, i.e., user does not need to call
rc.SwapBuffers().

OnGLResize(System.Drawing.Size)
Public. Virtual. Called at window resizing with OpenGL instance of this form set as current. Default
implementation does no modifications to projection matrix.

size Size of form's client area.

Dispose(bool)
Protected. Override. Destroys render context.

disposing True to dispose both managed and non-managed resources. False
to dispose only non-managed resources (e.g., HWND, DC, etc.).

OnPaintBackground(System.Windows.Forms.PaintEventArgs)
Protected. Override. Default implementation disables redrawing of form's background.

pevent Painting event information.

OnPaint(System.Windows.Forms.PaintEventArgs)
Protected. Override. Default implementation locks critical section and calls user's drawing method
(OnGLPaint).

pevent Painting event information.

OnSizeChanged(System.Windows.Forms.EventArgs)
Protected. Override. Default implementation locks critical section and calls user's resizing method
(OnGLResize).

pevent Event information.

Init(ColorBitDepth, BitDepth, BitDepth)
Private. Initializes internal data and OpenGL instance.

color Color bit depth.
depth Depth buffer bit depth.
stencil Stencil buffer bit depth.

C.2.13.3 Properties

rc
Public. Read-only. OpenGL instance.

C.2.13.4 Fields

gl
Protected. OpenGL functions.

glu
Protected. GLU functions.

mutexGL
Protected. Critical section that encloses user's override calls.

renderContext
Private. OpenGL instance.

C.2.14 GLExtensions.Extension
Public. GL/GLU extension base class. All GL Extensions shall be derived from this class. All classes
derived from this render class have to be created only when there is current OpenGL instance
available.

Appendix C Reference

99

C.2.14.1 Constructors

Extension()
Protected. Creates instance of GL Extensions. Used in derived classes.

control Control that is used for output.

C.2.14.2 Methods

IsExtAvail(System.String)
Protected. Checks if given extension exists.

extName Extension name.
returns True, if extension is available.

C.2.14.3 Properties

RenderContext
Public. Read-only. Owner OpenGL instance.

C.2.14.4 Fields

rc
Protected. Owner OpenGL instance.

C.3 Structures

C.3.1 Vertex

Vertex2f
Public. Contains 2D vertex coordinate. Its components stored in System.Single.

Vertex3f
Public. Contains 3D vertex coordinate. Its components stored in System.Single.

Vertex4f
Public. Contains 4D vertex coordinate. Its components stored in System.Single.

Vertex2d
Public. Contains 2D vertex coordinate. Its components stored in System.Double.

Vertex3d
Public. Contains 3D vertex coordinate. Its components stored in System.Double.

Vertex4d
Public. Contains 4D vertex coordinate. Its components stored in System.Double.

C.3.2 Vector and Normal

Vector3f
Public. Contains 3D vector. Its components stored in System.Single.

Vector3d
Public. Contains 3D vector. Its components stored in System.Double.

C.3.3 Color

Color3b
Public. Contains RGB color. Single component stored in System.SByte.

Appendix C Reference

100

Color3ub
Public. Contains RGB color. Single component stored in System.Byte.

Color3s
Public. Contains RGB color. Single component stored in System.Int16.

Color3us
Public. Contains RGB color. Single component stored in System.UInt16.

Color3i
Public. Contains RGB color. Single component stored in System.Int32.

Color3ui
Public. Contains RGB color. Single component stored in System.UInt32.

Color3f
Public. Contains RGB color. Single component stored in System.Single.

Color3d
Public. Contains RGB color. Single component stored in System.Double.

Color4b
Public. Contains RGBA color. Single component stored in System.SByte.

Color4ub
Public. Contains RGBA color. Single component stored in System.Byte.

Color4s
Public. Contains RGBA color. Single component stored in System.Int16.

Color4us
Public. Contains RGBA color. Single component stored in System.UInt16.

Color4i
Public. Contains RGBA color. Single component stored in System.Int42.

Color4ui
Public. Contains RGBA color. Single component stored in System.UInt42.

Color4f
Public. Contains RGBA color. Single component stored in System.Single.

Color4d
Public. Contains RGBA color. Single component stored in System.Double.

C.3.4 Texture Coordinate

TexCoord2f
Public. Contains 2D texture coordinate. Its components stored in System.Single.

TexCoord4f
Public. Contains 4D texture coordinate. Its components stored in System.Single.

C.3.5 InterleavedArrays Structure

C4fN3fV3f
Public. Structure for InterleavedArrays function. Similar to structure specified by original
OpenGL constant GL_C4F_N3F_V3F.

Appendix C Reference

101

C3fV3f
Public. Structure for InterleavedArrays function. Similar to structure specified by original
OpenGL constant GL_C3F_V3F.

T2fC4ubV3f
Public. Structure for InterleavedArrays function. Similar to structure specified by original
OpenGL constant GL_T2F_C4UB_V3F.

T2fC3fV3f
Public. Structure for InterleavedArrays function. Similar to structure specified by original
OpenGL constant GL_T2F_C3F_V3F.

T2fC4fN3fV3f
Public. Structure for InterleavedArrays function. Similar to structure specified by original
OpenGL constant GL_T2F_C4F_N3F_V3F.

C4ubV3f
Public. Structure for InterleavedArrays function. Similar to structure specified by original
OpenGL constant GL_C4UB_V3F.

T2fN3fV3f
Public. Structure for InterleavedArrays function. Similar to structure specified by original
OpenGL constant GL_T2F_N3F_V3F.

T2fV3f
Public. Structure for InterleavedArrays function. Similar to structure specified by original
OpenGL constant GL_T2F_V3F.

T4fV4f
Public. Structure for InterleavedArrays function. Similar to structure specified by original
OpenGL constant GL_T4F_V4F.

T4fC4fN3fV4f
Public. Structure for InterleavedArrays function. Similar to structure specified by original
OpenGL constant GL_T4F_C4F_N3F_V4F.

N3fV3f
Public. Structure for InterleavedArrays function. Similar to structure specified by original
OpenGL constant GL_N3F_V3F.

C4ubV2f
Public. Structure for InterleavedArrays function. Similar to structure specified by original
OpenGL constant GL_C4UB_V2F.

C.3.6 Other

Matrixf
Public. Contains 4x4 matrix used by OpenGL for transformations. Simplifies loading and storing of
OpenGL transformation matrix. Provides indexer that allows accessing similar to either an array with
16 members or an array with rank equal to 2. Components are stored in System.Single.

Matrixd
Public. Contains 4x4 matrix used by OpenGL for transformations. Simplifies loading and storing of
OpenGL transformation matrix. Provides indexer that allows accessing similar to either an array with
16 members or an array with rank equal to 2. Components are stored in System.Double.

C.4 Enumeration Types
This section contains list of enumeration types excluding types that are used by
OpenGL/GLU function instead of constants. Such enumeration types are then described by

Appendix C Reference

102

their members (i.e., OpenGL/GLU constants) whose description can be found in particular
OpenGL/GLU specification.

ColorBitDepth
Public. Enum. Color buffer bit depths.

Member Description
Current Forces system to use current color bit
Auto Forces system to choose bit depth.
Palette 256 colors / 8 bits per pixel.
HighColor 64K colors / 16 bits per pixel.
TrueColor 16M colors / 24 bits per pixel.
TrueColor32 16M colors / 32 bits per pixel.

BitDepth
Public. Enum. Depth and stencil buffer bit depths.

Member Description
Auto Forces system to choose bit depth.
None Zero. Declares that particular buffer is not

supported.
Depth1bit 1 bit depth.
Depth2bit 2 bits depth.
Depth4bit 4 bits depth.
Depth8bit 8 bits depth.
Depth16bit 16 bits depth.
Depth32bit 32 bits depth.

RCProperties
Public. Enum. Render output property flags. Flags can be combined via bit-based operations.

Member Description
DoubleBuffer Double buffering support for render

target.
Stereo Stereo support for render target, e.g.,

support for 3D glasses.
Fullscreen Forces fullscreen mode immediately after

creation of OpenGL instance. Valid only
for render context with fullscreen support.

C.5 Helper Macros
Helper macros a C/C++ macros that are used for parameter checking at most. Macros
contains only a short code and can be easily replace by methods. Opposite of functions
they offer slightly higher performance due to lack of function call mechanism.

C.5.1 Function Parameter Checking

CheckCurrentRC(__func_name)
Tests whether is current RenderContext instance equal to owner instance. If test fails then an
exception is raised and __func_name is used for creating of exception message in order to identify
source of an exception.

CheckGetCurrentRC(__var)
Tests whether is current RenderContext valid (i.e., equal to null). If it is valid then it is assigned
to __var. Otherwise an exception is raised.

Appendix C Reference

103

CheckNull(__ar)
Tests whether is __ar equal to null. If test succeeds then an exception is raised.

CheckValid(__obj)
Tests whether is given GLU object (__obj) valid. If test fails then an exception is raised.

CheckValue(__ar)
Tests whether are members of given array (__ar) either built-in value types or structures with
sequential layout. If test fails then an exception is raised.

CheckSize(__ar, __min_sz)
Tests whether given array (__ar) has at least __min_sz members. It is used only for non-general
arrays, i.e., arrays that are not type-casted to System.Array. Test always succeeds if the
__min_sz is less then zero. If test fails then an exception is raised.

CheckByteSize(__ar, __min_sz)
Tests whether given array (__ar) has such members the sum of their sizes if greater or equal to
__min_sz. It is used only for general arrays, i.e., arrays that are type-casted to System.Array.
Test always succeeds if the __min_sz is less then zero. If test fails then an exception is raised.

CheckEnumValue(__par, __val)
Tests whether __par has value of enumeration type member __val. Used for enumeration types. If
test fails then an exception is raised.

CheckEnumValuen(__par, __val1, __val2, ..., __valn)
Tests whether __par has value equal to one of listed enumeration type members __valn. Used for
enumeration types. If test fails then an exception is raised.

CheckParamValue(__par, __val)
Tests whether __par has value equal to __val. Used of types that are not enumeration types. If test
fails then an exception is raised.

C.5.2 Value Type and Structure Definition

STRUCTURE_LAYOUT
Declares that following structure has sequential layout and its members are aligned on byte
boundary. Uses StructLayout attribute.

DEFAULT_ITEM
Declares that following class or structure may have default indexer. Such indexer is called Item.

VALUE
Used for definition of value types (enumeration types, structures). Shall be used instead of __value
keyword. Simplifies moving of nested value types out of enclosing class type.

C.5.3 Other

GetGLExtFncAddress(__fnc_name)
Returns either pointer to GL Extension function specified by __fnc_name or NULL if there is no
such function available.

PtrOrNull(__par)
Returns either void pointer value of IntPtr data type for giver GCHandle (__par) or null if
__par is not allocated or valid.

RetrieveInternalData(__to, __from, __class)
Retrieves or creates instance of internal data class (__class). Reference is copied from __from
field of rc variable (field) to __to field. Field rc is assumed to contain valid instance of RC class.

Appendix C Reference

104

C.6 Preprocessor Directives
Preprocessor directives are used to perform conditional compilation, i.e., they are used to
mask out parts of code. All of such directives are contained in CompilationSetup.h
header file.

INC_CONST_IN_ENUMS
If it is not defined then all OpenGL/GLU constants that are members of enumeration types are not
included into compilation, e.g., constant GL_QUADS does not exists due to it is member of
RenderPrimitive enumeration type.

NO_CORRECT_RC_CHECK
If it is not defined then a test is performed in order to check whether a current RenderContext is
equal to an owner (i.e., macro CheckCurrentRC is used) for every OpenGL/GLU function call.

NO_PARAM_CHECK
If it is not defined then runtime parameter checking is performed.

Appendix D Interface Verification

105

Appendix D Interface Verification

D.1 Test
Test is implemented in a form of standalone console application or assembly. Such
assembly (application) may contain exactly one class derived from TestBase class and
multiple other classes. Class derived from TestBase then contains base runtime code for
test. Skeleton (framework) of simple test can be found at Figure D.1.

Figure D.1: Test application skeleton.

D.2 TestBase Class Reference
Public. Abstract. Interface verification test base class. Provides common functionality. Derived from
System.Windows.Forms.Form.

Appendix D Interface Verification

106

D.2.1 Constructors

TestBase(System.String[])
Protected. Creates instance of test form. Creates form and instance of OpenGL.

args Command line parameters. Cannot be null.

Parameter Description
-rX Specifies path to resource, e.g.,

-r/res. Default path is resources.
-oX Specifies rendered image filename, e.g., -

oMyImage.png.
-q Quiet mode. Suppress console output and

disables possibility to close form with mouse.
-h Displays help information.

D.2.2 Methods

Run(System.Type, System.String[])
Public. Static. Runs console application, i.e., creates output window, parses command line parameters,
if any.

type Type of class derived from this class that is used for testing.
args Command line parameters.

Dispose(System.Boolean)
Protected. Overridden. Destroys render context, releases resources, and close form.

disposing True to dispose both managed and non-managed resources. False
to dispose only non-managed resources (e.g., HWND, DC, etc.).

OnPaintBackground(System.Windows.Forms.PaintEventArgs)
Protected. Overridden. Prevents from painting background.

pevent Painting event information.

OnPaint(System.Windows.Forms.PaintEventArgs)
Protected. Overridden. Handles painting of form contents.

e Painting event information.

OnResize(System.Windows.Forms.EventArgs)
Protected. Overridden. Handles form resizing. Sets orthogonal projection with range for both
horizontal and vertical axis of at least <-1.0; 1.0>.

e Event information.

OpenGLInit()
Protected. Abstract. Called immediately after creation of OpenGL instance.

OpenGLPaint()
Protected. Abstract. Called during window painting and capturing rendered image.

OpenGLDone()
Protected. Abstract. Called before is OpenGL instance disposed.

D.2.3 Properties

ScreenSnapShot
Public. Read-only. Rendered image. Buffered, i.e., it is read only when user reads this property for
first time.

Appendix D Interface Verification

107

IsInitialized
Protected. Read-only. True, if form and OpenGL were initialized.

D.2.4 Fields

gl
Protected. OpenGL functions.

glu
Protected. GLU functions.

dirResource
Protected. Directory that contains resources.

OutputSize
Protected. Static. Read-only. Client area size for output form. It also determines dimensions of
rendered image.

rc
Private. OpenGL instance (RenderContext class).

screenSnapShot
Private. Buffered rendered image.

D.3 Configuration File
List of all tests including directory in which they are stored, directory that contains
reference image, and thresholds are stored in a configuration file. This files is text and uses
formatted XML in order to allow its modifications. This section contains list of all used
tags.

<config></config>
Root tag. Contains all tags but <config> tag.

<directories></directories>
Contains configuration for directories. Contains <references>, <tests>, and <resources>
tag. These tags contains paths in a form of strings. If there are multiple appearance of single tag, the
last one is used. If relative paths are used then they are relative to location of automatic processing
tool.

<thresholds></thresholds>
Contains threshold. Contains <maximum> (maximum threshold), <mean> (mean threshold), and
<sigma> (standard deviation threshold). Values for thresholds are floating-point numbers. If there
are multiple appearance of single tag, the last one is used.

<tests></tests>
Contains tests. Contains multiple <test> tags.

Appendix D Interface Verification

108

<test title="title" assembly="assembly.exe"
reference="image.png"></test>

Test description. Contains single <description> tag whose value is string: test description.
title Title of test.
assembly Standalone console application that contains one test, i.e., single

class derived from TestBase class.
reference Name of reference image file.

D.4 Quick User Manual
Test Manager application is an application with simple GUI. The GUI consist of main
window, image dialog, and threshold dialog. Both image and threshold dialogs are quite
simple and self-documenting, therefore only main window (see Figure D.2) is described
here in order to provide guideline for user.

Figure D.2: Main window. It consists of three parts: reference submenu (A), test submenu

(B), and test list (C)

References submenu provides a possibility to generate reference images for all tests that
does not have generated images yet (item Build). It also allows generation of reference
images for either selected tests (item Build selected) or all tests (item Rebuild all) no
matter if they have reference images available.

Test submenu provides functions for performing test on either selected test (item
Test selected) or all tests (item Test all). It also contains item (item Setup Thresholds)
that displays threshold dialog.

Test list contains list of all tests, their names (first column), value of maximum difference
(second column), mean value of differences (third column), value of standard deviation
(fourth column), and test description (fifth column). Status of the test is visualized in the
form of icon in first column. Test status can be one of the five cases:

• Test was performed and result meets specified threshold.

• Test was performed, however, result does not meet specified threshold.

• Test was not performed and there is no reference image available.

• Test was not performed event thought there are reference images available.

• Test in progress.

Double clicking on single test invokes image dialog. This dialog contains reference image,
generated image, and difference image. If there is not reference image available then new
one is generated.

Appendix D Interface Verification

109

Difference image visualizes locations where there is difference between generated and
reference image. Image is created as combination of difference images for each color
component (i.e., red, green, blue). Image visualizes location only, i.e., all pixel color
components where generated image differs from original a displayed with maximum
available intensity no matter how large the difference actually is.

Appendix E Performance Test

110

Appendix E Performance Tests

This appendix contains listing of all functions used for testing. Due to large amount of
source code only bodies of testing functions are listed, i.e., listings does not contain
function headers and/or used fields (variables for non-managed version) definitions.

E.1 Test 1

Figure E.1: Test 1 – Output

Figure E.2: Test 1 – non-managed version

Appendix E Performance Test

111

Figure E.3: Test 1 – CsGL version

Figure E.4: Test 1 – This work version

E.2 Test 2

Figure E.5: Test 2 – Output

Figure E.6: Test 2 – non-managed version

Appendix E Performance Test

112

Figure E.7: Test 2 – CsGL version

Figure E.8: Test 2 – This work version

E.3 Test 3

Figure E.9: Test 3 – Output

Appendix E Performance Test

113

Figure E.10: Test 3 – non-managed version

Figure E.11: Test 3 – CsGL version

Figure E.12: Test 3 – This work version

Appendix E Performance Test

114

E.4 Test 4

Figure E.13: Test 4 – Output

Figure E.14: Test 4 – non-managed version

Figure E.15: Test 4 – CsGL version

Figure E.16: Test 4 – This work version

E.5 Test 5

Figure E.17: Test 5 – Output

Appendix E Performance Test

115

Figure E.18: Test 5 – non-managed version

Figure E.19: Test 5 – CsGL version without unsafe block

Figure E.20: Test 5 – CsGL version with unsafe and fixed keyword

Figure E.21: Test 5 – This work version using both pinning pointer and structure. Differs

only by type of color field

E.6 Test 6

Figure E.22: Test 5 – Output

Appendix E Performance Test

116

Figure E.23: Test 6 – non-managed version

Appendix E Performance Test

117

Figure E.24: Test 6 – CsGL version

Appendix E Performance Test

118

Figure E.25: Test 6 – This work version

Appendix F Generator Tool

119

Appendix F Generator Tool

Generator tool is an application that was designed in order to simplify and automate
process of OpenGL port creation. This tool is not essential part of work and it was not
required by assignment. Therefore, this appendix contains just brief reference of data
classes including their relations, modifications that were made to ANSI C grammar,
description of data file, and quick user manual. This appendix is complementary to chapter
1 that contains description of design and generated files.

F.1 Data Classes and Interfaces

F.1.1 Interfaces

ILanguageElement
Public. Construction that forms a complete part of a code that can be defined without need of
additional constructions, e.g., function, enumeration type, constant.

IType
Public. Construction that can be used as type, such as structure, function pointer, generic type.

IParTypeVariant
Public. Construction that can be used for function parameter type. Provides interface for generating
data sharing routines and non-managed code cooperation.

F.1.2 Data Classes

BasicType
Public. Represents basic data type, i.e., built-in value type or OpenGL type in the case there are no
OpenGL types defined in parsed header file. Contains both C and .NET type equivalent. Class
implements IType and ITypeVariant interfaces.

Contant
Public. Represents numeric OpenGL constant. Allow comparison by its name. Implements
ILanguageElement and System.IComparable interfaces.

Enumeration
Public. Represents enumeration data type whose members are OpenGL constants. Implements
ILanguageElement and IType interface.

Function
Public. Function. Implements ILangugageElement. Is derived from FunctionBase.

Appendix F Generator Tool

120

FunctionBase
Public. Provides common functionality (e.g., parameter parsing) and data storage (e.g., parameter list)
for function and pointer to function.

FunctionParameter
Public. Parameter for function and function pointer. Derived from TypeInstance.

Group
Public. Group of language elements. Aimed on GL Extensions where group (extension) is enclosed in
#ifdef…#endif preprocessor directives. Derived from GroupBase.

GroupBase
Public. Provides common functionality for groups, such as source file export, data storing, and
framework for input parsing.

ImportedGroup
Public. Generic group that is read from data file. Derived from GroupBase.

RootGroup
Public. Group of root language elements, i.e., language elements that are not enclosed in any
#ifdef…#endif preprocessor directives. Used for OpenGL function stored in gl.h header file.
Derived from GroupBase.

Type
Public. Generic type. Handles pointers and arrays. Used for function return values, function
parameters, structure members, etc. Implements IType interface.

Typedef
Public. Solves typedef keyword parsing. Used only for input parsing.

TypedefFunction
Public. Function pointer. Implements IType interface. Derived from FunctionBase.

TypedefStructure
Public. C/C++ Structure. Implement IType.

TypeInstance
Public. Instance of type, i.e., type with name. Used for function parameters and structures. Derived
from Type.

F.2 Modification to ANSI C Grammar
Tool uses finite state machine generated by flex [Flex]. State machine is based on ANSI C
grammar [ANSI-C]. However, do to simplification reasons this grammar has to be
modified. These modifications then allows for a state machine to consume particular
preprocessor directives.

Grammar itself was modified by adding of few new regular expressions that allows to
recognize selected preprocessor directives: defined keyword, new line, #define,
#ifdef, #ifndef, #else, #elif, #endif, #include, #if, and general directive,
i.e., identifier that starts with hash-mark (‘#’). New line is used for searching of the end of
C/C++ macros (#define). For rules in flex (lex) notation see Figure F.1.

Appendix F Generator Tool

121

Figure F.1: ANSI C grammar modification

F.3 Data File
Tool allow to store read data to data file. This data file uses formatted XML and UTF-8
encoding in order to allow manual modification of file. This section contains list of all tag
that are used in the data file. List includes description of tag’s attributes and contents.

Tags with exception of group tag can appear anywhere inside group tag. However,
forward reference is not allowed, i.e., it is not possible to have an item that refers to
another item that was not defined yet. This limitation is based on structure of OpenGL and
GL Extensions header file that are the only ones used as input.

<group name=”name” class=”class” extension=”false”></group>
Root tag of the file. Contains group items.

name Name of the group.
class Name of a class that shall contain code generated for this group.
extension True, if this group is GL Extension.

<const name="name"></const>
Numeric OpenGL constant. Contains numeric value in decimal format.

name Original constant identifier.

<enum name=”name” flags=”false”></enum>
Enumeration type. Contains names of OpenGL constants reference. Each constant is referenced via
its name. Name is stored as value of const tag, e.g., <const>GL_AMBIENT</const>.

name Original name of enumeration.
flags True, if this enumeration type contains flags, i.e., particular

enumeration members can be combined via logical operations.

<basictype name="name" c="c" managed="managed" />
Basic type. Empty.

name Name. Usually similar to value of c attribute.
c Non-managed version of type, e.g., short.
managed Managed (MC++) version of type, e.g., System::Int16.

<type base="void" const="false" refs="*" />
Type. Used for return value of function and for type instance. Empty.

Appendix F Generator Tool

122

base Reference to defined base type.
const True, if const keyword was used in source header files.
refs List of references. Used for creating of pointers to specific type.

Asterisk means pointer. Number enclosed in bracket means array
with specific length, e.g., ‘*[10]’ is array of pointers to particular
type that has 10 members.

<typeinstance name="name"></typeinstance>
Instance of a type. Contains single tag: type.

name Name of type instance, e.g., structure member name.

<fparam name="name" stored="false" allowNULL="true"
check="-1"></fparam>

Function parameter. Contains single tag: typeinstance.
name Name of function parameter. Must be equal to name attribute

value of nested typeinstance tag.
allowNULL True, if this parameter allows null value to be passed. Used only

for arrays, pointers, and function pointers.
check String that is used for size checking. Used only for arrays and

pointers.

<typedeffunc name="name"></typedeffunc>
Function pointer. Contains single tag type for return type and multiple fparam tags for function
parameters. Order of appearance of fparam tags is states order of parameters. Must contain return
value tag even if it is void, i.e., no return value.

name Original name of function pointer.

<function name="name"></function>
Function. Contains single tag type for return type and multiple fparam tags for function
parameters. Order of appearance of fparam tags is states order of parameters. Must contain return
value tag even if it is void, i.e., no return value.

name Original name of function, e.g., glBegin.

F.4 Quick User Manual
Generator tool provides simple GUI that allows to operate with the tool quite easily. Whole
GUI consist of two major parts: main window and enum dialog. It is good to note, that
this tool suits need of its use, i.e., it is not possible to use it for general header files or
OpenGL/GLU/GL Extension header files that contains strange but valid combinations such
as function pointer as return type. Tool generates template, i.e., in a few cases (e.g., pointer
(string) as return type) the user has to modify implementation of particular function
wrapper.

F.4.1 Main Window
Main window (see Figure F.2) is the base component of whole application GUI. It contains
complete list of all available groups and information of selected group.

Appendix F Generator Tool

123

Figure F.2: Main window. It contains file submenu (A), group list (B), and group tabs (C)

File submenu allows reading either group data file (item Open Group) or OpenGL
C/C++ header files. When importing data from OpenGL header file, the user has to
distinguish between header file with defined OpenGL types such as GLdouble, GLint,
etc. (item Open Header File) and header file without defined OpenGL types (item Open
Header File (no GL types)).
Application is capable to read only C/C++ header files: gl.h, modified glu.h, and
glext.h due to simplification reasons and the fact that only these files contains
OpenGL/GLU/GL Extensions functions and contents. Application benefits from structure
of mentioned header files and therefore reading of inappropriate C/C++ header files may
lead to read failure.

Group list contains complete list of all available groups. Root group is named as --root--.
Identifier inside parenthesis is a name of the class that will be used for exporting of group
contents, e.g., --root--(GL11) is root group that will be exported as GL11 class. It is good
to not that it is not possible to export two groups into single class even thought they both
have same class name.

Group tabs contains information of selected group. Currently there are three group tabs
available: group tab (Figure F.3) that contains general information of selected group,
functions tab (Figure F.4) that contains list of functions, and constants/enums tab (Figure
F.5) that contains list of constants including enumeration types of the group.

Appendix F Generator Tool

124

F.4.1.1 Group Tab

Figure F.3: Group tab. It contains original group name (A), fancy group name (B), class

name (C), extension flag (D), save button (E), and export button (F)

Extension flag is checked whenever is current group considered to be GL Extension.

Save button invokes data storing operation. It stores content of current (selected) group
into a data file.

Export button invokes data exportation. User selects directory (main file) that will contain
exported files. If particular file already exists then it is overwritten without any prompt and
user notification. This allows fast and simple updated of already generated files. For details
on generated files such as their structure see chapter 1 and chapter 1.

F.4.1.2 Functions Tab

Figure F.4: Functions tab. It contains function list (A), selected function managed name

(B), selected function original name (C), parameter list that includes return type (D),
possible variants for void pointer (E), enumeration list (F), and parameter options (G)

Parameter list contains list of all parameters of selected function. List contains
information about parameter’s name (first column) and type (second column). List also
contains information about return value type. This information is stored as first item in the
list and is marked as [return]. It also describes parameter’s status. Status is visualized in a
form of small icon and can be one of following six values:

Appendix F Generator Tool

125

• General type. This type cannot be an array, enumeration type, or function pointer.

• Type that can be replaced by enumeration type.

• Type that is replaced by enumeration type that is indicated by selected item in
enumeration list.

• Type that is probably an array (i.e., C/C++ style pointer including void pointer) and
it is not stored in internal structures for later use.

• Type that is probably an array and it is stored for later use.

• Type that is a function pointer. This type is not allowed for return value.

Double click on an item that can be replaced by enumeration type and is not already
replaced invoked enumeration creation dialog (enum dialog) where user can create new
enumeration type from available constants. Type replacement (enumeration type) can be
selected and/or modified via enumeration list.

Void pointer variant list contains possible replacement for void pointer type, i.e., there
will be overloads of parameter generated as replacement for parameter’s type (void
pointer).

Enumeration list contains all defined enumeration types. Currently selected type is used
as replacement for type of selected parameter from parameter list. User can change
current type replacement by choosing difference item from the list. Replacement can be
removed by choosing -- none -- item from the list.

Whenever the user changes/removes type replacement the application checks whether is
deselected (i.e., previously used) enumeration type used anywhere else. If it is not used
then user is asked whether this enumeration type shall be removed from the group
permanently.

Parameter options contains modification flags for parameter. These modification
influences source code that is exported:

• Pointer that is marked as stored (option Stored) is a pointer that is stored inside
internal data structures for later use. Storing it inside internal data structures provides
garbage collection protection.

• Pointer that is marked as allow null (option Allow NULL) allows null value. It
influences parameter checking code generation.

Appendix F Generator Tool

126

F.4.1.3 Constants/Enums Tab

Figure F.5: Constants/Enumeration tab. It contains list of constants (A) and tree of

enumeration types (B)

List of constants contains complete list of constants available in the group. Each item of
the list consist of constant name (first column), value (second column), and list of
enumeration types that uses this constant (third column). A content of the list is modified
by options that allow displaying constants that are not used in any enumeration type
(checkbox Free) and constants that are used in single or multiple enumeration types
(checkbox In Enums).

Tree of enumeration types contains all created enumeration types for current group.
Constants that are used in particular enumeration type are listed as children of node
(enum). Right click on particular enumeration type displays a simple context menu that
allows to rename (item Rename), to modify (item Modify), or to delete (item Delete) it.
Modification of enum is performed via enum dialog.

If user tries to delete (remove) an enum that is still in use, a message box appear and user is
asked to confirm the operation. Otherwise, the enum is removed without any confirmation.

Appendix F Generator Tool

127

F.4.2 Enum Dialog

Figure F.6: Enumeration dialog. It consist of enum usage info (A), list of constants that are
enum members (B), list of all available constants (C), quick search (D), move buttons (E),

enum identifier (F), and matched enum (G)

Enumeration dialog is used for both creation and modification of enumeration types.
Dialog performs checks in order to prevent the user from creation of the enum whose
contents is similar to already existing one.

Enum usage info contains information either about parameter for which is the enum
created (when creating) or about enumeration type that is currently being modified (when
modifying). In the case of new enum creation this control contains group name, function
identifier, and parameter identifier. Otherwise it contains group name and identifier of
enum that is being modified. In both cases is this field read-only.

List of all available constants contains constants that are members of current group and
are not listed in list of constants that are enum members. User can move constants
between list by selecting them in source list and by pressing of either particular move
button or <Ins> (for list of constants) key.

This list also supports quick searching of particular constant simply by typing its identifier
in quick search edit box. Edit box is usually hidden and becomes visible whenever user
provides keyboard input when list of all available constants is active control. It disappears
whenever user presses either <Enter> or <Esc> key. Quick search box becomes invisible
if the list looses its activity status, e.g., user clicks somewhere else.

Enum identifier contains name of the enum. If this dialog is used for modifying of
existing enum, the control is read-only. It also becomes read-only whenever list of enum’s
constants matches already existing enum. Such “matched” enum is then displayed in
matched enum control. Option Flag is used to set up enum to be collection of bit values
rather then collection of values.

