Basics of 3D Graphics

I. Kolingerová

1. Geometric transformations in 3D
2. Projections
3. Hidden parts removal
4. Lighting and shading
1. Geometric transformations in 3D

- Generalization of planar transformations

1. Translation
 by a vector \((x_t, y_t, z_t)\):

 \[
 \begin{align*}
 x' &= x + x_t \\
 y' &= y + y_t \\
 z' &= z + z_t
 \end{align*}
 \]
2. Rotation

one of coordinate axes is the axis of rotation

- x axis (in the yz plane):
 \[x' = x \]
 \[y' = y \cos(\alpha) - z \sin(\alpha) \]
 \[z' = y \sin(\alpha) + z \cos(\alpha) \]

- y axis (in the zx plane):
 \[x' = x \cos(\alpha) + z \sin(\alpha) \]
 \[y' = y \]
 \[z' = -x \sin(\alpha) + z \cos(\alpha) \]

- z axis (in the xy plane):
 \[x' = x \cos(\alpha) - y \sin(\alpha) \]
 \[y' = x \sin(\alpha) + y \cos(\alpha) \]
 \[z' = z \]
Rotation around a general axis $x = P + t(Q-P)$:

- Translate the coordinate system (CS) to P (1)
- Rotate around one of CS axes, so that the axis of rotation is one of the CS axes (2)
- Rotate by the required angle (3)
- Inverse rotation (2^{-1})
- Inverse translation (1^{-1})
3. Scale

\[x' = s_{c_x} \times x \]
\[y' = s_{c_y} \times y \]
\[z' = s_{c_z} \times z, \quad s_{c_x}, s_{c_y}, s_{c_z} <> 0 \]
Other, less important transformations:

4. Mirror
 - one of coordinates gets "-"

5. Shear
 - e.g., in the x, y directions
 \[x' = x + sh_x z \]
 \[y' = y + sh_y z \]
 \[z' = z \]
2. Projections

- A transformation from nD to mD, n>m

- **Terms:**
 - **projecting ray** – a line through the projected point, the direction according to the selected projection method
 - **projection plane** – a plane in 3D onto which the projecting rays make a projection; usually // with xy

- If the projection plane is planar, 3D lines project to planar lines => we project only vertices.
Parallel projection

- All rays are parallel, 2 projection types according to their angle with the projection plane:
 - Rectangular (90°)
 - Oblique(-angled) projections (other angles)

- In CG usually the rectangular projection
- Properties: keeps parallelism, the size of the projections is not influenced by the distance from the projection plane
- Use – technical applications
- Parallel projection into the xy-plane by rectangular rays described by $s=(0,0,-1)$ – leaving out the z-coordinates
- Other directions: leave out other coordinate or first translate, rotate
Central (perspective) projection

- All projecting rays start in one point – a centre of projection

- 3D lines segments again project into planar
- Properties: generally it does not keep parallelism (kept only for line segments in the plane // the projection plane), the size of projections is influenced by the distance from the proj. plane (more distant objects – smaller)
- Use – architecture, virtual reality ...
a) Projection from (0,0,d) to z=0:

\[P = (x_p, y_p, z_p), \quad P' = (x', y', 0), \quad z \neq d \]

Ray from the centre via \(P \) to \(P' \):

\[
\begin{align*}
x' &= 0 + x \cdot t \\
y' &= 0 + y \cdot t \\
0 &= d + (z - d) \cdot t
\end{align*}
\]

\[\Rightarrow t = \frac{d}{d - z} \]

\[x' = \frac{x \cdot d}{d - z}, \quad y' = \frac{y \cdot d}{d - z}, \quad z' = 0 \]

or

\[x' = \frac{x}{1 - z/d}, \quad y' = \frac{y}{1 - z/d}, \quad z' = 0 \]
b) Projection from (0,0,0) to z=d:

\[\mathbf{P} = (x_p, y_p, z_p), \quad \mathbf{P}' = (x', y', 0), \quad z \neq 0 \]

Ray from the centre via \(\mathbf{P} \) to \(\mathbf{P}' \):
\[
\begin{align*}
x' &= 0 + x \times t \\
y' &= 0 + y \times t \\
d &= 0 + z \times t
\end{align*}
\]

\[t = \frac{d}{z} \]

\[x' = x \times \frac{d}{z}, \quad y' = y \times \frac{d}{z}, \quad z' = d \]
3 orientations of the projection plane to the CS axes:

1. **One-point** perspective – the proj. plane cuts one CS axis, all line (segments) perpendicular to the plane go to one point – main vanish-point

2. **Two-points** perspective – the proj. plane cuts two CS axes, the edges of axis-oriented cuboids go to two main vanish-points

3. **Three-points** perspective – the proj. plane cuts all three CS axes, the edges of axis-oriented cuboids go to three main vanish-points

Vanish-point – “infinity, where the parallel lines meet". There are many other vanish-points in the perspective projection, but only the 3 described are main.
One-point perspective
Two-points perspective
Three-points perspective
View pyramid:

- When projecting, ignore objects out of the area of interests and prevent from perspective anomalies

=> view(ing) pyramid (viewing volume, viewing frustum) – outer objects are cut out
Perspective anomaly 1:
- View confusion – objects behind the projection centre are projected upside down and side-reversed
Perspective anomaly 2:

- **Spoiled topology** – the points on the plane going through the projection centre are projected to ∞, the line segment connecting the points behind and beyond the observer -> the line segment breaks and goes through “infinity”
The whole visualization pipeline:

1. Transformation of an object from the given position into the position-to-be-projected
2. Cutting by the viewing volume
3. Planar projection, a scale according to the required size, respectively

1-3: viewing transformations

For step 1: choose the projection method and the projection plane placement – set the observer position (viewpoint) and the viewing direction (usually rectangular to the projection plane)
3. Hidden parts removal

- Elimination of invisible edges and faces – complex problem => many algorithms, also in hardware (z-buffer)

- The simplest: painter’s algorithm (priority list): the order of drawing of faces according to their distance from the observer, the most distant first, then nearer
Painter’s algorithm (simplified):

1. Sort the faces according to the maximum depth
2. Mark the farthest face as active, test its cover by other faces – if no cover, draw the face

3. If the face is (partly) covered, test it against the covering faces
 a) test z_{min} of one and z_{max} of the other face
b) if overlap in depth, other tests necessary

- For this simplified version, time is nearly O(n) to the number of faces, small errors

- Simple implementation, memory needed for all faces
4. Lighting and shading

a) Lighting
- Various lighting models – various fidelity to the real-life light on a real-life surface, various computational complexity
- Light – 3 components - R, G, B
- Vectors – normalized
- The simplest model
 - Light ray hitting the surface partially disperse into all directions, partially is reflected as from a mirror (penetration into the object is not considered), only point light source
 - Reflection depends on the size and direction of the incoming light, observer position, surface properties

Omnidirectional reflection

Directional reflection

N - normal
S - to the observer
R - max. reflection,
\[R = 2(LN)N - L \]
I = I_a + I_d + I_s (3x for 3 components R,G,B)

where

- I_a – ambient intensity – background
- I_d – diffusional intensity – omnidirectional reflection
- I_s – specular intensity – mirror reflection

$I_a = k_a*I_p$
$I_d = k_d*I_p*(L*N)$
$I_s = k_s*I_p*(R*S)^n$

k_a, k_d, k_s – material coefficients (ambient, diffusional, specular), from $<0;1>$, n – surface characteristics, ≥ 0 – for highly shiny about 200, opaque ap to 10
- Sometimes Id and Is are divided by the distance from the observer - \((d+k)\), where \(d\) - distance, \(k\) – const \(> 0\)
- Physically correct: \(d^2\), here not used – too fast decrease
- If more point sources, sum over all Is, Id
- Empirical model, far from a correct physical model
- Simple, often used
b) Shading
- Drawing of colour objects by various colour shades
- The simplest: \textit{constant shading}— one face, one colour
- Consumption: the light source in ∞, thus LN const. for the whole face, the observer in ∞, thus RS const. for the whole face
- For polyhedra OK, for objects which are by linear faces only approximated not suitable
constant x
Gouraud shading