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Abstract—Vector field simplification aims to reduce the complex-
ity of the flow by removing features according to their relevance
and importance. However, the important features as critical points
with a large range of influence should be preserved. We present
a new approach for vector field simplification and approximation
using Radial basis functions. The experiments proved the ability to
approximate complex 3D tornado data set. In addition, a significant
contribution of the proposed method is also an analytical form of the
vector field which can be used in further processing. The abstract
goes here.
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I. INTRODUCTION

THE vector fields are often very large and complex data
set. To process and visualize such kind of data, the

approximation and simplification techniques are used. The
summary of topology based flow visualization techniques is
presented in [1]. Most of this techniques tries to simplify
the vector topology, either by removing or collapsing critical
points, or by smoothing the vector field to remove small
unimportant changes in the flow [2], [3], or by simplifying
the topological skeleton of the vector field [4], [5].

The paper [6] simplifies the topology of vector field by
collapsing critical points. The algorithm processes vector fields
defined on a triangulation of the flow domain, i.e. planar vector
fields. During the simplification, there are no topological
changes in the triangulation. During the simplification are
iteratively selected pairs of critical points that can be collapsed.
The critical points can be collapsed into one higher order
critical point or they can reset each other, i.e. both critical
points have opposite Poincare index. Another approach is
presented in [7]. There is defined some maximal distance of
two critical points to collapse them. All critical points inside
the selected radius are collapsed into one higher order critical
point. The paper [8] focuses on visualization of complex
3D vector fields. The authors prove that vector field inside
some area can be described with the 2D vector field on the
surface around this area. Using this knowledge, they create
symbols and visualization based on different behavior of the
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vector field inside some area with many critical points. The
paper [9] presents an approach for simplification of vector
field topology, while preserving important features of the
vector field, i.e. critical points and separatrices. Each topology
feature gets computed a weight that means the importance.
According this weights is then simplified the vector field
topology. The vertex deletion from the Delaunay triangulation
is used in [10] to simplify the vector field. Based on some
metrics is determined if a vertex can be removed from the
Delaunay triangulation, so that the vector field will not change
significantly. The authors prove that this can be determined
using only local neighbors and there is no need to compute
this change for the whole vector field. The paper [11] filters
out the less important and sometimes even sporadic critical
points. The filtering is based on the vector field vorticity and
is best suited for regional climate modeling and simulation.

Many approaches for vector field approximation use the
Radial basis function (RBF) method [12], [13], [14]. The paper
[15] presents an approach for large scattered 3D vector field
approximation. It uses the space subdivision to process and
speed-up the approximation. The comparision of vector field
approximation with local radial basis functions and global
radial basis functions is presented in [16]. The paper [17] uses
the RBF interpolation in numerical simulation of divergence-
free vector fields. Another approaches use the second order
derive to describe features of the vector field [18], [19].

II. PROPOSED APPROACH

The 3D vector field data sets come usually from numerical
simulations and are very large. Such vector fields can be
approximated for the visualization purposes or to minimize
the data set size. In our proposed approach, we use modified
algorithm described in [20] to approximate the 3D vector
fields. In this paper, we will especially focus on approximation
of the EF5 tornado data set (from [21])1.

The 3D data set is divided into 2D horizontal slices, as
the main swirl plane is horizontal. Each 2D vector field slice
contains high number of critical points that we want to reduce.
We will use the algorithm described in [20] to determine the
important critical points. The important critical points should
be presented in the final approximated vector field, while the
unimportant critical points should be removed from the vector
field. The important critical points will be the centers for radial
basis functions (RBF) [22]. The radial basis functions should

1Data set of EF5 tornado courtesy of Leigh Orf from Cooperative Institute
for Meteorological Satellite Studies, University of Wisconsin, Madison, WI,
USA.
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be also placed at the extremes of vx, vy , resp. vz . However the
number of extremes is too high and thus this extremes need
to be reduced. For this purpose, we use the Gaussian low-pass
filter to determine only the important extremes and to discard
the small local extremes. The last additional centers of RBF
are located at the data set bounding box vertices. The vector
field is then approximated using RBF as

v(x) =
M∑
j=1

λjϕ(‖x− ξj‖) (1)

where λj are weights of the RBFs, M is the number of the
radial basis functions, ϕ is the radial basis function and ξj are
centers of radial basis functions. It is similar as in the potential
field case [23]. For a given vector field data set {xi,vi}N1 ,
where N�M , the following overdetermined linear system of
equations is obtained:

vi = v(xi) =
M∑
j=1

λjϕ(‖xi − ξj‖)

for ∀i ∈ {1, . . . , N}. (2)

The result of the RBF approximation is an analytical
description of the 3D vector field. This is the advantage
over other existing methods that use the triangulation, resp.
tetrahedronization. The analytical description can be used for
further processing of the vector field.

III. EXPERIMENTAL RESULTS

We tested the proposed approach using the EF5 tornado data
set from [21]. For the testing purposes, we selected the central
part of the data set, where the tornado is located. The size of
the vector field data set for approximation is 8 ·106 points (see
Fig. 4a).

First step of the proposed approach is the reduction of
critical points in horizontal slices of the vector field. The
input data set contains 28 902 critical points (see Fig. 1a)
and after reduction using algorithm [20], we end up with only
490 critical points (see Fig. 1b).

The centers of the RBFs are located at critical points and
at the extremes of vx, vy , resp. vz . After smoothing using
Gaussian low-pass filter, we located 666 extremes. The total
number of centers for radial basis functions is thus 1164 points
(see Fig. 2).

The data set is very large for RBF approximation, thus we
need to use the local RBF [24], [25], [26] to reduce needed
memory (see [20] for selection of RBF). The RBF used for
vector field approximation is

ϕ(r) = (1− r)4+(4r + 1) (3)

as it gives the best approximation results based on experimen-
tal results and is C2 continuous, which is appropriate when
computing derivatives of the vector field.

After the RBF approximation of the input vector field data
set, we visualized the results. The 2D vector field horizontal
slices are visualized in Fig. 3. It can be seen, that the global
character of the vector field remains the same. There are
only local differences as the approximated vector field is

(a) All critical points.

(b) Reduced critical points.

Fig. 1. Visualization of 2D critical points located at horizontal slices of
vector field data set (28 902 points (a) and 490 points (b)).

Fig. 2. Visualization of centers of radial basis functions (1164 points).

smoother. There can be seen some small differences in the
global direction of the flow, however the compression ratio is
about 7 · 103 : 1 which is very high.

Fig. 4 presents the visualization of 3D approximated vector
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Visualization of 2D vector field horizontal slices. Left column
represents the original vector field and the right column represents the RBF
approximated vector field.

field. It can be seen that the main vortex of the tornado has
similar shape to the original one. The original one contains
just many tiny details. However this is again due to very high
compression ratio (7 · 103 : 1).

The approximation error can be measured using different
formulas. The first way is to compute the average difference
of the approximated vector field and the original vector field.
The average difference is computed using

Err =

∑N
i=1 ‖vi − v̄i‖

N
, (4)

where vi is the approximated vector, v̄i is the original vector
and N is the number of the original samples. The approxima-
tion error is visualized in Fig. 5a.

Next, we can measure the average vector length error, i.e.
the average speed error. This error is computed using

Err = |‖vi‖ − ‖v̄i‖| . (5)

(a) Original vector field.

(b) Approximated vector field.

Fig. 4. Visualization of the 3D tornado vector field data set. Red central
part represents the shape of tornado vortex and the yellow color on faces
represents the speed of vector field.

The computed speed error is visualized in Fig. 5b. The speed
error of vector field approximation is 3.8 ms−1 and the
average speed of the vector field is 18.7 ms−1.

IV. CONCLUSION

We presented a new approach for simplification and approx-
imation of complex and large 3D vector fields using RBF.
The proposed approach preserves during the simplification
and approximation the important critical points and thus it
preserves the global character of the 3D vector field as well.
As the result, we end up with an analytical description of
the approximated vector field, which can be used for further
processing of the simplified vector field.

In the future, the proposed approach will be modified to
reduce the critical points already in 3D instead of in 2D vector
field slices.
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(a) Approximation error.

(b) Speed error.

Fig. 5. Visualization of vector field approximation error (a) and visualization
of speed error of approximated vector field (b).
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