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Abstract. This contribution describes a new approach to formulation
of ODE and PDE critical points using implicit formulation as ¢-variant
scalar function using the Taylor expansion. A general condition for the
critical points is derived and specified for ¢ invariant case. It is expected,
that the given new formulae lead to more reliable detection of critical
points especially for large 3D fluid flow data acquisition, which enable
high 3D vector compression and their representation using radial basis
functions (RBF).

In the case of vector field visualization, e.g. fluid flow, electromagnetic
fields, etc., the critical points of ODE are critical for physical phenomena
behavior.
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1 Introduction

Many physical and computational problems lead to formulations using ordinary
differential equations (ODE) or partial differential equations(PDE) and different
methods are used for their solution. Methods for solution of ODEs or PDEs are
quite different from a solution of algebraic equations, as the solution requires
specification of the initial conditions in the case of ODE, while in the case of
PDE the boundary conditions have to be specified.

In the case of vector field visualization, e.g. fluid flow, electromagnetic fields,
etc., the critical points of ODE are critical for physical phenomena behavior. The
critical or null points are points in which the derivative x = f(x(t)) is zero, see
Lebl[12], Smolik[16] and Skala[15]. Classification of such points helps in vector
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fields visualization Helman[7], Koch[11], Schuermann[13], Skala[15], Huang|8]
and Smolik[16].
In the ODE case differential equations are usually given as:

dx
o = t(x(0),1) 1)

or in a more general implicit ordinary differential form as:

dx d"x
F(x,—,,——,t)=0 2
(X’dt’ ’dt"’) 2)

with initial conditions xg = [70(0),...,2,(0)]7. The implicit forms from the
geometrical point of view was studied in Goldman[5][6] and Agoston[1]. In the
majority of cases, the function f, resp. F' are time independent, i.e. x = £(x(t)).

In the case of the partial differential equations (PDE), the differential equa-
tion is given in the implicit form as:

0 0? o? ou 92
Flxu, 22 2% Ll =0 (3)
8331- 5‘%8% 8x18x]8xk ot ot
where x = [21,...,2,]T ! are points fixed position in the domain, derivatives

are in the domain axes direction, i.e. in the 3D case:

Or;  Ox Oxy Oy Ozrs Oz

Let us explore the ordinary differential equation case more in a detail. The
following notation will be used:

— a - scalar value,

— a - vector,

— A - matrix,

— ¢ = (x,t) spatio-temporal vector, i.e. X = [x1,...,2,]T, € = [21,..., 20, 1]T
— n = (x0, %)

It should be noted, that x; and ¢ have different physical units, i.e. [m] and [s].
In the following the ordinary differential equations (ODE) are explored.

2 Ordinary differential equations and Taylor expansion
The ordinary differential equation (ODE) can be formulated as:
F(x(t),t)=0 or x=f(x(t),t) with x¢=x(0) (5)

where xg = [21(0),...,2,(0)]T and n is the dimensionality of the ODE.

! Tt should be noted that in the case of the PDE the coordinates x are assumed to be
time independent
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Now, the function F(x(t),t) has the following derivatives:

OF (x(t), 1) OF (x(t), 1)

% = Fy = g(x,t) 9 = F; = h(x,t) (6)
Og(x(t),t) _ PFx(),t) _ . _
at = 8¢ aXQ — Fxx — Gx(xa t) (7)
O?F(x(t),t) I(h(x(t),1)
T = Ftt = ht(X, t) T = hx (8)
assuming, that Fy; = Fix.
Let us explore the time dependency;
d [0F(x,t)] _ d _ Og(x,t)dx  Og(x,1)
il ox | T @t T a T a )
= Gxx—l—gt
d [0F(x,t)] _ i[h(x ] = Oh(x,t) dx  Oh(x,?)
de | ot | dt T 9x dt ot (10)
= hyx+h,

Then the Taylor expansion in time for ¢-varying functions, see Bronson[3] and
Skala[14], the following is obtained:

dF'(n)
dt

(t—to) + Ld*F )

F(§) =Fn) + (t—to)? +..... (11)

As in the case of change of ¢, also x(t) is changed. Therefore, the first derivative
in time is expressed as:

dF(n) _ OF (x,t) dx  OF(x,t)

at ox di | o (12)
and the second derivative as:
PF(n)  d [dF(n)]  d [OF(x,t)dx  OF(xt)
dt2 T dt | dt | dt ox dt ot
d dx
gt dx dx o dix | dhix,D) (13)
T T ox di ~ar BV dt

= Gy (x,1)%% 4 g(x, t)% + hy(x, 1)% + hs(x, )
= Fyx (%, 1)%% 4 Fi (X, )% 4 Fiy (%, 1)% + Fyy(x, 1)

It should be noted, that Ax? should be read as a quadratic form, i.e. xT Ax.
Using the Taylor expansion for the function F(x(t),t):

dF(n)
dt

1d°F(n)

5z (1 — 1)+ R, =0 (14)

F(x(t),t) = F(n) + (t—to) +
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3 Critical points
It can be seen that the following identity for the critical points is valid by defi-
nition Lebl[12]:

F(¢) =Fx(t),t)=0 vt>0 ,ie FE=Fn)=0 (15)

Using the Taylor expansion and the identities above, the following is obtained
using linear and quadratic elements:

dF(n) 1 d*F(n)
dt (t=t0) + 5 dt2

Rewriting that the following is obtained:
F(x,t) d F(x,t
(2Pt b Py

(t—t)*+ R, =0 (16)

Oox dt ot

(17)
1
+3 (Gx(x, )% + g(x, )% + hu(x, )% + he(x,1)) (t —t0)* + R, =0
It should be noted, that Ax? should be read as a quadratic form, i.e. xT Ax.
Then
(g(x, )% + h(x,t) + Gy (x,1)%%)(t — to)
(18)

+ %(g(x, )% + hy (%, 8)% + hy(x, 1)) (t — t0)*> + R, = 0

In the case of 2D and 3D physical phenomena behavior, e.g. fluid flow Hel-
man|[7], electromagnetic field Drake[4] etc., there are critical points of the rel-
evant ODE, which have to be analyzed Koch[11], Schuermann[13], Skala[15],
Smolik[16][17][20].

The critical points are defined as x= 0. Using the linear and quadratic el-
ements of the Taylor expansion the following equations for critical points is
obtained:

h(x,1) + %(g(x, 1% + he(x, £))(t = to) = 0 (19)

In the case of t-invariant systems, i.e. F'(x(t)) = 0 and a pro ¢ # to, the following
is obtained:

OF (x)
0x

g(x, t)%x=0 ,i.e. x=0 (20)

It leads to a new condition:
Fe(x(t))x=0 (21)
This is a significant result as it enables better and more reliable critical points
detection needed for interpolation and approximation of large and complex 2D
and 3D vector fields, e.g. Skala[15], Smolik[16][18][{19].
Let us consider two simple ODE examples by Eq.22 to demonstrate critical
points and behaviour of the vector fields, see Fig.1.

g ] R i I
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(a) Two critical points (b) Three critical points

Fig. 1: Examples of vector fields in E? with two and three critical points

It can be seen, that critical points have a significant influence to the vector
field behaviour. It should be noted, that if a vector field is given by an acquired
discrete data, specific techniques are to be used for the critical points detection
and the condition given by the Eq.21 helps to robustness of this.

4 Example

Let us consider a differential equation zy + y = sin(z) and its solution
y = 2(c—cosz) & z # 0. In this case the implicit function

3 2 1 0 1 2 3 3 2 1 0 1 2 3

(a) c=1.1 (b) ¢c=0.9

Fig. 2: Behaviour of the function F(x) = 0 for different values ¢



Skala,V.: Critical Points Properties of Ordinary Differential Equations as a Projection of Implicit Functions Using Spatio-Temporal Taylor Expansion,
ICCSA 2022, LNCS 13376, pp.197-204, ISBN 978-3-031-10449-7, Springer, 2022
DOI: 10.1007/978-3-031-10450-3_15

6 V. Skala

F(x)=F(z,y) = (c—cosz) —axy =0 (23)
as x = [z,y]T. Then derivatives of the implicit function F(x) = 0 are:

a};ix) agix)k = (sinx — y)i—xij =0 (24)

Using a trick x1 = z, 2 = y, the differential equation can be rewritten as:

= Fyx = [sinz — y, —x]

x'l =1 i?z = (sinxl — .132)/1‘1 (25)
bbb Verification
=1 & # =0 x,€R" & x1#0

L (26)
&o = (sinxy — x2) /21 T € R
Then
To = [.i?l(l‘g —sinty + o1 COSQEl) —1‘1$.2]/Z‘% (27)
Applying the condition for the t-invariant ODE
F
aaix)ﬁ’( = (sinz — y)i—ay =0 (28)
6F(X) . Il[fl(l‘g 7Sinﬂ.§’1 + 21 COSI’l) 71‘1@2
X =
ox x?
_ dy(z2 —sindy 41 cos 1) — 218 (29)
= o
i’1($2—sini'1) .
==~ tcosxry —I2=0
T
As 1 = 1, then
F
aa(x))"c =29+ cos(1) —sin(l) —d2 =0
X (30)
OFX) & — 4y — (sin(1) — cos(1)) — s = 0
0x o 2T
Using identity
+
Sinoz:tcosﬂ:2sin(a2ﬁ)cos(ajﬂ) (31)
F
aa(x)k =123 —2sin(1).cos(0) — 42 =0 (32)
X

As @5 = 0 for any critical points, the new condition for critical points of ¢-
invariant ordinary differential equation is obtained

0F(x).
I x=0 (33)

It can be seen, that there is a formal connection to the Frenet-Serret formula,
see Kabel[9], Kim[10] and WiKi[21].
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5 Conclusion

This paper briefly describes a new condition for critical points of ordinary differ-
ential equations using the Taylor expansion, see Eq.21. This condition increases
robustness of the critical points detection especially in the case of discrete ac-
quired data.

A general form for t-varying differential equations is derived and specifica-
tion for the ¢-invariant differential equations is presented. A simple example
demonstrating the approach is given, too.

In future, the proposed approach is to be applied for more complex cases,
when physical phenomena is described by the ordinary differential equations, e.g.
Skala[15], Smolik[18], etc. using Taylor expansion for vector data Skala[14] with-
out tensor representation, and in applications described by partial differential
equations, e.g Biancolini[2]
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