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Abstract— Both approximation and interpolation are tech-
niques commonly used in many scientific areas. Many approaches
are depending on input data type, result purpose etc. Input data
can be formed in a mesh or not (meshless/meshfree data).

This contribution is oriented on meshless data approximation
and interpolation using Radial Basis Functions (RBFs). Different
RBFs behaves differently, but many of them have a shape
parameter. This paper compares various RBFs concerning its
shape parameters and provides some experimental results for
each of the selected RBF.

Index Terms—RBF, radial basis function, interpolation, ap-
proximation, shape parameter, axis scaling

I. INTRODUCTION

There are many ares for approximation and interpolation in
using RBF metohds, despite the fact its higher computational
cost. Biancolini [1], Menandro [2] and Fasshauer [3] used
RBF methods in engineering practise. The RBF technique can
be also used for image reconstruction [4], GIS systems [5],
meteorology [6], partial differential equations [7], [8] etc.

There are two main groups of data representation i.e. mesh-
based and meshfree/meshless. In the case of mesh-based data,
a structure of the data is well-known apriori, in opposite to
meshfree data, which are scattered in space. Meshfree data
lack of connectivity information, so it is typically harder to
approximate/interpolate.

Tesselation can be made to transform scattered data (mesh-
free) to structured data (mesh). A common tesselation tech-
nique is Delaunay triangulation, however, its computational
complexity is O (n/%/21+1) in d-dimensional space, i.e. for
d = 2is O (n?) and for d = 3 is O (n®) (more in Smolik
[9D.

Dimension of the data is important, too. The higher the
dimension is, the more complex and time-consuming algo-
rithm is used. This is not completely true in the case of RBF
approximation, which is nearly independent of problem dimen-
sionality. Another advantage, which RBF technique brings, is
that RBF approximation and interpolation is invariant to all
rigid Euclidean transformations. It means that it is indifferent
whether RBF is used and then transformation is made or the
other way around.
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The RBF method is relatively old (Hardy [10], 1971), but
there are still many issues to deal with. Some of them are
described in the following.

This contribution is focused to determine the behaviour of
RBF approximation under certain conditions:

o when RBF shape parameter varies (see "Shape parameter

selection”),

« how is approximation or interpolation affected by scaling

the X (domain) axis of the original approximated func-
tion.

II. RADIAL BASIS FUNCTION

A radial basis function is a function, which value depends
only on the distance from one single point, called centre. It
means that distance is the only independent variable of the
RBF, following notation will be used from now on:

¢ (Ix =<l (D

Where ¢ is RBF ¢ centre coordinate point and u is arbitrary
independent point in the space. ||x|| denotes euclidean norm
of vector x. It means that the RBF is a single variable function
returning a single variable as well.
There are two groups of RBF in general:
o global radial basis function is not limited and affects
whole space
e local radial basis function, which has zero value from
some radius and further

A. Global RBF

A typical global RBF function is Gaussian RBF, which is
defined as:

p(r)=e" 2

Plot of this function is a Gaussian bell curve, which has non-
zero values on R. It means that this function influences the
whole space (will be explained later on).

Another well-known global RBF is thin-plate spline (TPS),
which is defined in (3).

1
o(r)= r?logr = §r2 log 72 3)

There are many various global RBF. In this paper, proposed
RBF global function with variable exponent is discussed, too:

@(r)=r>(r*—1) )
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B. Local RBF

Local RBFs are then defined in (5). This kind of functions
has been introduced by Wendland [11], more of them can
be found in paper from Skala [12]. It is nothing more than
multiplication of polynomial P (r) with some power of cutted
polynomial 1 — 7 (4 sign denotes that all negative values are
changed to zero), so its value will not be negative.

p(r) =0 -r)iP(r)
= {l e

From the group of local radial basis function, it is worth
mentioning the simpliest local RBF:

p(r)=(1—-r) (6)

If higher power and a reasonable polynomial is used, the
resulting RBF can be defined as:

0<r<i1

r>1 ®)

o(r)=(1- 7‘)3_ (167“2 +7r+1) @)

In this paper, four RBFs defined above are used and plotted
together in Fig.1.

Radial basis functions
1 T T

— Gauss (50)

TPS

Variable exponent (1.8)
— CSRBF(0.8)
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Fig. 1: Plot of the selected RBFs.

In the case of TPS and RBF with variable exponent, both
functions “start” in 0 (f(0) = 0) and go directly through
zero once more (f(1) = 0), then they rise to infinity
(limg— 4+ o f(x) = +00). The other two functions (Gaussian
and CSRBF) ”start” in 1 (f(0) = 1) and fall to zero
lim, 400 f(z) = 0), CSRBF with given shape parameter A
(0.8) even satisfies f(xz) =0,Vx > 1.25.

Using a weighted sum of infinitely many these elementary
functions, it is possible to describe any function. In reality,
however, there is a limit on how many RBF is used. In this
case, the input function is not described precisely but is only
approximated.

https://doi.org/10.1109/SAMI48414.2020.9108712

IEEE 18th World Symposium on Applied Machine Intelligence and Informatics

III. RBF APPROXIMATION

Function approximation using RBF is done using formula
(8). In order to be able to solve this equation, all N RBF center
points &; has to be known apriori as well as eventual shape
parameter(s) «; of each RBF ¢. Weights A; are unknowns and
will be computed.

M M
h(x) =Y Nellx—=&I) =D Ne(r) ()
j=1 j=1

Where N is number of points and M is number of reference
points (centres). The introduced equation can be expressed in
matrix form, which leads to system of linear equations:

Ax =Db, AijZgoij,b:hi,xz)\j,N>M,7;=1,...,N
)
Matrix A is the rectangular matrix in general and the overde-
termined system is obtained. There are several methods to
solve the overdetermined system of equations. To minimize
mean square error, the Ordinary Least Squares method (OLS)
is used. Weights \; can be computed using OLS method by
pseudoinverse as:
A= (ATA) "' ATh (10)
The solution of this equation leads to good approximation.
However, Skala [13] shows that there may be some instability
problems. Moreover, Majdisova [14] proved that in case of
solving this equation via OLS additional polynomial condi-
tions cannot be included.

IV. RBF INTERPOLATION

The RBF interpolation differs mathematically from approx-
imation. In this case only distances between center points are
considered. Equation for the RBF interpolation shown below:

N N
hixi) =Y Ne(llxi—xl) =Y Ne(r;) A
j=1 j=1

It is possible to rewrite this equation to matrix form the same
way as in approximation (equation (9)). In approximation,
resulting matrix is rectangular in general, whereas in this case
the result A is a square matrix of the linear equation system.

In opposite of approximation, the matrix A can be further
extended with polynomial conditions, now. The extended
system is shown in formula (12).

ENINEN

The matrix P represents polynomial additional conditions,
A is a vector of RBF weights, vector a contains resulting
polynomial coefficients, /N is number of points and h are given
values at the given points, see Skala [15].

According to Jiger [16] and Skala [17] [18], in some cases it
can be counterproductive to introduce polynomial conditions,
especially for large scope of domain data.

(12)

pp.135-140, ISBN 978-1-7281-314, Slovakia, 2020



SAMI 2020

V. RBF CENTRES PLACEMENT

The placement of RBF functions (setting their centre points)
is another task to solve. A naive method is to uniformly sample
input function, but it does not take function properties into
account. Despite this fact sometimes this approach is used,
e.g. Singh [19]. Orr [20] in his paper proposes a regularization
method, Wright [21] brings an improvement of this method
near function boundaries. Majdisova et. al. [22] compare
different techniques of RBF placement. In this paper, the
geometrical properties of input signals are considered. RBFs
are placed where input signals reach minima, maxima (15
order derivative is zero), inflexion points (2™ order derivative
is zero) and to locations where 37¢ order derivative is zero as
well. This approach is inspired by [15], whereas in this paper
there is a 11 dimensional case (single parameter function)
instead of 2§D (double parameter function). An example is
shown in Fig.2, red crosses denote these points.

Function boundaries are often problematic, because there
may not be any geometrically important points (minima,
maxima, etc.). To solve this issue, artificial centres are added to
the exact border. Even with this modification, the largest errors
are still located near boundaries. This is solved by adding more
points near boundaries. In 1%D case, four points should solve
this issue (placed to 0%, 5%, 95% and 100% ratio of the
domain space).

At this point, geometrically important points are covered,
but it may happen that there will be a large “gap” between
two consecutive centre points. One of the solution is to force
minimal constant frequency, so large gaps will be filled with
one or more another centre points.

Function: @(x) (.5 * cos (20 *x) +5 *x)

1 T ¢

~— RBFcenters
— Original function

0 0.2 0.4 0.6 0.8 1
X

Fig. 2: Geometrically important points. The extension of this
approach to the 2%D case was already explored by Vasta [23].

VI. SHAPE PARAMETER SELECTION

The selection of the shape parameter is a crucial part to
do accurate interpolation or approximation. Shape parameter
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can be selected for each RBF independently, which has an
advantage of more precise results, on the other hand, all shape
parameter values have to be stored then. A task of independent
selection is an open question. Experiments from Skala, Karim
and Zabran [24] showed, that there is probably no optimal
global shape parameter. Suitable parameter selection is pro-
posed by Wang and Liu [25], Afiatodust and Esmaeilbeigi [26]
(using genetic algorithm) or Sarra and Sturgill [27] (random
non-deterministic approach), however, none of them can find
optimal shape parameter for each RBF. Optimal selection is
due to this fact still an open question.

To simplify the problem, one single global shape parameter
can be selected for all of RBFs, which results in less accurate
approximation in general, but there is no need to store all val-
ues of shape parameters. In this case for each RBF one global
shape parameter has been empirically selected in experiments
described below.

VII. EXPERIMENTAL RESULTS

For testing purposes, we used 18 different functions (see
Tab. I) taken from [15]. These functions, when approximated,
discover various behaviour of chosen RBF approximation
approach.

sin (153:2) + 5z

0.5 cos (20zx) + 5z

50 (0.4sin (1522) + 5z)

sin (87x)

sin (67T:p2)

sin (25 + 0.1)/ (25 + 0.1)
2sin (27x) + sin (47x)
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6
(1416(2+0.5)2)+10g(0.01%(z—.25)2+10—5)+4

18

6
(1+16(2+0.5)2)+10g(0.01(x—.25)2+10~10)+4

TABLE I: Tested artificial signals (taken from [15], extended).

For simplification of comparison, all 18 input signals have
been tested for = € (0, 1) and for simple comparison of errors
all values in given domain have been scaled to f(x) € (0,1)
as well. Mean square error and condition number of matrix
A (from equation (9)) are quantitative criteria for following
tests.

A. Detecting geometrically significant points

Geometrically significant points are points with special
properties. Special properties can be anything, in this case
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special points are points which n-th derivative is zero, mean-
ing:

f (x) =0 (13)

There are two groups of methods of how to detect significant
points. One of them works in discrete space, the other in con-
tinuous space. To get these points in continuous space, either
analytical solution of equation (13) is needed or numerical
solution is required (gradient descent etc.).

In this paper, discrete space detection is selected. In this
case, the function is sampled to N points (specifically 1000
points in this paper), which are denoted a,. To get local
extrema, differentiation is done, as follows:

a}% =0an-1 — an (14)

When consecutive elements a;, and aj,; differs in sign,
then local extrema is detected (difference go opposite way in
two consecutive elements). If the differentiation is done twice,
inflexion points are detected. It is possible then to continue
with higher-order differentiation. In this paper it is done at
most three times.

Short explanation: three-element signal [3,5, 4], which has
obvious local extrema (maximum) of 5. After differentiation,
[—2, 1] vector is obtained. An only consecutive pair of ele-
ments differs in sign, meaning there were a local extrema.

This simplistic approach is sufficient for smooth functions,
on noisy signal it would detect much more points than it should
(smoothing is required).

B. Influence of the shape parameter

To test how much dependent the resulting approximation to
shape parameter selection is, the range of the parameters is
used. For every shape parameter, mean square error and con-
dition number (of the matrix A in equation (9) are computed
and showed in the following figures.

The first RBF tested is global Gaussian RBF. There are
plotted results of mean square error depending on the selected
shape parameter in Fig.3. It seems that the lower shape
parameter « is selected, the lower average error is reached, but
some functions do not respect this trend. It is risky to select
lower shape parameter (e.g. o < 20), but for some functions
it gives the best result.

Condition number values of the matrix A are presented in
Fig.4. The higher value of shape parameter « is chosen, the
better conditionality the problem has.

On the other hand, RBF 72 (r® — 1) behaves the other way
around. The higher shape parameter is selected, the lower error
is possible to get, but it has worse conditionality at this point.
Results are plotted in Fig.5 (mean square error) and Fig.6
(conditionality). There are some peaks (singularities) on this
plot, which are caused by selecting the whole number as the
shape parameter «.
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Mean square error, RBF: Gauss

MSE value

I
0 10 20 30 40 50 60 70
Shape parameter

Fig. 3: Mean square error for Gaussian RBF. Note logarithmic
scale on Y axis.

Condition number, RBF: Gauss
10 T T

Condition number value

20 | | | | | |
0 10 20 30 40 50 60 70
Shape parameter

Fig. 4: Condition number values for Gaussian RBF. Note
logarithmic scale on Y axis.

C. Influence of X-axis scaling

Idea is that scaling of the X-axis should influence resulting
approximation error. This test stretches or squishes X-axis.
Scaling X-axis is a similar operation to changing shape pa-
rameter, but these two operations are not linear in general. It
should be noted that shape parameters are fixed during this
test.

VIII. CONCLUSION

Different RBF functions have different properties and differ-
ent behaviour in respect to its parameter(s), even using differ-
ent signal which has to be approximated and does not have a
significant impact. It seems there is a pattern between various
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Mean square error, RBF: Proposed
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Fig. 5: Mean square error for proposed RBF. Note logarithmic
scale on Y axis.

Condition number, RBF: Proposed
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Fig. 6: Condition number values for proposed RBF. Note
logarithmic scale on the Y-axis.

approximated signals as far as RBFs with same parameters are
used and it is currently under investigation.

The tests with X-axis scaling show that the Gaussian RBF
tends to have worse conditionality while scaling down, but
it may reach lower approximation error. Second tested RBF
seems to be independent to scaling (except one singularity)
if approximation error is considered, conditionality is good
without scaling, it is getting worse when scaling is applied.

Presented results show that there is a tradeoff between pre-
cision and conditionality in general. Selected shape parameter
is due to this fact dependent on the predefined goal, which
should be achieved. If the low error is requested, scaling
down the X-axis may help. If the conditionality has to be
high, scale-up may help in that case. This study may help to
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Mean square error, RBF: Gauss (50)

MSE value

Scale factor
Fig. 7: Mean square error for Gaussian RBF. Note logarithmic
scale on Y axis.

Condition number, RBF: Gauss (50)
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Fig. 8: Condition number values for Gaussian RBF. Note
logarithmic scale on Y-axis.

select appropriate scaling factor as well as shape parameter,
according to the approximation goal.
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Mean square error, RBF: Proposed (1.8)
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Fig. 9: Mean square error for proposed RBF. Note logarithmic
scale on Y-axis.
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Fig. 10: Condition number values for proposed RBF. Note
logarithmic scale on Y-axis.
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