
University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and Engineering

Diploma Thesis

Visualization Toolkit for C#
in Scope of ROTOR Project

(VTK for C#)

Pilsen 2003 Milan Frank

 1

Abstract
A new environment called .NET was recently introduced to a wide public. However,
this environment does not contain libraries for advanced graphical output. Therefore it
is necessary to make such libraries available to .NET. Here presented work describes
implementation of Visualization Toolkit (VTK). The implementation allows
straightforward and safety cooperation of VTK with .NET. Short description of VTK is
included as well as a short introduction to .NET environment.

 2

Table of Content

Table of Content .. 2

Part 1 Introduction .. 4

1.1 Structure of the Text .. 4

1.2 Motivation .. 4

1.3 Acknowledgements .. 4

Part 2 Introduction to VTK .. 5

2.1 VTK Classes .. 5

2.2 Graphical Pipeline .. 6

2.3 Visualization Pipeline .. 7

2.4 System Architecture Overview .. 14

Part 3 .NET Environment ... 17

3.1 Introduction .. 17

3.2 .NET Framework (CLI) ... 17

3.3 Languages for .NET Platform .. 23

3.4 Existing Code Cooperation .. 27

Part 4 VTK for .NET .. 29

4.1 Goals .. 29

4.2 Approach .. 29

4.3 Realization ... 30

4.4 Wrap-class Generating Process .. 38

4.5 Results .. 43

Conclusion ... 45

Appendix A – Users Manual .. 46

Appendix B – Programmers Manual ... 48

Appendix C – List of Conversion Macros ... 52

Appendix D – KIV/GSVD Course Testing ... 57

Appendix E – Sample of Generated Documentation ... 70

List of Figures Tables and Source Codes .. 73

Index .. 75

References .. 76

 3

I hereby declare that this diploma thesis is completely my own work and that I used
only the cited sources.

Pilsen, 23th May.2003 Milan FRANK,

 4

Part 1 Introduction

This part gives the general overview about presented work and the structure of the
whole text. Expected knowledge of the reader of this text is especially object-oriented
programming principles, general knowledge of C++ and possibly Java and Java Virtual
Machine.

1.1 Structure of the Text
There are four main parts in the text. The Part 2 is aimed generally on the VTK library.
There is a theoretical overview about the VTK structure, its object-oriented design and
the most important principle - visualization pipeline. Some illustrating examples are
given for better understanding. Also discuss about the VTK implementation is given
with aim on the wrapping problematic.

The Part 3 discusses the C# and .NET environment technologies. It is mostly general
description of the .NET Framework (or Common Language Infrastructure - CLI). It
provides necessary background information for understanding of the presented work.
The aim is on explanation of the .NET specific terms.

Finally, the Part 4 presents the VTK for .NET interface itself. It starts with the
particular solution of the wrapping of VTK classes by the MC++ wrap-classes. It is the
main point of this work. The description of the data conversion follows. Next important
section in this part describes the process that automates the MC++ wrap-class creation.
Finally discuss about results is presented.

1.2 Motivation
A new environment called .NET was recently introduced to wide public. However, this
environment does not contain libraries for advanced graphical output. But the
developing of an advanced computer graphic applications requires adequate tools. The
VTK seems pretty reasonable for rapid developing of complex software and can be
successfully used at the scientific field of application as well as in the commercial
sphere. Also the new environment called .NET seems powerful with its programming
safety and integration of wide sort of libraries in unified fashion. The goal of this work
is to integrate the comfort and safety of .NET environment with power of the VTK.

1.3 Acknowledgements
This work is a part of Microsoft Research Ltd. (U.K.): ROTOR project and was
supported by the Ministry of Education of The Czech Republic – Project MSM
235200005.

I wish to thank to my colleague Ivo Hanák for invaluable advices with .NET
environment. Many thanks also belong to all students of KIV/GSVD course 2003 for
testing large number of modules and their leaders ing. Martin Čermák and ing. Tomáš
Hlavatý for the testing tasks preparation.

 5

Part 2 Introduction to VTK

This part describes VTK (Visualization Toolkit) developed by Kitware Inc. as a free-
source, object-oriented software. See [Kitware] web site. It is large and complex tool
for data visualization. In version 4.2, it contains more than 800 classes for various
purposes with more than 20000 public and protected class members. The concept of
VTK makes the library easy to use once programmer learns about its object-oriented
design and principles.

The VTK is an open-source software. That provides an advantage in large number of
developers that can easily participate on the bug fixes and/or developing of new useful
modules, tools and features.

The current version of the VTK can be installed on MS Windows and almost all UNIX-
based systems. Therefore there is a good portability on source code level. Once
developer writes a program that uses VTK only then he has good probability of running
the program under Windows and UNIX operating system with recompilation only.

The Visualization Toolkit is aimed on scientific data visualization and image
processing. It contains wide variety of Filters (algorithms), Importers, Exporters,
Renderers and also set of classes for data representation. The main idea is visualization
pipeline that uses the data flow principle. Therefore the VTK is relatively high-level
library and so specialized for particular purpose. For example, hard to imagine is to
make fast and flexible 3D game engine (as in the case of e.g. Quake with OpenGL) in
VTK. On the other hand, the full power of VTK can be unleashed in the case of need
e.g. volumetric data visualization with some filtering, isosurface extraction and triangle
reduction. All necessary algorithms for this task are probably already available as VTK
classes, renderer included. Therefore only necessary programming is to describe the
visualization pipeline by instancing and interconnecting of some special objects and
make some graphical user interface.

2.1 VTK Classes
VTK classes can be divided into following groups.

 Graphical pipeline objects

 Visualization pipeline objects

 Data objects

 Process objects

 Helper objects

The graphical pipeline objects are elements of the scene (geometry, textures, lights,
cameras, etc.) and all other objects required for rendering (renderer, render window,
interactor, etc.). Visualization pipeline objects belong to the data flow graph and its
main task is to transform input data to some representation that can be rendered. Helper
objects are any other objects as e.g. Matrix.

 6

2.2 Graphical Pipeline
The pipeline is divided to graphical and visualization part probably because the
graphical pipeline does not contain process and data objects strictly divided (in contrast
to visualization pipeline). Actually, each object of graphical pipeline represents some
data and process together. Another difference is that the graphical pipeline objects
contain subclasses that are hardware dependent (means OpenGL-dependent, Mesa-
dependent, etc.).

The graphical pipeline is responsible for rendering of data already prepared by
visualization pipeline. Following list contains the most common classes that create a
scene and renderer.

 vtkActor, vtkActor2D, vtkVolume

 vtkLight

 vtkCamera

 vtkProperty

 vtkMapper

 vtkTransform

 vtkRenderer

 vtkRenderWindow

 vtkRenderWindowInteractor

The vtkProp class represents things that we can “see” in the scene. Its commonly used
subclasses are vtkActor , vtkActor2D and vtkVolume . Inheritance graph of the
vtkProp class is given in Figure 2.1. The vtkProp3D represents objects that can be
manipulated in the scene (e.g. have a general 4x4 transformation matrix). The
vtkVolume is an actor specialized for volume rendering together with
vtkVolumeMapper . The vtkImageActor used for 2D rendering in 3D scene and the
vtkActor2D are utilized for two-dimensional data rendering without transformation
matrix. Note the LODActor that means Level-Of-Detail that can automatically switch
among number of geometry representations to maintain the frame rate.

vtkProp

vtkProp3D

vtkOpenGLImageActor vtkActor vtkVolume

vtkObject

vtkLODActor vtkOpenGLActor

vtkImageActor vtkActor2D

Figure 2.1 – The vtkProp inheritance graph

Actors with mappers have OpenGL subclasses that contain OpenGL code that is
responsible for rendering of given data. When user creates an instance of vtkActor , a

 7

hardware-dependent subclass is created (like vtkOpenGLActor instead of vtkActor).
This approach is reasonable since the runtime can decide what particular graphical
library will be used for rendering. Thus, the source code is hardware (graphical-
interface) independent. The same principle is used for all graphical pipeline objects.

The mapper object provides interconnection between visualization and graphical
pipeline. Together with actor, it is responsible for rendering of particular
geometry/data.

Renderers and render windows are used to manage the interface between the graphics
engine and the particular computer windowing system. The render window is a window
that can be seen on display and where the renderer draws into. More than one renderer
can be inserted into a single render window. The region that the renderer draws into is
called viewport.

2.3 Visualization Pipeline
Good understanding of the visualization pipeline is probably the most important matter
for efficient usage of the VTK. The visualization pipeline allows straightforward
modular approach in application design.

The pipeline approach implicates two main class types and three subtypes.

 Data object

 Process object

o Sources (outputs only, e.g. vtkConeSource)

o Filters (inputs and outputs, e.g. vtkDecimate)

o Mappers (inputs only, also Slinks or Terminals, e.g.
vtkPolyDataMapper)

The data object represents some particular data structure, e.g. triangle mesh, volumetric
data, image, etc. The process objects are workers that: produce, change, convert or
consume the data objects. General example of visualization pipeline is given in Figure
2.2.

 Source

Data

Source

Data

Filter

Data

Filter

Data

Mapper

Multiple input

To graphical pipeline

Figure 2.2 - Example of visualization pipeline with anonymous objects

2.3.1 Data Objects
A basic class for all data objects in VTK is vtkDataObject . This is a general
representation of any data that can be exchanged among process objects. It serves to

 8

encapsulate instance variables and methods for visualization network execution. Data
that has a formal structure are called a dataset. Appropriate class is called vtkDataSet
and is a subclass of vtkDataObject . A data object consists of geometric and
topological information (points and cells), as well as associated attribute data such as
scalars or vectors. The attribute data can be associated with the points and can represent
various entities from scalar to n-dimensional tensor.

Following Figure 2.3 gives the common used data types as inheritance graph. This
graph is incomplete and some objects are omitted.

 vtkObject

vtkDataObject

vtkDataSet

vtkImageData vtkPointSet vtkRectlinearGrid

vtkStructuredGrid vtkUnstructuredGrid vtkPolyData

Figure 2.3 - Common data objects in inheritance graph. The super-class is in top

Probably the most useful data objects are in the bottom row. The most general is the
vtkUnstructuredGrid object representing spatial and topological irregular set of
points that can be topologically connected by vtkCell into lines, poly lines, polygons,
tetrahedrons, etc. The vtkPolyData are similar but have some limitation in
topological structure. Only vertices, lines, polygons and triangle strips can be
topological elements of the vtkPolyData . Triangle mesh is typical example of
vtkPolyData . The vtkStructuredGrid represents topological regular but spatial
irregular data grid. Each point can be selected by [i, j, k] indices. Therefore neighbors
are given implicitly but user of the object gives coordinates of each point explicitly.
The vtkRectilinerGrid represents spatially and topologically regular data. This data
type is useful for volumetric data in regular grid.

PolyData Example
This example shows the creation of polygonal data object and addition of one triangle
into them. The vtkPoints object named vertices represents the spatial information.
The vtkTriangle object named triangle represents the topological structure. It is a
subclass of vtkCell object that is a general topological element. Following Code 2.1
gives example in C#.

 9

 vtkPoints vertices = vtkPoints.New();
 vertices.SetNumberOfPoints(3);
 vertices.SetPoint(0, 0.0, 0.0, 0.0);
 vertices.SetPoint(1, 1.0, 0.0, 0.0);
 vertices.SetPoint(2, 1.0, 1.0, 0.0);

vtkTriangle triangle = vtkTriangle.New();
 triangle.GetPointIds().SetId(0, 0);
 triangle.GetPointIds().SetId(1, 1);
 triangle.GetPointIds().SetId(2, 2);

vtkPolyData polyData = vtkPolyData.New();
 polyData.Allocate(1, 1);
 polyData.SetPoints(vertices);
 polyData.InsertNextCell(triangle.GetCellType(), triangle.GetPointIds());

Code 2.1 – Example of polydata creation that contain one triangle

In Code 2.1, initially a field of points representing spatial information is created.
Through that piece of code, three particular points are added. The meaning of
SetPoint() method parameters is as follows: index, x-coordinate, y-coordinate and z-
coordinate. As a next step, a topological structure is created. It might looks a little
confusing, but the GetPointIds() returns a list of point indices and so the indices
number can be set by SetId() method. The meaning of the parameters is following: an
index in triangle indices field and corresponding index in vertices field. Finally the poly
data are created and allocated for one cell. The geometrical information is set by
SetPoints() method call. The topological information is setup by InsertNextCell() .
Unfortunately the vtkPolyData doesn’t contain direct method that has vtkCell
parameter. Therefore InsertNextCell() must be called with presented parameters. It
is probably due to limitation of the topological structure in vtkPolyData object.

It is need to point out that handling of polygonal data in this fashion is usually matter
for developer of a new process object only. Because for most applications that use
VTK, enough process objects exist and so no new ones are usually needed.

2.3.2 Process Objects
A process object operates on data objects to produce new data objects. They represent
an algorithm. Process objects are connected to visualization pipeline (or data flow
network). This principle implicates three types of process objects:

 Source

 Filter

 Mapper

The source is object that reads or generates some kind of data. This is the starting
object of the visualization pipeline. The filter object is object that has some data
object/objects as input and some object/objects as output. The input and/or output type
can be the same or different. The mapper (or slink or terminal) object terminates the
visualization pipeline. It usually represents the interconnection to graphical pipeline (or
interface). Another function of mapper can be an export of given data to data file.

 10

Source Filter Mapper

No input

No output ≥ 1 output ≥ 1 output

≥ 1 input ≥ 1 input

Figure 2.4 – Source, Filter and Mapper

Calling of SetInput()/GetOutput() method establishes an interconnection between
process objects. The calling of aProcObj.SetInput(bProcObj.GetOutput())
provides interconnection between aProcObj and bProcObj , with data flow direction
from b to a . There is necessary to check the data type compatibility. The output has to
be of the same type as expected input type is.

2.3.3 Pipeline Execution
The visualization pipeline is only executed when data is required for another processing
(lazy evaluation). This execution is based on the internal modification time of each
object via Update() method. See Figure 2.5.

Source Filter Actor Filter

Render() Direction of Update() method

Direction of data flow
(data generated via process object Execute() method)

Figure 2.5 – Conceptual overview of pipeline execution

Each process object implements particular Execute() method that produces its output.
The Update method calls the Execute() method only when last modification time of
input objects is newer than modification time of this object or if any values of current
object have changed. Therefore the Exectute() method call brings the current object
up to date. This mechanism goes recursively through whole graphics and visualization
pipeline.

Usually the method that executes the pipeline is Render() method. Then Update()
method goes recursively up to the source objects that create data and propagate them
through filters and graphical elements to the renderer. For instance, when just some
rotation of the actor is encountered, there is no need to re-generate or filter data again.
Therefore the Update() method checks whole pipeline and just the actor object is
transformed (executed). Particular example follows.

The Mace Example
This example shows some previously introduced features of the VTK on mace
example. Resulting object of Visualization pipeline is a polygonal representation of
sphere with cone on each vertex with the vertex normal orientation; see Figure 2.6. This
data are rendered in window with simple interactor that allows some basic manipulation
by mouse, like rotation and translation of the object.

 11

Figure 2.6 - The mace output

Figure 2.7 gives the data flow graph and the graphical interface. This graph is
reasonable way of VTK application analysis.

 vtkSphereSource
(sphere)

vtkConeSource
(cone)

vtkActor
(sphereActor)

vtkPolyDataMapper
(sphereMapper)

vtkGlyph3D
(glyph)

vtkActor
(spikeActor)

vtkPolyDataMapper
(spikeMapper)

vtkPolyData
(sphere)

vtkPolyData
(cone)

vtkPolyData
(spikes)

vtkRenderer
(renderer)

vtkRenderWindow
(renWin)

vtkRendererWindowInteractor
(iren)

V
isu

al
iz

at
io

n
pi

pe
lin

e
pa

rt
G

ra
ph

ic
al

pi
pe

lin
e

pa
rt

Figure 2.7 - The mace example as with visualization pipeline and graphical part

 12

As usual, the visualization pipeline starts with source objects. In this case, there are two
sources: sphere and cone . The sphere is an instance of the vtkSphereSource class
and the cone is an instance of the vtkConeSource . They are simple sources of
generated geometric data of vtkPolyData type. The glyph object is an instance of
vtkGlyph3D class. It has two inputs. The first input is polygonal mesh and the second
one is an object that is going to be mapped on each vertex. The output is a new
polygonal object; here, it is called spikes . This object is example of filter with two
inputs and one output. The sphere and spikes are mapped to sphereMapper and
spikeMapper . The visualization pipeline ends in these two terminal objects.

The graphical pipeline starts with two actors that are the basic elements of the scene.
These actors are linked with appropriate mapper objects. Actors are added to the
renderer where they create a scene. The renderer is added to render window with
interactor.

Used process objects are given in Figure 2.8 as a graph of inheritance. All process
objects are derived from vtkProcessObject . Its subclass vtkSource is an abstract
object that specifies behavior and interface of source objects. The source object is
further specialized for polygonal data by its subclass vtkPolyDataSource that
produce polygonal data only. vtkConeSource and vtkSphereSource are its typical
direct subclasses that produce appropriate geometry.

The vtkDataSetToPolyDataFilter class is an abstract filter class whose subclasses
take input of some dataset and generate polygonal data on output. It seems to be a little
logical “jump” from source to filter. Our filter Glyph3D is a direct subclass of the
vtkDataSetToPolyDataFilter .

A subclass for all mappers is vtkAbstractMapper that is derived from
vtkProcessObject . There are two classes between the vtkAbstractMapper and our
vtkPolyDataMapper .

 vtkObject

vtkProcessObject

vtkWriter vtkSource vtkAbstractMapper

vtkPolyDataSource

vtkSphereSource vtkConeSource

vtkDataSetToPolyDataFilter

vtkGlyph3D

…

vtkPolyDataMapper

Figure 2.8 – Used process objects as inheritance graph. Instanced object are

highlighted

An implementation of the example in C# is given in Code 2.2. The line 1 contains
creation of the sphere source named sphere . The creation is done by static method
New() of the vtkSphereSoure . It is a legacy from the C++ implementation where it

 13

is because of avoidance of static object creation by means of protected constructor.
Lines 2 and 3 contain settings of the sphere object . The Phi and Theta resolution affect
the number of meridians and parallels. Note the indentation of the setting lines, which
are inserted to improve readability. Line number 4 contains sphereMapper creation.
The connection between sphere and sphereMapper is in line 5. The sphereActor
creation and assignment is in lines 6 and 7.

Following lines 8 and 9 contain the cone source creation. It is very similar to sphere
source creation.

Line 10 contains glyph creation. The SetInput and SetSource methods, which are
called in lines 11 and 12, implement the multiple input connection of the glyph filter.
Note the multiple output of the sphere object that is done by interconnection of its
output into two objects (mapper – line 5 and glyph – line 11). Actually, there is only
one instance of the sphere data object and both consumers of the data can only read it.
Additional setting, of how to map the source object on input object follows in lines 13,
14 and 15. Mapper (spikeMapper) of the spikes (glyph output) is created and
interconnected in lines 16 and 17. Appropriate actor for spikes (spikeActor) is created
and assigned in lines 18 and 19.

The renderer is created in line 20. It contains default camera and default lights.
Therefore we do not need to add them in this simple example. Lines 21 and 22 contain
an addition of sphere and spike actors. The white background of the renderer is set in
line 23.

The render-window is created in line 24. The renderer is inserted in line 25. Note the
add() method is used instead of set() method. It is due to that multiple of renderers
can be in one render-window. The size of render window is set in line 26. Lines 27 and
28 contain creation and assignment of the interactor that allows basic camera
manipulation in renderer. The render method is called in line 29. It invokes an update
on the whole graphical and visualization pipeline. Therefore all computation start here,
render-window opening included. Finally, in line 30, the event loop is started so the
interactor starts the communication with mouse. It ends when the user closes the
window.

 14

 1) vtkSphereSource sphere = vtkSphereSource.New();
2) sphere.SetThetaResolution(6);
3) sphere.SetPhiResolution(6);
4) vtkPolyDataMapper sphereMapper = vtkPolyDataMapper.New();
5) sphereMapper.SetInput(sphere.GetOutput());
6) vtkActor sphereActor = vtkActor.New();
7) sphereActor.SetMapper(sphereMapper);

8) vtkConeSource cone = vtkConeSource.New();
9) cone.SetResolution(6);

10) vtkGlyph3D glyph = vtkGlyph3D.New();
11) glyph.SetInput(sphere.GetOutput());
12) glyph.SetSource(cone.GetOutput());
13) glyph.SetVectorModeToUseNormal();
14) glyph.SetScaleModeToScaleByVector();
15) glyph.SetScaleFactor(0.25f);

16) vtkPolyDataMapper spikeMapper = vtkPolyDataMapper.New();
17) spikeMapper.SetInput(glyph.GetOutput());

18) vtkActor spikeActor = vtkActor.New();
19) spikeActor.SetMapper(spikeMapper);

20) vtkRenderer renderer = vtkRenderer.New();
21) renderer.AddActor(sphereActor);
22) renderer.AddActor(spikeActor);
23) renderer.SetBackground(1,1,1);

24) vtkRenderWindow renWin = vtkRenderWindow.New();
25) renWin.AddRenderer(renderer);
26) renWin.SetSize(450,450);
27) vtkRenderWindowInteractor iren = vtkRenderWindowInteractor.New();
28) iren.SetRenderWindow(renWin);

29) renWin.Render();
30) iren.Start();

Code 2.2 – The mace example as C# source code

When the event loop starts, just a camera position is changed. Therefore there is no
need of new execution of whole pipeline. The update method is propagated through
whole pipeline with every new frame but there is no execution except the renderer.

2.4 System Architecture Overview
The Visualization Toolkit consists of two basic subsystems: a compiled core and a
wrapper layer. See Figure 2.9. The core layer is a compiled C++ class library. In case
of MS Windows it is distributed as a set of dynamic linked libraries (.DLL), which are
necessary for run any application that using VTK. The official1 wrapper layers make
possible to use VTK in the Java, TCL and Python programming languages. The goal of
this work is to create wrapping layer for .NET platform.

1 Standard free-source distribution of VTK available on [Kitware] web site.

 15

Compiled Core
vtkGraphics.dll, vtkCommon.dll, vtkFiltering.dll, vtkIO.dll, ...

Tcl -Wrapper Python-Wrapper Java-Wrapper .NET-Wrapper

User Application in Tcl/Python/Java/C#/C++

Figure 2.9 - Core, wrappers, and user application. Note the direct access possibility

The most efficient use of the VTK lies in C++ programming language because the
C++ is “native” for the VTK and provides direct access to the VTK core. Therefore a
full functionality, flexibility and speed efficiency can be achieved in final C++
application. Also the C++ is only “official” way of how to create new VTK modules.
The main reason of this is probably the nonfunctional polymorphism between wrapped
and wrapping classes.

In case of wrapper usage, the developer faces two problems. The minor one is a
slowdown of resulting application. The second, mayor one, results from differences
between C++ and particular wrapping language because of fact that the C++ is
probably the most powerful programming language ever developed. For example,
pointer manipulation is possible in C++ but not in Java. Also some data types are
difficult to transform between so different environments.

2.4.1 Existing Java Interface
The Java interface is considered as the reference interface for the goal .NET interface
due to similarity of Java and .NET features (e.g.: ByteCode vs. MSIL, JVM vs. .NET
Framework, garbage-collector, etc). Also the Java and .NET languages are semi-
interpreted and JITers can be used.

The realization of the Java interface is done by vtkXXXJava.dll files that are wrapped
by Java Native Interface objects compiled and packed into the vtk.jar file.

Source code of the Java wrappers is automatically generated by program vtkWrapJava.
Its source code can be found in vtk\wrapping\vtkWrapJava.cxx file in the VTK source
code distribution. This program uses a parser written by means of Lex and Yacc
programs for syntax and lexical analysis. This parser works on C++ header files and
obtains information about classes, their methods and parameters of the methods.
Additional information is taken from hint file that contains information about length of
arrays since the C++ source code does not contain the information (In C++ is field
usually pointer only). The resulting data is stored in parsers’ internal data structures.
These structures are given in Code 2.3.

 16

 typedef struct _FileInfo
 {
 int HasDelete;
 int IsAbstract;
 int IsConcrete;
 char *ClassName;
 char *FileName;

 char *SuperClasses[10];
 int NumberOfSuperClasses;
 int NumberOfFunctions;
 FunctionInfo Functions[1000];
 char *NameComment;
 char *Description;
 char *Caveats;
 char *SeeAlso;
 } FileInfo;

 typedef struct _FunctionInfo
 {
 char *Name;
 int NumberOfArguments;
 int ArrayFailure;
 int IsPureVirtual;
 int IsPublic;
 int IsProtected;
 int IsOperator;
 int HaveHint;
 int HintSize;
 int ArgTypes[MAX_ARGS];
 int ArgCounts[MAX_ARGS];
 char *ArgClasses[MAX_ARGS];
 int ReturnType;
 char *ReturnClass;
 char *Comment;
 char *Signature;
 } FunctionInfo;

Code 2.3 – Internal structures of the parser

Mentioned parser is general (as we can see in its internal data structures) and is used for
generating of all others interfaces (TCL, Python). Unfortunately, this parser omitting
some parsed methods. May be it is not an error but the goal.

 17

Part 3 .NET Environment

In this part the new .NET environment will be discussed. This text is not detailed
description of the .NET, but it is a personal view of the author about this problematic
and provides necessary background information for understanding of this work. The
aim is on explanation of .NET specific terms and general overview.

3.1 Introduction
Under the .NET term can be comprehended number of things. First it should be
initiative, which goal is to build a new generation of operating systems, application
servers and number of developing tools. Second, it can be the .NET Framework that is
the kernel of these products and these entire products depends on it.

3.1.1 .NET as a New Layer
Under the term .NET a new layer that continues with the unification and simplification
tendency in software developing can bee seen. Operating system makes transparent a
lot of hardware dependencies for programmers. Therefore he can access various
hardware devices, without implementation details knowledge. Block diagram of this
idea is given in Figure 3.1.

Hardware I Hardware II Hardware III

Operating system I Operating system II

.NET Framework

OS Independent application OS Dependent application HW Dependent application

Figure 3.1 – Layers and dependencies

For example, number of sound cards exists. Each one has its specific interface how to
access them. But, thanks to the operating system we do not have to write special code
for each possible sound card (as in the case of MS-DOS). It is done by the operating
system that provides unified sound card interface.

In case of .NET it is the whole operating system instead of any specific hardware part
that is going to be unified (or transparent). The application written for the .NET
platform can be fully functional without need of any dependency on specific operating
system. This kind of “pure” application is portable at any platform for that the .NET
Framework exists. This idea is used in Java runtime too.

3.2 .NET Framework (CLI)
The ECMA International Standard ECMA-334 and ECMA-335 (see references
[ECMA02a] and [ECMA02b]) discuss the .NET Framework as Common Language
Infrastructure (CLI). Both these expressions will be used in following text.

 18

The kernel of the .NET platform is the .NET Framework, which is a new computing
platform that simplifies and unifies the application development and deployment. The
CLI is designed to fulfill the following objectives:2

 To provide a consistent object-oriented programming environment whether
object code is stored and executed locally, executed locally but Internet-
distributed, or executed remotely.

 To provide a code-execution environment that minimizes software deployment
and versioning conflicts.

 To provide a code-execution environment that guarantees safe execution of
code, including code created by an unknown or semi-trusted third party.

 To provide a code-execution environment that eliminates the performance
problems of scripted or interpreted environments.

 To make the developer experience consistent across widely varying types of
applications, such as Windows-based applications and Web-based applications.

To build all communication on industry standards to ensure that code based on the
.NET Framework can integrate with any other code.

The .NET Framework has two main components: the common language runtime and
the .NET Framework class library. The common language runtime (CLR) is a basic
element of the .NET Framework. It can be imagine as a “virtual machine” that executes
program code, provides services as a memory management, thread management, type
controls and exception handling. The code that targets the common language runtime is
known as a managed code and the code that do not targets the CLR is known as
unmanaged code. The class library is a wide and compact collection of reusable classes
that can be used for application development. It has wide range of functionality such as
GUI, database connectivity, distributing application support etc.

Figure 3.2 presents general view on the .NET Framework. At the lowest level is the
Common Language Runtime. Above the CLR is situated the Basic Class Library that
provides wide functionality that can be used by user application. Above the Basic Class
Library lie the Win-Forms and Web-Forms that contain classes necessary for GUI
(Graphic User Interface) creation. The Web-Forms are designed for usage on Web and
the Win-Forms are determined for desktop application. Both these libraries have
unified API that simplifies the conversion from desktop application to web application
and back. The higher horizontal level contains the potentially unlimited set of
programming languages. The Common Intermediate Language (CIL or MSIL) is the
target language (or platform) for all other languages. The CIL is interpreted (or
executed) by CLR.

2 This list is taken and modified from “Overview of the .NET Framework” article in [MSDN] resource.

 19

Common language runtime

Memory Mgnt. TypeSystem Lifetime

Basic Class Library

IO Security Threading

XML SQL Etc. …

Web support

Web Services Web Forms

ASP+ App. services

WinForms

Windows App. services

Controls Drawing

.N
ET

Fr
am

ew
or

k
La

ng
ua

ge
s

Common Intermediate Language (CIL or MSIL)

VB C++ C# JScript …

Figure 3.2 - .NET Framework structure with programming languages

3.2.1 Common Language Runtime (CLR)
The CLR is the “virtual machine” that executes the CIL code. It provides memory
management (by garbage collector); thread execution, code execution, code safety
verification, compilation (by JITter), and other system services.

The CLR provides memory management with garbage collector service. It means the
object is automatically released from memory when becomes unnecessary. Therefore
programmers do not have to carefully handle its object termination and the program
developing is easier and so faster. Call of a deleted object method is often error that
causes the program crash. The memory management can also move any managed
data/object in memory (change its memory address) to prevent the memory
fragmentation. The side effect is, the pointers are useless since any pointer usually
contains relative address to some kind of data/object but the data/object can be moved
without any note.

The just-in-time compiler (JITter) is responsible for compilation of the CIL code to the
native code of particular processor. Therefore the JITter can optimize the CIL code for
particular instruction set and so obtain extra performance with full CIL portability.
Three types of just-in-time compiling exist: install-time compilation, runtime
compilation, econo-compilation. The install-time means the code is compiled to the
native code of given processor during installation of application. The advantage is that
there is no delay during application start. The runtime compilation means the whole
CIL code is compiled before program execution. The econo-compilation (also called
econoJITter) compiles only the parts of code that are going to be used. It can also
release unnecessary parts of compiled code from the memory. Thanks the JITter usage
there is no real interpretation of the CIL code in the .NET environment.

 20

The code access security is done by its trustworthiness. For example, user can trust that
an executable embedded in a Web page can play an animation on screen, but cannot
access their personal data, or file system.

The runtime also enforces code robustness by implementing a strict type and code
verification infrastructure called the common type system (CTS). The CTS ensures that
all managed code is self-describing. Managed code can consume other managed types
and instances, while strictly enforcing type fidelity and type safety.

3.2.2 Common Intermediate Language (CIL)
The common intermediate language (also called as MSIL – Microsoft Intermediate
Language) is programming language that is processed (or executed) by CLR. It is very
close to a native processor assembler. In the terms of Java it is similar to Java byte-
code. It is the target language for all (higher) .NET programming languages.

The CIL contains support for object oriented programming, such as virtual method
invocation and exception handling.

One of the reasons for introduction of the intermediate language is to provide code
description, which does not depend on particular processor instruction set. Program in
the CIL is compiled by JITter for particular processor just before the runtime, thus it
can use its special advantages. Simple example of CIL follows.

Example of CIL Code
Code 3.1 gives simple class with one static method. The Main() method has two local
variables. They are sets to value one, added together, converted to the string,
concatenated with informative string and printed to the console.

 class Class1
{
 static void Main(string[] args)
 {
 int i, j;
 i = j = 1;
 Console.WriteLine("1 + 1 = " + (i + j));
 }
}

Code 3.1 – Simple C# source code

When the Code 3.1 is compiled into the .exe form ant then decompiled (by Ildasm.exe)
into the text form of the CIL, we obtain the Code 3.2. Line 1 contains method header.
Allocation of two local variables is on line 6. The instruction on line 7, pushes value
one on the top of evaluation stack. The following dup instruction duplicates the
topmost value. The instruction stloc.1 pops the topmost value and stores it in the first
local variable. The same is done with the zero local variable on line 10. The instruction
ldstr in line 11 loads given string value to the top of the evaluation stack. Instructions
ldloc.1 and ldloc.0 loads the local variables values at the top of the stack. The add
instruction pops the two topmost values, add them together and stores the result at the
top of the stack.

 21

 1) .method private hidebysig static void Main(string[] args) cil managed
2) {
3) .entrypoint
4) // Code size 28 (0x1c)
5) .maxstack 3
6) .locals init (int32 V_0, int32 V_1)
7) IL_0000: ldc.i4.1
8) IL_0001: dup
9) IL_0002: stloc.1
10) IL_0003: stloc.0
11) IL_0004: ldstr "1 + 1 = "
12) IL_0009: ldloc.0
13) IL_000a: ldloc.1
14) IL_000b: add
15) IL_000c: box [mscorlib]System.Int32
16) IL_0011: call string [mscorlib]System.String::Concat(object, object)
17) IL_0016: call void [mscorlib]System.Console::WriteLine(string)
18) IL_001b: ret
19) } // end of method Class1::Main

Code 3.2 – Code in Common Intermediate Language

Interesting instruction lies in the line 15. This instruction converts the topmost integer
value to the object reference of System.Int32 type. Thus conversion to the string is
being possible by ToString() method call. This is standard approach of the .NET
environment for the primitive data types. Each one is usually processed as value type.
When it is necessary its class type automatically boxes (or wraps) it. This approach is
chosen due to performance. The value types are usually easier (and so faster) to handle
than the class type. The line 16 contains call of string concatenation function. The
resulting string is printed on the console by static method WriteLine() call. Finally the
return from the function is done by the ret instruction.

3.2.3 Common Language Specification (CLS)
The CLS is a set of rules that guarantees cross-language interoperability. The
application (or library) that is targeted as CLS-compliant can expose only types and
features that are common to all other languages targeting CLS. By another words, it is a
set of rules, which any CLS-compliant language have to accept and can expose.
Actually, the common language specification rules are a subset of a common type
system.

3.2.4 Metadata
Metadata is binary information describing any part of program code. Every type and
member defined and referenced in a module or assembly is described by metadata that
are stored in the special part of program file. Metadata consists of:3

 Description of the assembly.

o Identity (name, version, culture, public key).

o The types that are exported.

o Other assemblies that this assembly depends on.

o Security permissions needed to run.

 Description of types.

o Name, visibility, base class, and interfaces implemented.

3 This list is taken and modified from “Metadata overview” in [MSDN] resource.

 22

o Members (methods, fields, properties, events, nested types).

 Attributes

o Additional descriptive elements that modify types and members.

Metadata is the key to a simpler programming model, which eliminates the need for
extra interface definition files e.g. header files, or any external method of component
reference. Metadata allows .NET languages to describe themselves automatically in a
language-neutral manner. Additionally, metadata is extensible through the use of
attributes.

The attribute metadata can be associated with any program element. The class library
provides wide variety of attribute classes that can be used. Alongside it, custom
attributes can be created and used as well. Metadata are accessible in runtime by
reflection mechanism.

Attribute and Metadata Example
Following source codes gives the attribute Obsolete example. The Code 3.3 gives the
simple method that is marked obsolete by attribute associated with this method. If this
method is used, the compiler writes warning with given string. It writes warning only
(not error) due to false parameter.

 class Class1
{
 [Obsolete("Deprecated method. Do not use it.", false)]
 void OldMethod()
 {
 Console.WriteLine("I am old method.");
 }
 ...

Code 3.3 – C# source code with Obsolete attribute.

Code 3.4 gives the decompiled version of previously introduced example. At the
beginning of the method, the instance of System.ObsoleteAttribute is created. The
parameter values are defined as a block of binary data. In decompiled form they are
displayed as a set of hexadecimal numbers with commented string representation.

 .method private hidebysig instance void OldMethod() cil managed
{
 .custom instance void [mscorlib]System.ObsoleteAttribute::.ctor(string, bool)

 = (01 00 21 44 65 70 72 65 63 61 74 65 64 20 6D 65 // ..!Deprecated me
 74 68 6F 64 2E 20 44 6F 20 6E 6F 74 20 75 73 65 // thod. Do not use
 20 69 74 2E 00 00 00) // it....

 // Code size 11 (0xb)
 .maxstack 1
 IL_0000: ldstr "I am old method."
 IL_0005: call void [mscorlib]System.Console::WriteLine(string)
 IL_000a: ret
} // end of method Class1::OldMethod

Code 3.4 – Decompiled .exe file that gives the attribute metadata example

3.2.5 Assembly
Assembly is a logical collection consisting of, one or more .EXE or .DLL files and
resources with manifest. At the first point of view, assembly can looks like any other
unmanaged .DLL (or module). But the managed assembly provides much more
functionality like:

 23

self-description – Assembly contains information about exported classes, functions
and arguments.

number of version – Each assembly contains its version consists of Major, Minor,
Build and Revision part. Some resources mix the Build and Revision order.

number of versions of used modules – If assembly requires any other assembly then
contains numbers of their versions (and possibly hash code of the file content).

side-by side multi versions – In the .NET environment can exists simultaneously
number of the same assemblies with different versions.

assembly is standalone – The assembly does not depend on registry or MTS/COM+
catalogue. This is usually the main difficultly during application deployment.

The Figure 3.3 gives the logical structure of single file and multi file assembly. The
Assembly metadata means the metadata associated with the assembly (also called
manifest).

.jpg
.gif

.html

.jpg
.gif

.html

Type metadata

CIL-code

Type metadata

CIL-code

Assembly metadata

Type metadata

CIL-code

Resources

.dll or .exe file

Assembly metadata

Type metadata

CIL-code

.dll or .exe file

Type metadata

CIL-code

.dll file

.jpg
.gif

.html

resources

Multi file assembly

Single file assembly

Figure 3.3 – Single- and multi- file assembly structure

3.2.6 Class Library
The class library is large collection of reusable classes with wide variety of
functionality. It is designed to be consistent. It makes the class library easy to use and
reduce time necessary to learn the new features.

The class library is common language specification compliant. Therefore it can be
simply used in any language of .NET platform that is CLS compliant too. This is
advantage, because in CLI exists only one class and programmers experience with one
language is “portable” on any other language. To learn language specific libraries is
probably the most time consuming part of learning of any new language.

The CLI specification guarantees the set of runtime classes that have to be present in
any CLI implementation, therefore usage of such classes provides portable program.

3.3 Languages for .NET Platform
Number of languages of .NET platform is generally unlimited. Each language that has
compilator targeting the CIL (managed environment) can be considered as a language
for .NET platform. There are languages that target managed environment only (like
Visual Basic) or managed environment and unmanaged together (like MC++ and C#).

Following subsections contains brief introduction to the most important features of the
languages used in presented work.

 24

3.3.1 C# Programming Language
C# (pronounced C Sharp.) is a simple, modern, object oriented, and type-safe
programming language. It is designed especially for .NET platform. Therefore it is the
most complying language for the CIL and CLI features. Is based on well-known C++
programming language. Number of ideas is taken from Java programming language.
Brief list of important features follows:

 Support single inheritance only

 Support interfaces (special case of class that does not have attributes/data)
instead of multiple inheritance

 Support property (possible replacement for Get/Set methods)

 Implicitly support managed environment

o No pointers

o Garbage collector

 Explicitly support unmanaged environment (by unsafe block)

o Pointers available

o No garbage collector

 Support events and exception handling

Hallo World Application in C#
Following example is taken and modified from [ECMA02b] resource. The “hello
world” program can be written as follows in Code 3.5:

 using System;
 class Hello
 {
 static void Main()
 {
 Console.WriteLine("hello world");
 }
 }

Code 3.5 – Hallo world application in C#

The source code for a C# program is typically stored in one or more text files with a file
extension of .cs, as in hello.cs. Using a command-line compiler, such a program can be
compiled with a command line like:

csc hello.cs

Which produces an application named hello.exe . The output produced by this
application when it is run is:

hello world

Close examination of this program follows:

 The using System; directive references a namespace called System that is
provided by the Common Language Infrastructure (CLI) class library. This
namespace contains the Console class referred to in the Main method.
Namespaces provide a hierarchical means of organizing the elements of one or
more programs. A using-directive enables not fully qualified use of the types

 25

that are members of the namespace. The hello world program uses
Console.WriteLine as shorthand for System.Console.WriteLine .

 The Main() method is a member of the class Hello . It has the static modifier,
and so it is a method on the class Hello rather than on instances of this class.

 The entry point for an application (the method that is called to begin execution)
is always a static method named Main() .

 The “hello world” output is produced using a class library of CLI.

For C and C++ developers, it is interesting to note a few things that do not appear in
the “hello world” program.

 The program does not use a global method for main . Methods and variables are
not supported at the global level; such elements are always contained within
type declarations (e.g., class and struct declarations).

 The program does not use either :: or -> operators. The :: is not an operator at
all, and the -> operator is used in only a small fraction of programs (which
involve unsafe code). The separator . is used in compound names such as
Console.WriteLine() .

 The program does not contain forward declarations. Forward declarations are
never needed, as declaration order is not significant.

 The program does not use #include to import program text. Dependencies
among programs are handled symbolically rather than textually. This approach
eliminates barriers between applications written using multiple languages. For
example, the Console class need not be written in C#.

3.3.2 C++ Managed Extension (MC++)
C++ programming language is probably the most general and powerful programming
tool ever developed. Even this, the CIL is sufficient to be a target platform for C++
compiler. However once a C++ program is compiled to CIL, it may utilize the
powerful features of the runtime (such as garbage collection, cross-language
cooperation, etc.) but the C++ needs some added tools. This is the reason for the
Managed Extension of the C++.

Code 3.6 gives simple “hallo world” managed application in MC++.

 #using <mscorlib.dll>
using namespace System;

void main()
{
 Console::WriteLine("hello world");
}

Code 3.6 – The MC++ hallo world application

 The source code is usually stored in text file with .cpp extension. Can be
compiled by C++ compiler with /clr command line option. The #using
<mscorlib.dll> command, imports the CLI class library to be used. The rest
is similar to previously presented “hallo world” in C#. The only major
difference is that the C++ does not need to encapsulate the main() method to a
class.

 26

 The /clr compiler option does not alter the semantics of an existing C++
program. For example, C++ classes do not become garbage collected unless
they are modified. Such features are only provided for Managed Extensions
classes.

 The MC++ programming language is powerful tool that allows very general
mixing of unmanaged code with managed code. Alongside it, the MC++
maintains full backward compatibility with any existing C++ code. It makes it
perfect tool for porting of existing code.

Managed Extension Keywords
Following list of keywords provides access to managed extension features.

__abstract __box __delegate __event __gc __identifier __interface
__nogc __pin __property __sealed __try_cast __typeof __value

Managed Extension Classes
As mentioned before, ordinary definition of class in MC++ does not provide benefits of
the CLI. The class requires to be declared as garbage collected by __gc keyword. Any
class marked by the __gc keyword is called as garbage collected or managed class. It
takes all advantages and limitations provided by the CIL. Such as:4

Extensions:
 A declaration of a __gc class shall always have the __gc keyword.

 A __gc class can have a data member that has type pointer-to any unmanaged
type.

 A __gc class can contain a user-defined destructor.

 Operator delete can be called on a pointer-to a __gc class in order to force
the destructor to run immediately.

 A __gc class can implement any number of __gc interfaces .

 A __gc class can contain properties.

 A __gc class can be marked with the __abstract keyword.

 A __gc class can be marked as "sealed".

 A __gc class can declare a static class constructor.

 A __gc class can declare a constructor.

 A __gc class can have a visibility specifier.

Limitations:
 A __gc class shall not inherit from an unmanaged class.

 A __gc class shall not have an unmanaged class derived from it.

 A __gc class shall not inherit from more than one managed class.

 A __gc class shall not declare a user-defined copy constructor.

4 This List is taken and modified from “Managed extension for C++ specification” article. Stored in file
managedextensionsspec.doc file, embedded with the Visual Studio .NET distribution.

 27

 A __gc class shall not declare or define friend classes or functions.

 A __gc class shall not declare or define a new or delete operator.

 A __gc class shall not contain a using declaration.

 The calling convention of a member function of a __gc class cannot be
redefined to a native C++ calling convention, for example, to __cdecl .

There are two another keywords that can mark managed class: __value and
__interface keyword. The __interface keyword marks classes that are called
interface in the terms of CIL, C# and Java with all its limitation and advantages. The
__value keyword is designated to represent small, short-lived data items for which full
garbage collection would be too costly.

Number of any other types known from the CIL specification can be used in C++ such
as a __value enum, __gc pointer, and __gc reference. They are similar to their
unmanaged counterparts.

3.4 Existing Code Cooperation
Support for cooperation with already existing code is essential for the success of .NET
platform. Large amount of useful unmanaged software (or libraries) already exists.
Therefore the use of this software is usual in any new environment.

The .NET environment provides support for managed and unmanaged code
cooperation. This cooperation can be in both directions: the managed code can call
unmanaged code and also the unmanaged code can call managed code. How
complicated it is, it depends on unmanaged technology we wish to use, e.g. the easiest
way is probably in the case of COM technology (in both directions).

3.4.1 COM Cooperation
This kind of cooperation is the easiest way how to cooperate between managed and
unmanaged environment. The creation of COM-callable wrapper (makes managed class
accessible as COM module) and Runtime-callable wrapper (makes COM module
accessible from managed environment) is fully automated by using programs
embedded in Visual Studio .NET.

3.4.2 Unmanaged DLL Cooperation
Standard way for cooperation with ordinary (unmanaged) .DLL module is by Platform
Invocation Service (PInvoke). With the PInvoke mechanism it is possible the direct
calling any Win32 API function or function exported from arbitrary dynamic-link
library (DLL). Everything we have to do is to use the DllImport attribute. Simple
example of a Win32 API function call follows in Code 3.7.

 class Demo
{
 [DllImport("User32.dll", EntryPoint="MessageBox", CharSet=CharSet.Auto)]
 public static extern int MsgBox(int hWnd, String text, String caption, uint type);

 static void Main(string[] args)
 {
 MsgBox(0, "Called from C#", "PInvoke", 0);
 }
 ...
}

Code 3.7 – The PInvoke example in C#

 28

Disadvantage of PInvoke service is the fact that there is no straightforward way how to
make accessible object-oriented libraries (especially non-static class methods). This is
crucial disadvantage due to the VTK is fully object-oriented.

3.4.3 Managed and Unmanaged Code Mixing
In this approach is used the power of MC++, which is “backward compatible” with
ANSII C++ (in following text marked as AC++) and provides the CIL functionality as
well. This is called It-Just-Works (IJW) mechanism. Therefore it looks like perfect tool
for flexible interface creation.

It means we can create managed class, which uses unmanaged features of any library in
standard C++ way. The difficultly is to correctly convert managed types to unmanaged
types and back. The garbage collector, useful service in managed environment, causes
serious problems with unmanaged code cooperation. When we wish to pass any data
from managed to unmanaged environment there is necessary to “convince” the garbage
collector to do no moving or no de-allocation of the data. Fortunately, the CLI class
library provides the GCHandle class that provides required functionality. By calling
of Allocate() method we can fix the data in garbage-collected heap and then release
them by Free() method call. By means of the
AddrOfPinnedObject().ToPointer() method call we can obtain real pointer to the
garbage-collected heap.

 29

Part 4 VTK for .NET

This part describes our original solution of the straightforward usage of the VTK in the
.NET environment. This is done by interfacing layer between managed applications and
unmanaged compiled core of the VTK. The interfacing layer is managed assembly that
uses functionality of VTK C++ API. The managed interface seems similar to its
unmanaged version with few limitations and differences.

4.1 Goals
The main goal of this work is to make VTK easily accessible from .NET environment.
It covers number of matters.

 Offer managed equivalents of unmanaged VTK classes.

 Convert ANSII C++ data types to .NET (CTS) data types. (E.g. char* that
represents zero terminated string in ANSII C should be System.String of the
.NET environment.)

 Avoid unsafe blocks in resulting application. (User does not have to learn the
managed and unmanaged code cooperation)

 Use garbage collector. (User does not have to call the Delete() method of
VTK objects)

Next sub-goal is to use the original VTK precompiled dynamic linked libraries. It
means, no changes in original VTK source code. Implemented solution is a layer
between unmanaged DLLs of the VTK and a pure managed application as given in
Figure 4.1. This layer is named vtkDotNetWrap .

Hardware

Windows

VTK (Win32) .NET Framework

vtkDotNetWrap

Application
(Win32 part)

Application (.NET part)

Application

Figure 4.1 – Placement of interfacing layer in resulting application

4.2 Approach
The solution of the interface is realized as a managed layer between (possibly) pure
managed application and the unmanaged VTK library. This layer consists of managed

 30

wrap-classes (or proxy-classes), which provides functionality of VTK classes. Each
VTK class has right one wrap-class. These wrap-classes can be easily instantiated and
used in managed environment.

The wrap-class contains internally wrapped-class or more precisely instance of wrap-
class contains instance of wrapped-class. The instance of the wrap-class is responsible
for the instance of the wrapped-class (allocation, deallocation and accessing its
functionality). Graphical demonstration of the wrapping is given in Figure 4.2.

 Original unmanaged C++ interface

Wrap class
(managed)

Wrapped class
(unmanaged)

Data conversion

New managed (.NET) interface

Figure 4.2 – Wrap-class contains wrapped class and suits its interface into .NET

manner

The most problematic part is the data conversion, due to different characteristics of
managed and unmanaged environment. The target .NET environment is relatively type
strict in comparison with the ANSII C++ (VTK native). Next problem arises from
completely different memory management. The garbage collector can release memory
(when there is no reference) or even move the block in memory (change its address)
without any note. This process is completely undeterministic. Thus, the wrap-class has
to pine the memory block before passing it to the unmanaged environment, etc.

4.3 Realization
For implementation of the interfacing layer is required a tool (programming language)
that allows use of already existed unmanaged library (DLL) and utilization of managed
features simultaneously. The most flexible tool for this is probably C++ Managed
Extension (MC++). Thanks its “backward compatibility” with unmanaged environment
we can simply access the functionality of the VTK. Thanks its “managed extension” we
can mark some of our classes as garbage-collected and so accessible from managed
environment. This feature of MC++ is called “It Just Works” (IJW).

4.3.1 Composition vs. Inheritance Discuss
This subsection is little speculation about object-oriented principles and possibilities. It
is not very important for whole work. In fact, here proposed consideration is probably
“blind alley”.

There are two ways how to (hierarchically) join functionality of two classes in object-
oriented programming, the composition and the inheritance. There are two general
questions that help to decide what to use:

 Does the class B contain class A? If it is so then use composition.

 Is the class B (a specialization of) class A? If it is so then use inheritance.

 31

Literature usually contains simple example. Does car contain engine? It is definitely
true, so the composition should be used and the object car should contains object
engine. Example for inheritance: Is roadster a specialization of car? The answer is yes.
Then, we inherit the class roadster from class car.

In the case of wrapping we can possibly answer both questions “yes”. The wrap-class
could be specialization of the wrapped class (adds the managed features) and also the
wrap-class can contain the wrapped class.

From the first point of view, the inheritance solution seems more simply. The managed
wrap-class would derive all functionality of the unmanaged wrapped class. The wrap-
class would access all protected members of the wrapped class. The polymorphism
would be simply functional.

Unfortunately, the inheritance between managed and unmanaged classes is not possible
and therefore we have to use the second solution - the composition.

The solution by composition results in two main difficulties. Protected members of
wrapped class are not accessible from wrap-class and polymorphism does not
automatically work. These problems are the main reason why user can create VTK
modules in C++ only.

This idea continues in section 4.3.4 Double Wrapping Discuss. In following subsection
is presented implementation of the solution by composition.

4.3.2 MC++ Wrap-class
The realization of wrap-class in MC++ (with composition) is simple. We can use
managed and unmanaged paradigms in one piece of source code. An instance of
managed wrap-class contains one instance of unmanaged VTK class. The wrap-class
has the same public methods as wrapped-class. Calling of wrap-class method usually
causes only call of appropriate wrapped-class method with data conversions. There are
some exceptions especially in constructors. Source Code 4.1 is a representative part of
MC++ wrap-class source code.

 public __gc class vtkAbstractMapper :
public vtkProcessObject // wrap-class

{
public:
 ::vtkAbstractMapper *w; // wrapped-class

vtkAbstractMapper(::vtkAbstractMapper *_w):
vtkProcessObject(_w) { w = _w;}

 // const char *GetClassName (); 1303 ()
 System::String * GetClassName()
 {
 return new System::String(w->GetClassName());

}
// ...

Code 4.1 – Part of MC++ wrap-class source code

The w member variable contains pointer to the unmanaged wrapped class. When any
method of the wrap-class is called then is called appropriate method of the wrapped
class by this pointer. Note the call of GetClassName() method with data conversion.
There is creation of String object from zero-terminated string returned from
unmanaged method.

 32

The wrapped object is created in New() static method of the wrap-class. See Code 4.2.
The wrapped-class is deallocated in destructor of wrap-class that is automatically called
by garbage collector.

 vtkSphereSource * vtkDotNetWrap::vtkSphereSource::New()
{
 vtkSphereSource * ret;
 ret = new vtkSphereSource(::vtkSphereSource::New());
 return ret;
}

Code 4.2 – Creation of wrap-class and wrapped-class by static method New

4.3.3 Data Conversion
In this subsection we will discuss the data conversions between managed and
unmanaged environment as they are implemented in presented interface.

There is number of set of data types that have to be handled in different manners. List
of successfully wrapped data types follows:

 Primitive data type (int, f loat , …)

 Reference type (int &, float & , …)

 Pointer/field data type (int *, f loat * , …)

 Zero terminated string (char *)

 Pointer to VTK class (vtkObject *)

 const modification of previously presented data types

 Pointer to function (void (*f) (void *))

There also exists number of special cases that are not successfully wrapped. The list is
similar to list of unwrapped data types as in case of Java, TCL and Python wrappers
distributed with VTK. This list follows:

 ANSII C++ specific data types (FILE, iostream, …)

 Pointer to function different from void (*f) (void *)

 Value and reference type of VTK class

 Void pointer as argument

Primitive Data Types
Simple (or primitive) data types can be passed as an input argument and/or as a return
value. In this case there is no problem and the IJW mechanism of the MC++ solves
transparently all necessary conversions.

All these data types have straightforward equivalent in managed environment. For
example, the ANSII C++ int has straightforward equivalent in CTS named
System.Int32 with int alias. Thus, all is intuitive and transparent. Example of this
case follows in Code 4.3 (method argument) and Code 4.4 (return variable).

 33

 // void SetRadius (float); codes: 2(1)
void vtkDotNetWrap::vtkSphereSource::SetRadius(float arg0)
{
 w->SetRadius(arg0);
}

Code 4.3 – Simple data type is passed directly to unmanaged environment

 // float GetRadiusMaxValue (); codes: 1()
float vtkDotNetWrap::vtkSphereSource::GetRadiusMaxValue()
{
 float ret;
 ret = w->GetRadiusMaxValue();

return ret;
}

Code 4.4 – Primitive data type as a return variable

Reference Types
Reference types are slightly more complicated than value types. Common use of
reference types is to pass the change of the argument out from the method. By another
words, the argument of a method can be used for output from the method.

Equivalent in CTS (C# syntax) is the ref type. In MC++ is the syntax identical but
alias (int instead of System.Int32) cannot be simply used.

We have to create unmanaged temporary variables, because there is not possible to
simply obtain reference to managed type. Example of particular solution is given in
Code 4.5.

 // virtual void ViewToWorld (float &wx, float &wy, float &wz); codes: 2(101, 101, 101)
void vtkDotNetWrap::vtkRenderer::ViewToWorld(System::Single & arg0

, System::Single & arg1, System::Single & arg2)
{
 float tmp0 = arg0;
 float tmp1 = arg1;
 float tmp2 = arg2;
 w->ViewToWorld(tmp0, tmp1, tmp2);
 arg0 = tmp0;
 arg1 = tmp1;
 arg2 = tmp2;
}

Code 4.5 – Passing of reference data types

Pointer/Field Data Types
Pointer in ANSII C++ usually means field. Fortunately, in case of VTK there are all
pointers to primitive data type a field. As a managed equivalent of the pointer the
System.Array has been chosen.

The field that is passed as argument from managed environment is allocated on the
garbage-collected heap (can be moved in memory without any note). Therefore there is
necessary to fix the field in memory and then get the pointer, which can pass to
unmanaged environment. Example follows in Code 4.6.

 34

 // void SetCenter (float a[3]); codes: 2(301)
void vtkDotNetWrap::vtkSphereSource::SetCenter(float arg0 __gc [])
{
 GCHandle tmp0 = GCHandle::Alloc(arg0, GCHandleType::Pinned);
 w->SetCenter((float *)(tmp0.AddrOfPinnedObject().ToPointer()));

tmp0.Free();
}

Code 4.6 – Pinning of field in managed memory

When pointer (field) is a returned from an unmanaged method than it is necessary to
allocate appropriate array in managed memory and copy all elements. Because a pointer
does not contain information about field length, this information is passed as argument
of appropriate conversion subroutine. Example follows in Code 4.7.

 // float *GetOrientation (); codes: 301()
float vtkDotNetWrap::vtkTransform::GetOrientation() __gc []
{
 float ret __gc [];
 ret = wgPtr2Field_float(w->GetOrientation(), 3);

return ret;
}

Code 4.7 – Conversion from pointer to field

String Data Types
Each pointer to char is considered a zero terminated string. As an equivalent has been
chosen the System.String . The conversion from the zero terminated string to
System.String is straightforward. The System.String contains constructor that
accepts the zero terminated string. Example is given in Code 4.8.

 // const char *GetClassName (); codes: 1303()
System::String * vtkDotNetWrap::vtkSphereSource::GetClassName()
{
 System::String * ret;
 ret = new System::String(w->GetClassName());

return ret;
}

Code 4.8 – Conversion from char * to System.String

The conversion in other direction is more complicated. There is one global block of
(unmanaged) memory allocated by the vtkDotNetWrap interface called tmpStr . An
address of this memory is always passed instead of the related string. The
wgStr2Char() function simply copies char by char the content of the System.String
object to the tmpStr memory block. Example is given in Code 4.9.

 // int IsA (const char *name); codes: 4(1303)
int vtkDotNetWrap::vtkSphereSource::IsA(System::String * arg0)
{
 int ret;
 ret = w->IsA(wgStr2Char(arg0));

return ret;
}

Code 4.9 – Conversion from System.String to char *

 35

Pointer to VTK Class
A pointer to any VTK class can be argument as well as return variable. Thus, there is
necessary to know how to wrap and unwrap any class at application run-time.

The unwrapping is simple. The pointer to unmanaged class is internally (for the
vtkDotNetWrap namespace) accessible. So, after null pointer check it can be simply
used. Example follows in Code 4.10.

 // void Concatenate (vtkLinearTransform *transform); codes: 2(309)
void vtkDotNetWrap::vtkTransform::Concatenate(vtkLinearTransform * arg0)
{

w->Concatenate(((arg0 == NULL) ? NULL : arg0->w));
}

Code 4.10 – Conversion from managed class to unmanaged class (unwrapping)

The second direction is a little bit more complicated. In this case we have to create
instance of appropriate wrap class with given wrapped class. Example follows in Code
4.11.

 // vtkImageData *GetInput (); codes: 309()
vtkImageData * vtkDotNetWrap::vtkTexture::GetInput()
{
 vtkImageData * ret;
 ret = new vtkImageData(w->GetInput());

return ret;
}

Code 4.11 – Conversion from unmanaged class to managed class (wrapping)

Pointer to Function
Pointer to function is used for setting of a callback method. The first equivalent, which
we can see in CTS, is probably “delegate” but its use is not really straightforward. In
this work is used completely different approach for callbacks. The disadvantage is that
only callbacks with void pointer parameter can be implemented.

The vtkDotNetWrap layer offers interface called wgICallback . It is simple
managed interface with just one method (called Callback()). When user wishes to
create its callback method then he implements the wgICallback interface in arbitrary
class. The overridden Callback() method is considered (and called) as the registered
pointer to function. Equivalent for data passed in ANSII C++ (as the void pointer) are
the member variables of the given user class (which implements the wgICallback
interface).

This solution is not very complicated for implementation. Instead of pointer to data is
passed packed (converted to void pointer) GCHandle of the wgICallback class.
Instead of pointer to function is passed pointer to one general function that unpacks the
data void pointer to wgICallback class and then calls its Callback() method.
Example of wrapping of a registration method is given in Code 4.12.

 // void SetUserMethod (void (*func)(void *) , void *arg); codes: 2(5000)
void vtkDotNetWrap::vtkRenderWindowInteractor::SetUserMethod(wgICallback * arg0)
{

w->SetUserMethod(wgCallbackInternalFunction, wgPackToVoid(arg0));
}

Code 4.12 – Callback registration method and conversion from wgICallback interface
to void-packed GCHandle

 36

Unimplemented Data Type Conversion
There is number of data types that are not successfully converted. This set is similar to
other wrappers (Java, TCL, Python). In general it is minority of data types and VTK
can be effectively used without these data types.

First group is ANSII C++ specific complex data types, such as FILE and iostream .
These data types have no straightforward equivalent in CTS. They would have to be
wrapped similarly to other VTK classes.

Probably the most serious unimplemented data type is the nonparametric callback. Due
to the chosen system of callback conversion there is no straightforward way how to
implement them. It could be considered as work for possible continuator.

VTK has some useful rules, such as “all VTK classes can be only used by pointer”.
Unfortunately there is minor number of exceptions and some methods expect reference
or value type of a VTK class. With regard to implemented system of dynamic wrapping
there is no straightforward way how to implement these exceptions. Fortunately, it is
only minor number of cases.

Final minor unimplemented data type is the void pointer as argument. It is pointer to
unspecified data set and it is not easy to say what equivalent should be used in CTS.
Fortunately, it is really rare case in VTK.

4.3.4 Double Wrapping Discuss
As was mentioned before, the main disadvantage of the simple wrapping approach is
probably the inability of effective usage of polymorphism. In this subsection we will
discuss possible solution by “double wrapping”. This solution is not implemented in
resulting application and this subsection is here only as a suggestion for possible
continuator on this work.

The double wrapping means to use two kinds of wrappers. The first one unmanaged
and the second one managed. Let us call them level-one wrapper (L1-Wrapper) and
level-two wrapper (L2-Wrapper).

The L1-Wrapper is unmanaged and is derived from wrapped class. It contains handle to
the L2-Wrapper. It overrides all virtual methods of the base class with code that calls
the same method in L2-Wrapper. From another point of view, it wraps all virtual
methods of the L2-wrapper.

The L2-Wrapper is managed and contains the L1-Wrapper. Its purpose and structure is
very close to previously presented simple wrap-class.

Possible way how to implement the double wrapping, is given on the following
example.

Let us have unmanaged Win32 class (called Win32Class) in DLL that we cannot
modify. This class contains two methods whose implementation is not important. This
is equivalent of a VTK class. See Code 4.13.

 37

 class EXPORT Win32Class
{
public:
 void PrintSelf();
protected:
 virtual char *Info();
};

Code 4.13 – The unmanaged base class we wish to wrap

The L1-wrapper (Code 4.14) is also unmanaged and provides access to protected
methods and is responsible for correct calling of virtual method of L2-wrapper. Note
that the direct inheritance is used.

 class L1Wrapper : public Win32Class
{
public:
 void * l2w; //packed GCHandle of level-two wrapper
 char * Info();
};

Code 4.14 – The unmanaged L1-wrapper

Things are going to be more complicated. Following method in Code 4.15 unpacks the
GCHandle from void pointer and calls virtual method of the L2-wrapper. This
method is actually the one, which is called by the polymorphism mechanism.

 char * L1Wrapper::Info()
{
 IntPtr intPtr = IntPtr::op_Explicit(this->l2w);
 GCHandle handle = GCHandle::op_Explicit(intPtr);

L2Wrapper::L2Wrapper * managed
= dynamic_cast <L2Wrapper::L2Wrapper *> (handle.Target);

 char * ret = String2Chars(managed->Info());
 return ret;
}

Code 4.15 – The L1-wrapper calls the L2-wrapper

L2-wrapper is very similar to the simple wrap-class presented above. It is managed and
makes L1-wrapper easily accessible from .NET environment.

 38

 __gc public class L2Wrapper
{
 public:
 ::L1Wrapper *w;

 L2Wrapper()
 {
 w = new ::L1Wrapper;
 GCHandle handle = GCHandle::Alloc(this, GCHandleType::Weak);

 IntPtr intPtr = (IntPtr) handle;
 w->l2w = (void *) intPtr;
 }

 ~L2WBase()
 {
 handle.Free();
 delete w;
 }

 void PrintSelf()
 {
 w->PrintSelf();
 }

 virtual System::String * Info()
 {
 return new System::String("L2Wrapper::Info()");
 }
}

Code 4.16 – The managed L2-wrapper

This approach seems to be a possible way to make inheritance and polymorphism
functional, thus the VTK modules could be created in C#. Simple examples based on
this works well. But implementation for whole VTK is beyond scope of this work.
There are two main problems:

 Automatically overridden virtual method can cause infinite cycle.

 There is necessary to review all data type conversions because we wrap
managed method by unmanaged (it is all upside-down).

4.4 Wrap-class Generating Process
With regard to VTK size (~800 classes, ~9MB of wrap-class source code, ~19MB of
HTML reference manual) there is necessary to automate the processes of wrap-class
generating. Our presented generator has following features:

 The output from the generator is the MC++ source code of wrap-class that can
be compiled without any additional modification.

 Secondary output of the generator is a reference manual.

 The input for the generating process is complete set of C++ header files of the
VTK. These header files contains enough information about classes that are
going to be wrapped.

The generating process is divided into two parts. At the first part it is necessary to
obtain information about VTK class, which is going to be wrapped. This is matter of
parser. The second part is the generator that uses the output from the parser. For data
exchange between the parser and the generator the intermediate files (IF-files) are used.

 39

It is a simple text file that contains appropriate information about a class its methods
and parameters. Schematic view of the whole process is shown in Figure 4.3.

 C++ header files

Parser (IF generator)

Intermediate files

Wrap-class generator

Wrap-classes

hints

wgTypeHints

wgTypes

Reference manual

Figure 4.3 – Generating process scheme

4.4.1 The Parser
Fortunately, VTK already contains number of wrappers (Java, TCL, Python). Therefore
its structure is already prepared for wrapping. The VTK source code distribution
contains parser that is introduced in section 2.4.1 Existing Java Interface. For this work
is this parser assumed as a suitable source of information about classes. The inputs of
the parser are the C++ header files and additional hint file with field length
information.

The already mentioned structures of the parser (see Code 2.3) can be easily processed
by implementation of the vtkParseOutput() function (see Code 4.17). The fp
variable contains the output file descriptor and the data variable contains the internal
structures of the parser, which are going to be processed (printed out).

 /* print the parsed structures */
void vtkParseOutput(FILE *fp, FileInfo *data)
{

Code 4.17 – The parses output function

The only activity that is done by implementation of this function is to print these
internal structures as simple as possible to some kind of text file. This text file should
be easily readable for program as well as for human by text editor. Sample of this
intermediate text file follows in Code 4.18.

 40

 ClassName vtkAbstractMapper
NameComment vtkAbstractMapper - abstract class specifies interface to map data
Description vtkAbstractMapper is an abstract class to specify interface between data
and $ graphics primitives or software rendering techniques. Subclasses of $
vtkAbstractMapper can be used for rendering 2D data, geometry, or volumetric$ data.$$
SeeAlso vtkAbstractMapper3D vtkMapper vtkPolyDataMapper vtkVolumeMapper$
HasDelete No
IsAbstract No
IsConcrete Yes
NumberOfSuperClasses 1
SuperClass vtkProcessObject
NumberOfFunctions 25
 FunctionName IsA
 FunctionSignature int IsA (const char *name);
 NumberOfArguments 1
 ArgType 1303
 ArgCounts 0
 ArgClasses None
 ArrayFailure No
 IsPureVirtual No
 IsPublic Yes
 IsOperator No
 HaveHint No
 HintSize 0
 ReturnType 4
 ReturnClass None
 Comment None

Code 4.18 – Sample of intermediate text file – the output of the parser

As we can see, this file contains important information such as, class name, class
description comment (can be used for generated reference manual), list of methods with
list of arguments, etc.

This intermediate text file is invaluable for debugging of the generating process.
Because any programmer can easily see what is the exact output of the parser.
Sometimes the parser does not work exactly as we could expect.

Data Type Codes
The parser represents data types by an integer value (type code). Complete list of these
codes is in Appendix C. Example of some type codes follows:

 1 – float

 3 – char

 4 – int

 9 – VTK class

 10 – unsigned modification

 100 – reference modification

 300 – pointer modification

 1000 – const modification

For example code 1314 means constant pointer to unsigned integer (const unsigned
int *). This system is designed well and generally does not need any changes for
purpose of this work. Some minor problems are outlined in following subsection.

4.4.2 The Generator
Implementation of the generator is the focal point of this work. Simply said, it
translates the information from the intermediate text file to MC++ source code of a

 41

wrap-class. The secondary output of the generator is the reference manual in HTML
that contains list of classes with methods and brief description.

This program is not user friendly and is not designed for public use but only for
“programmers use”. Details how to use and modify this generator is described in
Appendix B – Programmers Manual.

The generator starts with loading of intermediate text files (Code 4.18) and creates list
of all classes and its methods (in memory). During this process are some unsuitable
data type codes overridden, some implicitly (directly wired in generators code) some
explicitly by information given in wgTypeHint.txt file. If some unknown data type is
found than it is written to UnknownCode.txt file. Afterwards starts generating itself.

First is generated the main vtkDotNetWrap.cpp file that contains inclusion of all
others .cpp files generated later5. This file also contains some statistic information such
as, total number of classes, its methods and the number of successfully and
unsuccessfully wrapped methods.

Then is generated wrap-class source code one by one: headers (.h) and
implementations (.cpp) files. In this final part of generating is very important the
wgTypes.txt file, which contains information how to convert data types to managed
environment and back. This information is stored in form of a set of conversion macros.
The generator expands these macros at appropriate placement.

Parsers Type Codes Overwriting
As was mentioned before, some type codes from parser are unsuitable. Here proposed
solution adds some new type codes. Their value is 5000 and more. Complete list
follows

 5000 general pointer to function

 5001 vtkIdType – replace the long object ID value

 5002 vtkIdType * field

 5003 FILE * - problematic type

 5004 vtkIdType &

 5005 wgICallback - implemented version of (void *) parametric callback
function

Two ways of overriding the type code are used: implicit and explicit. The explicit
overriding is defined by enumeration in wgTypeHints.txt file. The data type for
overriding is defined by class name, method name, argument position and original data
type. The final item in this record is the new (required) data type code. Example
follows in Table 4.1.

ClassName MethodName ArgPos Ori New
vtkByteSwap Swap4BERange 0 306 5002
VtkCell Initialize 1 306 5002
vtkCellArray ReplaceCell 2 306 5002
Table 4.1 – Sample of wgTypeCode.txt file, which explicitly overrides some type codes

5 This approach is much faster then to compile each .cpp file extra and then links them together.

 42

The second way of overriding is the implicit overriding. This overriding is defined
directly in the source code of generator. It overrides the data type code when defined
features are satisfied. For example, a code 5000 (general pointer to function) is
substituted for code 5005 (pointer to function with parameter) when the appropriate
function signature contains the “,” comma character.

Conversion Macros
Conversion macros contains information how to handle a data type. They are stored in
tab-separated text file called wgTypes.txt . List of particular macro types with its
meaning follows:

 Code – code of data type. Given by VTK parser and possibly overridden by
generator

 ACppDecl – How to declare in unmanaged C++ (ANSII C++)

 MCppDecl – How to declare in managed C++

 ToACpp – How to convert from managed to unmanaged (ANSII)

 ToMCpp – How to convert from unmanaged to managed

 TmpDecl – How to declare and initialize temporary variable

 TmpRet – How to finalize temporary variable

 IsProblematic – If yes every function containing this type is commented out

Each data type (which has code number) has these entire macros (as a row in the table).
Some items in the record can be void, such as in the example in Table 4.2. Note the
IsProblematic item. It is useful for possible manual modification of resulting wrap
class-source code. The unwrapped method is part of the source code but it is
commented out.

Code 303
ACppDecl char * <var>
MCppDecl System::String * <var>
ToACpp wgStr2Char(<var>)
ToMCpp new System::String(<var>)
TmpDecl
TmpRet
IsProblematic No

Table 4.2 – Example of conversion macro for zero terminated string

Symbols for expansion are inside angle brackets. Complete list follows:

 <var> - variable name (e.g. arg0)

 <class> - class name (e.g. vtk3DSImporter)

 <field> - filed size (e.g. 8)

 <tmp> - temporary variable (e.g. tmp0)

These symbols are replaced for appropriate variable name (or class name, or temporary
variable, etc.). Complete list of conversion macros is given in Appendix C.

 43

The placement of conversion macros in method wrapping is given in Code 4.19. It is a
“pseudo-code” for general overview. The angle brackets contain the “argument” of a
macro.

 MCppDecl<methodName(MCppDecl<arg0>, MCppDecl<arg1>)>
{
 TmpDecl<arg0, tmp0>;
 MCppDecl<ret>;
 ret = ToMCpp<w->methodName(ToACpp<tmp0, arg0>, ToACpp<arg1>)>;
 TmpRet<arg0, tmp0>;

return ret;
}

Code 4.19 – General method wrapping with macros

This system of data type conversion is flexible enough to define all necessary data type
conversion without need of any manual modification of generated source code.

4.4.3 Generated Wrap-classes
All generated wrap-classes are stored in output directory as well as the main file and
replicated help file. They do not need any manual modification before compilation. The
main file can be compiled with the MC++ compiler. Microsoft Visual Studio .NET
(version 7.0) was used for testing as well as for compilation the release version. The
compilation process takes several minutes.

As it was mentioned before, the unwrapped methods are presented in the source but
commented out. If some user really need some of them and knows how to convert a
particular data type then he/she can simply uncomment, modify and compile the
interfacing layer again.

4.4.4 Generated Documentation
The secondary output of the generator is a reference manual. See Appendix E for
sample. This documentation is in HTML format. The generator of this documentation
has the same input as the generator of wrap-class source (it is parts of the same
program), thus the documentation is always consistent with generated wrap-class
source code.

Documentation for each class contains list of wrapped and unwrapped methods. Two
versions of method signature are given. One is original ANSII C++ signature and
second one is the new managed signature accessible from .NET environment. The
unwrapped methods are highlighted and contain the explanation why they are not
wrapped. Each class and method also contains brief description if it is present in parsed
C++ header file as method or class comment.

4.5 Results
Resulting interfacing layer for VTK has approximately the same functionality as the
official distribution of VTK interface for Java. The slowdown caused by this layer is
approximately 30%. Comparable applications in Java have slowdown approximately
85%6. This interface is well tested by students of KIV/GSVD course. And as they said
it is “Easy to use”.

4.5.1 Verification and Time Measuring

6 These numbers will be explained later.

 44

The best way how to verify any product is to use it. Students of KIV/GSVD course
2003 did the main verification process. Testing assignments (classes – programmer)
and results are given in Appendix D. With their invaluable help there were fixed
number of bugs in the interface.

Each testing task consists of three comparable VTK programs in three different
environments (C#, Java, Win32 – native C++). These VTK programs are as close as
possible. It is important for time comparison among entire environments. Each task
contains overall time counter, which can be printed to given text file. This text file is
processed and overall time results are published in the Appendix D as a table and
graph.

Most of resulting slowdown is approximately 20% (in comparison with direct use of
VTK in unmanaged C++). It is expected slowdown caused by data conversion and
versification. But, there are some interesting exceptions on both sides.

The extreme slowdown (~1000%) is caused by the relatively low VTK core time
consumption in comparison with the wrapping layer time consumption. Note that only
short total running time tasks have this extreme slowdown. On the other hand the long
running time tasks have the slowdown close to 0%.

Even a speedup of C# programs can occurs. At the first point of view it seems really
strange but the answer is probably in memory management. The large number of small
objects in memory can be de-allocated faster by garbage collector (all in one time) than
one by one with C++ delete operator.

 45

Part 5 Conclusion

Here presented implementation of the VTK interface allows straightforward and safety
programming with VTK in .NET environment. It has approximately the same
functionality as the official VTK interface for Java and significantly better speedup.

There are two ways how to use results of this work. The first one is direct use of
precompiled assembly, which is ready to use for efficient application development. The
disadvantages of this way of use can be the inability to use some method, which are not
wrapped and the fact that for each distribution (version) of the VTK has to be a special
compilation of the interface. The second way is to use only a necessary wrap-class
source code, modify it and use it. It provides very high flexibility and can suit probably
any needs.

 46

Appendix A

Users Manual
This appendix discuss the usage of compiled version of vtkDotNetWrap.dll
assembly “as is”. This assembly is compiled for just one version of the VTK and cannot
be used with another one. The recompilation of the assembly should be sufficient in
case of minor changes (bug-fixes). The regeneration of all wrap-class source code could
be necessary in case of VTK major changes. In this case, please refer the [Herakles]
website for actual version of the interface.

Installation and System Requirements
Correct function of the vtkDotNetWrap requires .NET Framework and VTK of
particular version7. Core installation of VTK with DLLs for C++ is sufficient. The
VTK DLLs have to be in executable directory. The vtkDotNetWrap.dll assembly
has to be in local directory of current project because of the interfacing assembly
cannot be installed in GAC (Global Assembly Cash).

C# Programming
The use of the interface with C# in Visual Studio .NET is straightforward. Please
follow these instructions:

 Make sure the environmental variable PATH contains the directory where all
VTK-DLLs are installed. (e.g. C:\Program Files\vtk42\bin\)

 Make sure the version of vtkDotNetWrap.dll suits the installed version of
VTK.

 Make a local copy of the vtkDotNetWrap.dll for current C# project.

 Set the project reference to the local vtkDotNetWrap.dll file.

 Each C# source code, which uses VTK should contain the using
vtkDotNetWrap; directive.

At the beginning of using presented interface is probably the best first step try to
compile and to run some examples distributed with the interface. The version of
particular vtkDotNetWrap assembly and targeting version VTK is part of manifest
and can be accessible by ildasm.exe program embedded with Visual Studio .NET.

Reference Manual
The vtkDotNetWrap interface consists of managed proxy classes (wrap-classes) for
each VTK class. These proxy classes do not match exactly their VTK originals. These
differences (and limitations) are documented at the reference manual, which is
automatically generated with the vtkDotNetWrap source code.

Sample of method documentation follows:

7 The particular number of required VTK version is part of assembly metadata and can be accessible by
i ldasm.exe . This number is in particular reference manual too.

 47

GetClassName
OK

 C++ Signature virtual const char *GetClassName () const;
 MC++ Signature virtual System::String * GetClassName();

Comment:

Return the class name as a string. This method is defined in all subclasses of vtkObjectBase with
the vtkTypeRevisionMacro found in vtkSetGet.h.

The most important information is in the two-row table. The first row contains
signature of original VTK method. The second row contains a .NET-adapted version of
the method in C++ managed extension. Note the System.String object replaced the
zero terminated string (char *).

If a method is unwrapped than it is marked in the reference with the reason why it is
unwrapped. Sample follows:

PrintSelf
unwrapped problematicReason: arg0 arg1

 C++ Signature void PrintSelf (ostream &os, vtkIndent
indent);

 MC++ Signature void PrintSelf(arg0, vtkIndent arg1);

Comment:

None
This method is unwrapped because of the first and the second argument is not
successfully converted between managed and unmanaged environment, thus this
method cannot be used in .NET environment. On the other hand, this method is part of
the MC++ source code of the particular wrap-class and is commented out.

 48

Appendix B

Programmers Manual
Purpose of this text is to provide better orientation at the whole source code of this
work (especially in wrap-class generator). Programmer should be able to use the wrap-
class generator with here presented information.

All projects are situated in one solution of Visual Studio .NET (7.0) named
vtkDotNet . Full list of projects follows:

 CppTests

 GSVDResultParser

 IFFGenerator

 ParseBatGenerator

 TestSet01

 TestSet02

 vtkDotDWrap

 vtkDWGenerator

CppTests
CppTests is a simple C++ Win32 project that contains a set of testing examples in
ANSII C++. It serves as a reference testing program for comparisons of C#
functionality and effectiveness. This project actually contains only one C++ source
code at one time because each example contains main entry function. The switching
between examples has to be done by insertion of required source code and exclusion all
the others.

GSVDResultParser
This simple C# program processes a text file that is an output from testing programs
created within the frame of KIV/GSVD - 2003 course. The input for this parser is a text
file of following type:
Delaunay triangulation in 2D
task 0103
input_file data.pts
environment Win32
overall_time 375.000000

Delaunay triangulation in 2D
task 0103
input_file data.pts
environment Win32
overall_time 391.000000
…

Note both these records are output of the same program executed more than once for
more accurate time measuring.

 49

The output of this program is simple text file that contains average overall time of each
task in three environments (.NET, Java, Win32). It is tab-separated text file that can be
easily processed in MS Excel (for example). The first column contains code number of
a task. The next three columns contain the average time in C#, Java and unmanaged
C++ respectively. Sample of one line follows:

103 427,3333 459 385,6667

Structure of this 250-lines program is very simple and understandable directly from
source code.

IFFGenarator
This project contains the first part of the wrap-class generator, the parser. Files
vtkParse.tab.c and vtkParse.h are assumed from the VTK source code distribution
without any modification. File vtkIFFPrint.c implements the vtkParseOutput
function that prints the given internal data structures of the parser to the intermediate
text file.

The structure (and usage) of this program is also assumed. The entry main function is in
the vtkParse.tab.c . Usage of the resulting program is by command line only.
Explanation of command line parameters follows:

IFFGenerator.exe <input_h_file > <hint_file > <output_txt_file >

Example:

IFFGenerator.exe .\vtk\vtk3DS.h hints.\output\vtk3DS.txt

Due to intermediate file format (IF), there has to be a special char conversion. Each
item in IF has to be at one line. Unfortunately, comments can contains the new line and
career return chars, thus they can take more than one line. The implemented solution is
straightforward, each \n and \r char is replaced by $ char. It is replaced back in IF
reader (part of generator).

ParseBatGenerator
This is very simple program that generates one special batch file. This .bat file
contains call of the IFFGenerator for each .h file in the given directory. The first
parameter is the input directory where all .h files are situated. The second parameter is
the output directory where all resulting IF . txt files are going to be stored. Example of
call follows:

ParseBatGenerator.exe .\vtk .\output

This command creates parse.bat file in current directory. A two sample lines of the
batch file follows:

IFFGenerator.exe . \v tk \v tk3DS.h hints . \output \v tk3DS. tx t

IFFGenerator.exe . \v tk \v tk3DSImporter.h h ints . \output \v tk3DSImporter . tx t

Etc.

TestSet01 TestSet02
These two C# projects contain a set of testing programs. They were used for testing and
time measuring of here presented interfacing layer.

 50

vtkDotNetDWrap8
This project contains the vtkDotNetWrap assembly itself. The vtkDWGenerator
program generates following list of files automatically.

 vtkDotNetWrap.cpp

 wgHelp.cpp

 wgHelp.h

 all files in include directory

Only AssemblyInfo.cpp , vtkDotNetWrap.cpp and wgHelp.cpp files are marked
as a part of this project. All the other necessary files (.cpp files of all wrap-classes) are
included in vtkDotNetWrap.cpp file by #include directive. At the first point of
view it does not seem to be very clean. But this approach is much faster for compilation
than inclusion and compilation of each wrap-class .cpp file independently.

Compilation of the vtkDotNetWrap.dll assembly requires reference to . l ib files
distributed with VTK for C++ developing.

vtkDWGenerator8
This project contains the C# code of the wrap-class generator. It is the most
complicated program in this work.

The entry point is the MainClass and its main() method. Its content serves as a kind
of “user interface”9. It contains an absolute path names, thus it has had to be modified
before utilization of the generator. The essential part of the main function source code
follows.
wgIFReader reader = new wgIFReader("...\\IFFiles\\output\\", "*.txt");
wgCppWriter writer = new wgCppWriter();
wgHtmlWriter htmlWriter = new wgHtmlWriter();

writer.AddClasses(reader.Classes);
htmlWriter.AddClasses(reader.Classes);

writer.Write("...\\vtkDotNet\\vtkDotNetDWrap\\", false);
htmlWriter.Write("...\\reference\\", false);
wgType.PrintUnknownTypes("UnknownCodes.txt");

The whole program consists of 10 classes. Important classes (used in main function) are
marked as a “high-level”.

 MainClass – already mentioned entry point

 wgArgument – represents particular method argument. Its constructor reads all
necessary information from the given IF-file. It also contains methods for
writing the C++ code.

 wgClass – represents a VTK class. Its constructor reads all necessary
information from the given IF-file. It also contains methods for writing the C++
code.

8 The “D” in vtkDotNetDWrap and vtkDWGenerator means “double”. Because the
vtkDWGenerator is already prepared for implementation of the double wrapping but it is not finished.
9 This approach has been chosen because of developing effectiveness of the wrap-class generator. As it
was mentioned before, the generating process is not for user but for developer of the interface.

 51

 wgCppWriter – a high-level class that writes all given classes (wgClass) as
MC++ wrap-classes.

 wgExclusiveList – derived from Hashtable . It overloads the Add() method
and provides exclusive addition of particular item (same item only once). The
second functionality is to count the number of addition of the same object.

 wgFunction – represents a method of a class. Its constructor reads all
necessary information from the given IF-file. It also contains methods for
writing the C++ code.

 wgHtmlWriter – similar to wgCppWriter . It writes the reference manual for
the given classes instead of C++ source code.

 wgIFReader – a high-level class that reads all IF-files from the given
directory with the given extension. The class list of the reader can be passed to
the wgHtmlWriter and/or wgCppWriter .

 wgType – represents a data type, which is recorded (one line) in the
wgTypes.txt file.

 wgTypeHint – responsible for implicit and explicit overloading of data type
codes.

For additional information please refer the commented source code.

 52

Appendix C

The List of Conversion Macros
This appendix contains complete list of conversion macros with data type codes. The
wrap-class generator processes this list.

Table of primitive data type conversion.
Code ACppDecl MCppDecl IsProblematic
-1 <unknown> <var> <unknown> <var> Yes
1 float <var> float <var> No
2 void <var> void <var> No
3 char <var> char <var> No
4 int <var> int <var> No
5 short <var> short <var> No
6 long <var> long <var> No
7 double <var> double <var> No
8 code_8 <var> code_8 <var> Yes
9 ::<class> <var> <class> <var> Yes
13 unsigned char <var> unsigned char <var> No
14 unsigned int <var> unsigned int <var> No
15 unsigned short <var> unsigned short <var> No
16 unsigned long <var> unsigned long <var> No

Table of reference type conversion
(The first part)
Code ACppDecl MCppDecl ToACpp ToMCpp
101 float & <var> System::Single & <var> <tmp> <var>
103 char & <var> System::SByte & <var> <tmp> <var>
104 int & <var> System::Int32 & <var> <tmp> <var>
105 short & <var> System::Int16 & <var> <tmp> <var>
106 long & <var> System::Int32 & <var> <tmp> <var>
107 double & <var> System::Double & <var> <tmp> <var>
113 unsigned char & <var> System::Byte & <var> <tmp> <var>
114 unsigned int & <var> System::UInt32 & <var> <tmp> <var>
115 unsigned short & <var> System::UInt16 & <var> <tmp> <var>
116 unsigned long & <var> System::UInt32 & <var> <tmp> <var>

(The second part)
Code TmpDecl TmpRet IsProblematic
101 float <tmp> = <var> <var> = <tmp> No
103 char <tmp> = <var> <var> = <tmp> No
104 int <tmp> = <var> <var> = <tmp> No
105 short <tmp> = <var> <var> = <tmp> No
106 long <tmp> = <var> <var> = <tmp> No
107 double <tmp> = <var> <var> = <tmp> No
113 unsigned char <tmp> = <var> <var> = <tmp> No
114 unsigned int <tmp> = <var> <var> = <tmp> No
115 unsigned short <tmp> = <var> <var> = <tmp> No
116 unsigned long <tmp> = <var> <var> = <tmp> No

Table of pointer data type conversion

 53

(The first part)
Code ACppDecl MCppDecl
301 float * <var> float <var> __gc []
302 void * <var> ??? <var>
303 char * <var> System::String * <var>
304 int * <var> int <var> __gc []
305 short * <var> short <var> __gc []
306 long * <var> long <var> __gc []
307 double * <var> double <var> __gc []
308 code_8 * <var> code_8 * <var>
309 ::<class> * <var> <class> * <var>
313 unsigned char * <var> unsigned char <var> __gc []
314 unsigned int * <var> unsigned int <var> __gc []
315 unsigned short * <var> unsigned short <var> __gc []
316 unsigned long * <var> unsigned long <var> __gc []

(The second part)
Code ToACpp ToMCpp
301 (float *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_float(<var>, <field>)
302 <var> <var>
303 wgStr2Char(<var>) new System::String(<var>)
304 (int *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_int(<var>, <field>)
305 (short *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_short(<var>, <field>)
306 (long *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_long(<var>, <field>)
307 (double *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_double(<var>, <field>)
309 ((<var> == NULL) ? NULL : <var>->w) ((<var> == NULL) ? NULL : new

<class>(<var>))
313 (unsigned char *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_uchar(<var>, <field>)
314 (unsigned int *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_uint(<var>, <field>)
315 (unsigned short *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_ushort(<var>, <field>)
316 (unsigned long *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_ulong(<var>, <field>)

(The third part)10
Code TmpDecl TmpRet IsProblematic
301 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free() No
302 Yes
303 No
304 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free() No
305 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free() No
306 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free() No
307 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free() No
308 Yes
309 No
313 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free() No
314 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free() No
315 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free() No
316 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free() No

Table of constant simple data type conversion
Code ACppDecl MCppDecl IsProblematic
1001 const float <var> const float <var> No
1003 const char <var> const char <var> No

10 The full-qualified name is replaced by locally qualified name. (only GCHandle instead of
System::Runtime::InteropServices::GCHandle). This replacement is valid for all the other
tables.

 54

1004 const int <var> const int <var> No
1005 const short <var> const short <var> No
1006 const long <var> const long <var> No
1007 const double <var> const double <var> No
1008 const code_8 <var> const code_8 <var> Yes
1009 const <class> <var> const <class> <var> Yes
1013 const unsigned char <var> const unsigned char <var> No
1014 const unsigned int <var> const unsigned int <var> No
1015 const unsigned short <var> const unsigned short <var> No
1016 const unsigned long <var> const unsigned long <var> No

Table of constant pointers conversion
(The first part)
Code ACppDecl MCppDecl
1301 const float * <var> float <var> __gc []
1303 const char * <var> System::String * <var>
1304 const int * <var> int <var> __gc []
1305 const short * <var> short <var> __gc []
1306 const long * <var> long <var> __gc []
1307 const double * <var> double <var> __gc []
1308 const code_8 * <var> code_8 * <var>
1309 const <class> * <var> <class> * <var>
1313 const unsigned char * <var> unsigned char <var> __gc []
1314 const unsigned int * <var> unsigned int <var> __gc []
1315 const unsigned short * <var> unsigned short <var> __gc []
1316 const unsigned long * <var> unsigned long <var> __gc []

(The second part)

Code ToACpp ToMCpp
1301 (float *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_float(<var>, <field>)
1303 wgStr2Char(<var>) new System::String(<var>)
1304 (int *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_int(<var>, <field>)
1305 (short *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_short(<var>, <field>)
1306 (long *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_long(<var>, <field>)
1307 (double *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_double(<var>, <field>)
1309 ((<var> == NULL) ? NULL : <var>->w) new <class>(<var>)
1313 (unsigned char *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_uchar(<var>, <field>)
1314 (unsigned int *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_uint(<var>, <field>)
1315 (unsigned short *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_ushort(<var>, <field>)
1316 (unsigned long *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_ulong(<var>, <field>)

(The third part)
Code TmpDecl TmpRet IsProb
1301 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free() No
1303 No
1304 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free() No
1305 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free() No
1306 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free() No
1307 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free() No
1308 Yes
1309 No
1313 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free() No
1314 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free() No
1315 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free() No
1316 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free() No

 55

Additional simple data type conversion
Code ACppDecl MCppDecl IsProblematic
2001 float <var> float <var> No
2002 void <var> void <var> No
2003 char <var> char <var> No
2004 int <var> int <var> No
2005 short <var> short <var> No
2006 long <var> long <var> No
2007 double <var> double <var> No

Table of additional pointer data types conversion
(The first part)
Code ACppDecl MCppDecl IsProblematic
2301 float * <var> float <var> __gc [] No
2303 char * <var> System::String * <var> No
2304 int * <var> int <var> __gc [] No
2305 short * <var> short <var> __gc [] No
2306 long * <var> long <var> __gc [] No
2307 double * <var> double <var> __gc [] No
2309 ::<class> * <var> <class> * <var> No
2703 char * <var> System::String * <var> No
3303 char * <var> System::String * <var> No

(The second part)
Code ToACpp ToMCpp
2301 (float *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_float(<var>, <field>)
2303 wgStr2Char(<var>) new System::String(<var>)
2304 (int *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_int(<var>, <field>)
2305 (short *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_short(<var>, <field>)
2306 (long *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_long(<var>, <field>)
2307 (double *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_double(<var>, <field>)
2309 ((<var> == NULL) ? NULL : <var>->w) ((<var> == NULL) ? NULL : new

<class>(<var>))
2703 wgStr2Char(<var>) new System::String(<var>)
3303 wgStr2Char(<var>) new System::String(<var>)

(The third part)
Code TmpDecl TmpRet
2301 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free()
2303
2304 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free()
2305 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free()
2306 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free()
2307 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free()

Table of added data type conversion
(The first part)
Code ACppDecl MCppDecl IsProblematic
5000 void (* <var>)(void *) wgICallback * <var> No
5001 vtkIdType <var> long <var> No
5002 vtkIdType * <var> long <var> __gc [] No
5003 FILE * <var> FileStream * <var> Yes
5004 vtkIdType & <var> System::Int32 & <var> No
5005 void (* <var>)(void *) wgICallback * <var> Yes

 56

(The second part)
Code ToACpp ToMCpp
5000 wgPackToVoid(<var>)
5001 (vtkIdType) <var> (long) <var>
5002 (vtkIdType *)(<tmp>.AddrOfPinnedObject().ToPointer()) wgPtr2Field_long((long *)<var>, <field>)
5003
5004 <tmp> <var>
5005 wgPackToVoid(<var>)

(The third part)
Code TmpDecl TmpRet
5000
5001
5002 GCHandle <tmp> = GCHandle::Alloc(<var>, GCHandleType::Pinned) <tmp>.Free()
5003
5004 vtkIdType <tmp> = (vtkIdType) <var> <var> = (long) <tmp>
5005

 57

Appendix D

KIV/GSVD Course Testing
This appendix contains materials related with the GSVD course testing. Resulting
programs are part of embedded CD-ROM (in Czech only).

Following Table 0.2 contains overall average times. Each time is result after three times
run of each program. Computer configuration is given in Table 0.1.
OS Name Microsoft Windows 2000 Professional
Version 5.0.2195 Service Pack 3 Build 2195
OS Manufacturer Microsoft Corporation
System Name NYMPH7
System Manufacturer Dell Computer Corporation
System Model Precision WorkStation 410 MT
System Type X86-based PC
Processor x86 Family 6 Model 7 Stepping 3 GenuineIntel ~447 Mhz
BIOS Version Phoenix ROM BIOS PLUS Version 1.10 A13
Windows Directory C:\WINNT
System Directory C:\WINNT\System32
User Name NYMPH7\Administrator
Time Zone Central Europe Daylight Time
Total Physical Memory 1 048 108 KB
Available Physical Memory 844 576 KB
Total Virtual Memory 2 202 796 KB
Available Virtual Memory 1 893 712 KB
Page File Space 1 154 688 KB
Page File C:\pagefile.sys

Table 0.1 – Testing computer configuration

Task Code C# [ms] Java [ms] Win32 [ms] C#/Win32 Java/Win32
103 427 459 386 1,108 1,190
106 234 360 170 1,378 2,116
107 116 190 78 1,485 2,419
108 281 275 146 1,927 1,886
109 338 396 328 1,032 1,208
110 427 542 437 0,977 1,239
111 84 463 31 2,699 14,946
113 1568 1739 1552 1,010 1,120
114 57 59 57 1,005 1,043
115 416 516 349 1,194 1,479
203 99 99 63 1,577 1,571
205 110 266 63 1,746 4,222
206 172 270 60 2,867 4,506
208 177 208 52 3,382 3,981
209 233 332 172 1,359 1,936
210 48833 48916 48588 1,005 1,007
213 250 328 203 1,230 1,616
214 1714 1708 2052 0,835 0,832
215 38516 60201 37702 1,022 1,597
303 922 937 844 1,092 1,111
305 922 937 844 1,092 1,110

 58

306 511 614 443 1,152 1,386
308 473 452 344 1,376 1,314
309 93 171 52 1,800 3,310
310 604 677 536 1,127 1,263
311 1224 901 1156 1,059 0,779
313 656 760 610 1,075 1,246
314 1745 1729 1646 1,060 1,051
315 25797 25937 25760 1,001 1,007
403 661 729 610 1,085 1,196
405 656 734 610 1,075 1,203
406 1855 1969 1428 1,298 1,379
407 13286 13401 13233 1,004 1,013
408 504 505 380 1,326 1,329
409 121800 106593 121457 1,003 0,878
410 1042 1120 1011 1,031 1,108
411 3640 3765 3578 1,017 1,052
413 969 1067 922 1,051 1,158
414 86 97 87 0,994 1,110
415 143077 148172 142031 1,007 1,043
503 218 219 188 1,161 1,165
505 218 219 188 1,160 1,165
507 250 312 203 1,234 1,539
508 610 614 542 1,126 1,134
509 260 390 229 1,137 1,706
510 172 271 141 1,225 1,927
511 698 880 651 1,072 1,353
513 177 407 120 1,478 3,389
514 552 572 411 1,342 1,391
515 2906 3026 2900 1,002 1,043
603 151 193 99 1,523 1,940
605 141 203 94 1,500 2,160
607 744 838 697 1,067 1,201
608 3292 3296 3255 1,011 1,012
609 16421 16582 16588 0,990 1,000
610 552 672 485 1,140 1,387
613 2287 3109 2245 1,019 1,385
614 17417 17312 17162 1,015 1,009
615 149000 150833 148582 1,003 1,015
702 1370 1568 1422 0,963 1,102
703 5333 16000 0 #DIV/0! #DIV/0!
705 0 16000 0 #DIV/0! #DIV/0!
706 449 578 380 1,181 1,521
707 93 213 52 1,788 4,096
708 922 932 797 1,157 1,169
709 510 640 463 1,103 1,383
710 906 1047 735 1,234 1,425
711 901 1021 875 1,030 1,167
714 589 620 484 1,216 1,280
715 536 1125 479 1,120 2,350
807 685 987 616 1,111 1,602
809 1384 1479 1286 1,076 1,150
810 458 651 380 1,206 1,713
811 1828 1922 1792 1,020 1,073
813 192 255 141 1,364 1,811
814 271 250 115 2,354 2,174
815 1952 5672 505 3,866 11,232

Table 0.2 – Average overall time measuring

 59

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0

103

107

109

111

114

203

206

209

213

215

305

308

310
Ta

sk
 C

od
e

Ratio

C#/Win32 Java/Win32

Figure 0.1 – Time measuring graph – the first part

 60

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0

311

313

314

315

403

405

406

407

408

409

410

411

413

414

415

503

505

507

508

509

510

511

513

514

515

Ta
sk

 C
od

e

Ratio

C#/Win32 Java/Win32

Figure 0.2 – Time measuring graph – the second part

 61

0,000 0,500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

603

605

607

608

609

610

613

614

615

702

703

705

706

707

708

709

710

711

714

715

807

809

810

811

813

814

815

Ta
sk

o
C

od
e

Ratio

C#/Win32 Java/Win32

Figure 0.3 – Time measuring graph – the third part

 62

Submissions for students, which class they shall test:
GSVD - zadání 1. úlohy
==
ID Příjmení Zadané třídy Popis
==
01 ANTON vtkArrowSource
 vtkAxes
--
02 BENDA vtkCursor3D
 vtkOutlineSource
--
03 DO vtkDelaunay2D
--
04 DOUBEK vtkSphereSource
 vtkConeSource
 vtkCubeSource
 vtkCylinderSource
 vtkDiskSource
--
05 JANDA vtkEarthSource Planetarni system, Slunce,
Merkur, Venuse, Zeme+mesic, Mars
--
06 KOŽINA vtkLineSource
 vtkPlaneSource
 vtkPointSource
--
07 LANG vtkSuperquadricSource
 vtkTexturedSphereSource
--
08 MATOUŠEK vtkTextSource
 vtkVectorText
--
09 MIKŠÍČEK vtkBYUReader
--
10 NOVOTNÝ vtkSTLReader
--
11 PARUS vtkPLOT3DReader
--
13 SMLSAL vtkDelaunay3D
--
14 VAIS vtkCamera Prulet kratkou umele vytvorenou
scenou
--
15 VÁŠA vtkLight
==

 63

GSVD - zadání 2. úlohy

==
ID Příjmení Zadané třídy Popis
==
01 ANTON vtkRenderWindow - demonstrace vlastnosti tridy na
jednoduche scene
--
02 BENDA vtkInteractorStyle - odzkouseni stavajicich + navrh
vlastniho ovladani
--
03 DO vtkActor
--
04 DOUBEK vtkFollower
 vtkLODActor
 vtkMesaActor
 vtkOpenGLActor - demonstrace rozdilu
--
05 JANDA vtkTexture
--
06 KOŽINA vtkTextureMapToPlane
 vtkTextureMapToSphere
 vtkTextureMapToCylinder
--
07 LANG vtkPicker (vtkCellPicker, vtkPointPicker)
--
08 MATOUŠEK vtkAssembly - hierarchicka struktura - rameno robota
--
09 MIKŠÍČEK vtkCoordinate - test jednotlivych souradnicovych
systemu, prevody mezi nimi
--
10 NOVOTNÝ vtkProp3D, vtkLODProp3D - demonstrace transformaci v
3D prostoru, kratka animovana sekvence
--
11 PARUS vtkActor2D
 vtkMapper2D
 vtkProperty2D
--
12 RÁDLOVÁ vtkTextMapper
--
13 SMLSAL vtkAxisActor2D
 vtkCaptionActor2D
--
14 VAIS vtkXYPlotActor
 vtkLegendBoxActor
--
15 VÁŠA vvtkTransformFilter
 vtkTransformPolyDataFilter - rozdily, demonstrace
==

 64

GSVD - zadání 3. úlohy
==
ID Příjmení Zadané třídy Popis
==
01 ANTON vtkTextMapper
--
02 BENDA vtkRendererSource
--
03 DO vtkCubeAxesActor2D
 vtkParallelCoordinatesActor
--
04 DOUBEK vtkScalarBarActor
 vtkScaledTextActor
--
05 JANDA vtkLabeledDataMapper
--
06 KOŽINA vtkLookupTable - namapovat napr. teplotu na
barevne spektrum
--
07 LANG vtkContourFilter
--
08 MATOUŠEK vtkGlyph3D - nacist napr. STL soubor a zobrazit
napr. normaly trojuhelniku jako sipky
--
09 MIKŠÍČEK vtkTubeFilter - vstupni soubor bude obsahovat
ridici body lomenne cary a ukolem bude zobrazit potrubi o danem
prumeru (parametry budou ulozeny v konfiguracnim souboru)
--
10 NOVOTNÝ vtkRuledSurfaceFilter, vtkStreamLine
--
11 PARUS vtkCutter, vtkImplicitFunction - orezavani teles
implicitni funkci, test na nekolika vstupnich STL souborech, nekolik
jednoduchych implicitnich funkci
--
12 RÁDLOVÁ ----
--
13 SMLSAL vtkMergeFilter - ukazka spojovani datovych
vstupu, geometrie, normaly, skalarni hodnoty, atd.
--
14 VAIS vtkProbeFilter - rovinne rezy volumetrickymi
daty
--
15 VÁŠA vtkExtractGeometry - spoluprace s
vtkImplicitFunction
==

 65

GSVD - zadání 4. úlohy
==
ID Příjmení Zadané třídy Popis
==
01 ANTON ----
--
02 BENDA vtkArrowSource
 vtkAxes
--
03 DO vtkClipPolyData - spoluprace s
vtkImplicitFunction, vstup STL soubor
--
04 DOUBEK ----
--
05 JANDA vtkGeometryFilter
--
06 KOŽINA vtkPolyDataNormals - nacist STL soubor, spocitat
normaly a odzkouset i ostatni vlastnosti tridy
--
07 LANG vtkDecimatePro - strucny a jasny popis algoritmu
+ demonstracni program na STL vstupnim souboru
--
08 MATOUŠEK vtkDecimate - strucny a jasny popis algoritmu +
demonstracni program na STL vstupnim souboru
--
09 MIKŠÍČEK vtkQuadricDecimation - strucny a jasny popis
algoritmu + demonstracni program na STL vstupnim souboru
--
10 NOVOTNÝ vtkQuadricClustering - strucny a jasny popis
algoritmu + demonstracni program na STL vstupnim souboru
--
11 PARUS vtkSmoothPolyDataFilter - strucny a jasny popis
algoritmu + demonstracni program na STL vstupnim souboru
--
12 RÁDLOVÁ ----
--
13 SMLSAL vtkWindowedSincPolyDataFilter - strucny a jasny
popis algoritmu + demonstracni program na STL vstupnim souboru
--
14 VAIS vtkRenderWindow - demonstrace vlastnosti tridy
na jednoduche scene
--
15 VÁŠA vtkStructuredGridGeometryFilter
==

 66

GSVD - zadání 5. úlohy
==
ID Příjmení Zadané třídy Popis
==
01 ANTON ----
--
02 BENDA vtkImageData
 vtkImageViewer
--
03 DO vtkExtractVOI - zobrazovani detailu vol. dat
--
04 DOUBEK ----
--
05 JANDA vtkWarpScalar
--
06 KOŽINA vtkImageViewer
 vtkImageActor
--
07 LANG vtkImageCanvasSource2D
--
08 MATOUŠEK vtkImageEllipsoidSource
 vtkImageGaussianSource
 vtkImageGaussianSmooth
--
09 MIKŠÍČEK vtkImageNoiseSource
 vtkImageSinusoidSource
 vtkImageGridSource
--
10 NOVOTNÝ vtkImageGradient
 vtkImageGradientMagnitude
--
11 PARUS vtkImageAccumulate - nacist barevny obrazek +
zobrazit histogramy vsech barevnych slozek RGB
--
12 RÁDLOVÁ ----
--
13 SMLSAL vtkImageLogic - pouziti cfg. souboru pro nastaveni
typu logicke operace a vstupnich obrazu
--
14 VAIS vtkImageReslice
 vtkImageResample
--
15 VÁŠA vtkImageFlip
 vtkImageClip
 vtkImageChangeInformation
==

 67

GSVD - zadání 6. úlohy
==
ID Příjmení Zadané třídy Popis
==
01 ANTON ----
--
02 BENDA vtkColorTransferFunction
 vtkPiecewiseFunction - demonstrace pouziti (barva,
pruhlednost)
--
03 DO vtkSphereSource
 vtkConeSource
 vtkCubeSource
 vtkCylinderSource
 vtkDiskSource
--
05 JANDA vtkVolumeMapper (i podtridy) - orezavani: demostrace
pouziti,
 k cemu se hodi, atd.
--
06 KOŽINA vtkVolumeMapper (i podtridy) - 3D texturovani:
demostrace pouziti,
 k cemu se hodi, atd.
--
07 LANG vtkVolumeMapper (i podtridy) - normala, gradient:
demostrace
 pouziti (popsat vtkEncodedGradientEstimator)
--
08 MATOUŠEK vtkVolumeRayCastIsosurfaceFunction
 vtkVolumeRayCastCompositeFunction
--
09 MIKŠÍČEK vtkFollower
 vtkLODActor
 vtkMesaActor
 vtkOpenGLActor - demonstrace rozdilu
--
10 NOVOTNÝ vtkScalarBarActor
 vtkScaledTextActor
--
11 PARUS vtkLinearExtrusionFilter
 vtkRotationalExtrusionFilter - demostrace
modelalovacich technik,
 vytvorit a zobrazit nekolik modelu
--
13 SMLSAL vtkSurfaceReconstructionFilter - vstup mnozina bodu
v souboru,
 format domluvit se cvicicimi
--
14 VAIS vtkVoxelModeller - namodelovat par objektu +
demonstrovat
 moznosti
--
15 VÁŠA vtkImplicitModeller - namodelovat par objektu +
demonstrovat
 moznosti
==

 68

GSVD - zadání 7. úlohy
==
ID Příjmení Zadané třídy Popis
==
01 ANTON ----
--
02 BENDA vtkCurvatures - konzultace s kolegou Hlavatym
--
03 DO vtkArcPlotter
 vtkBandedPolyDataContourFilter
--
04 DOUBEK ----
--
05 JANDA vtkDepthSortPolyData - demonstrovat na pouziti
algoritmu malire pro reseni viditelnosti
--
06 KOŽINA vtkExtractPolyDataGeometry
 vtkFeatureEdges
--
07 LANG vtkTriangleFilter
 vtkGLUTesselatorTriangleFilter - otestovat obe
tridy na vstupnim netrivialnim polygonu nacitanem ze vstupniho souboru
ve formatu: pocet vrcholu + jejich vycet v textovem souboru (navrh
konzultovat s cvicicimi)

--
08 MATOUŠEK vtkHull - demonstrovat na vstupnim STL souboru,
vytvorit konvexni obalku s nastavitelnym poctem rovin v config souboru
--
09 MIKŠÍČEK vtkPolyDataConnectivityFilter
--
10 NOVOTNÝ vtkReverseSense
 vtkRibbonFilter
--
11 PARUS vtkShrinkPolyData
 vtkSelectPolyData
--
12 RÁDLOVÁ ----
--
13 SMLSAL vtkSpline
 vtkSplineFilter
--
14 VAIS vtkStripper - stripifikace ze vstupnich
trojuhlenikovy dat, konzultace vstupnich souboru s kolegou Vaneckem
(pet@kiv.zcu.cz), ktery se danou problematikou zabyva
--
15 VÁŠA vtkVoxelContoursToSurfaceFilter - rekonstrukce
povrchu z paralelnich rezu, konzultace vstupnich souboru s kolegou
Svitakem (rsvitak@kiv.zcu.cz), ktery se danou problematikou zabyva
==

 69

GSVD - zadání 8. úlohy
==
ID Příjmení Zadané třídy Popis
==
01 ANTON ----
--
02 BENDA vtkEdgePoints
 vtkDividingCubes
 vtkRecursiveDividingCubes - principy + porovnani
--
03 DO vtkImageToPolyDataFilter
--
04 DOUBEK ----
--
05 JANDA vtkMarchingCubes - test na implicitni funkci +
zakladni princip algoritmu
--
06 KOŽINA vtkProgrammableGlyphFilter - vytvorit vlastni glyph
 vtkCellCenters - nacist objemova data a zobrazit
glyfy ve stredu voxelu odpovidajici jejich hodnote
--
07 LANG vtkHedgeHog
 vtkHyperStreamline
--
08 MATOUŠEK vtkMarchingContourFilter - otestovat pro 2D data
--
09 MIKŠÍČEK vtkMaskPoints
 vtkOutlineCornerFilter
 vtkOutlineFilter
--
10 NOVOTNÝ vtkSelectVisiblePoints
 vtkThresholdPoints
 vtkBrownianPoints
--
11 PARUS vtkTensorGlyph
--
12 RÁDLOVÁ ----
--
13 SMLSAL vtkArrayCalculator
--
14 VAIS vtkProgrammableFilter - vytvorit prahovy filter,
prahem bude smer vektoru a odchylka, na vystupu budou jen ty bunky,
ktere splnuji definovane kriterium
--
15 VÁŠA vtkCellDerivatives
==

 70

Appendix E

Sample of Generated Documentation
This appendix contains a sample of generated documentation. This kind of
documentation is generated for each wrap-class by the wrap-class generator.

vtkSphereSource
Parent Class :

vtkPolyDataSource

Name comment :

create a polygonal sphere centered at the origin

Description:

vtkSphereSource creates a sphere (represented by polygons) of specified radius centered at the origin.
The resolution (polygonal discretization) in both the latitude (phi) and longitude (theta) directions can be
specified. It also is possible to create partial spheres by specifying maximum phi and theta angles. By
default, the surface tessellation of the sphere uses triangles; however you can set LatLongTessellation to
produce a tessellation using quadrilaterals.

SeeAlso:

None

Methods:

OK GetClassName
OK IsA
OK NewInstance
OK SafeDownCast
unwrapped PrintSelf
OK New
OK SetRadius
OK GetRadiusMinValue
OK GetRadiusMaxValue
OK GetRadius
OK SetCenter
OK SetCenter
OK GetCenter
OK SetThetaResolution
OK GetThetaResolutionMinValue
OK GetThetaResolutionMaxValue
OK GetThetaResolution
OK SetPhiResolution
OK GetPhiResolutionMinValue
OK GetPhiResolutionMaxValue
OK GetPhiResolution
OK SetStartTheta
OK GetStartThetaMinValue
OK GetStartThetaMaxValue

 71

OK GetStartTheta
OK SetEndTheta
OK GetEndThetaMinValue
OK GetEndThetaMaxValue
OK GetEndTheta
OK SetStartPhi
OK GetStartPhiMinValue
OK GetStartPhiMaxValue
OK GetStartPhi
OK SetEndPhi
OK GetEndPhiMinValue
OK GetEndPhiMaxValue
OK GetEndPhi
OK SetLatLongTessellation
OK GetLatLongTessellation
OK LatLongTessellationOn
OK LatLongTessellationOff
unwrapped vtkSphereSource
unwrapped vtkSphereSource
unwrapped Execute
unwrapped ExecuteInformation
unwrapped vtkSphereSource
unwrapped None

GetClassName

OK

 C++ Signature const char *GetClassName ();
 MC++ Signature System::String * GetClassName();

Comment:

None

IsA

OK

 C++ Signature int IsA (const char *name);
 MC++ Signature int IsA(System::String * arg0);

Comment:

None

NewInstance

OK

 C++ Signature vtkSphereSource *NewInstance ();
 MC++ Signature vtkSphereSource * NewInstance();

Comment:

 72

None

SafeDownCast

OK

 C++ Signature vtkSphereSource *SafeDownCast (vtkObject* o);
 MC++ Signature vtkSphereSource * SafeDownCast(vtkObject * arg0);

Comment:

None

PrintSelf

unwrapped problematicReason: arg0 arg1

 C++ Signature void PrintSelf (ostream &os, vtkIndent indent);
 MC++ Signature void PrintSelf(arg0, vtkIndent arg1);

Comment:

None

New

OK

 C++ Signature static vtkSphereSource *New ();
 MC++ Signature static vtkSphereSource * New();

Comment:

Construct sphere with radius=0.5 and default resolution 8 in both Phi and Theta directions. Theta ranges
from (0,360) and phi (0,180) degrees.

SetRadius

OK

 C++ Signature void SetRadius (float);
 MC++ Signature void SetRadius(float arg0);

Comment:

Set radius of sphere. Default is .5.

 73

List of Figures Tables and Source Codes

Figure 2.1 – The vtkProp inheritance graph .. 6

Figure 2.2 - Example of visualization pipeline with anonymous objects 7

Figure 2.3 - Common data objects in inheritance graph. The super-class is in top 8

Figure 2.4 – Source, Filter and Mapper ... 10

Figure 2.5 – Conceptual overview of pipeline execution .. 10

Figure 2.6 - The mace output ... 11

Figure 2.7 - The mace example as with visualization pipeline and graphical part 11

Figure 2.8 – Used process objects as inheritance graph. Instanced object are highlighted
.. 12

Figure 2.9 - Core, wrappers, and user application. Note the direct access possibility .. 15

Figure 3.1 – Layers and dependencies ... 17

Figure 3.2 - .NET Framework structure with programming languages 19

Figure 3.3 – Single- and multi- file assembly structure ... 23

Figure 4.1 – Placement of interfacing layer in resulting application 29

Figure 4.2 – Wrap-class contains wrapped class and suits its interface into .NET
manner.. 30

Figure 4.3 – Generating process scheme ... 39

Figure 0.1 – Time measuring graph – the first part ... 59

Figure 0.2 – Time measuring graph – the second part ... 60

Figure 0.3 – Time measuring graph – the third part .. 61

Code 2.1 – Example of polydata creation that contain one triangle 9

Code 2.2 – The mace example as C# source code ... 14

Code 2.3 – Internal structures of the parser ... 16

Code 3.1 – Simple C# source code .. 20

Code 3.2 – Code in Common Intermediate Language ... 21

Code 3.3 – C# source code with Obsolete attribute. ... 22

Code 3.4 – Decompiled .exe file that gives the attribute metadata example 22

Code 3.5 – Hallo world application in C# ... 24

Code 3.6 – The MC++ hallo world application ... 25

Code 3.7 – The PInvoke example in C# .. 27

Code 4.1 – Part of MC++ wrap-class source code .. 31

 74

Code 4.2 – Creation of wrap-class and wrapped-class by static method New 32

Code 4.3 – Simple data type is passed directly to unmanaged environment 33

Code 4.4 – Primitive data type as a return variable ... 33

Code 4.5 – Passing of reference data types .. 33

Code 4.6 – Pinning of field in managed memory .. 34

Code 4.7 – Conversion from pointer to field ... 34

Code 4.8 – Conversion from char * to System.String ... 34

Code 4.9 – Conversion from System.String to char * ... 34

Code 4.10 – Conversion from managed class to unmanaged class (unwrapping) 35

Code 4.11 – Conversion from unmanaged class to managed class (wrapping) 35

Code 4.12 – Callback registration method and conversion from wgICallback interface
to void-packed GCHandle .. 35

Code 4.13 – The unmanaged base class we wish to wrap ... 37

Code 4.14 – The unmanaged L1-wrapper .. 37

Code 4.15 – The L1-wrapper calls the L2-wrapper ... 37

Code 4.16 – The managed L2-wrapper .. 38

Code 4.17 – The parses output function .. 39

Code 4.18 – Sample of intermediate text file – the output of the parser 40

Code 4.19 – General method wrapping with macros ... 43

Table 4.1 – Sample of wgTypeCode.txt file, which explicitly overrides some type codes
.. 41

Table 4.2 – Example of conversion macro for zero terminated string 42

Table 0.1 – Testing computer configuration .. 57

Table 0.2 – Average overall time measuring .. 58

 75

Index

__gc 26

abstract 1

AC++ 28

assembly 22

attribute 22

C# 24

CIL 20

class library 23

CLI 17

CLR 19

CLS 21

common type system 20

compiled core 14

CTS 20

data flow graph 11

data objects................. 7

double wrapping....... 36

filter 9

garbage collector 19

GetOutput() 10

JITter 19

just-in-time compiler 19

lazy evaluation 10

managed code 18

mapper 7, 9

MC++ 25

memory management 19

metadata 21

MSIL 20

parser 15

PInvoke 27

pipeline execution 10

pipeline graphical 6

pipeline visualization . 7

process object 9

render window 7

renderer 7

scene 6

SetInput() 10

slink 9

source 9

terminal 9

unmanaged code 18

viewport 7

vtkActor 6

vtkCell 8

vtkDataObject 7

vtkDataSet 8

vtkDotNetWrap 29

vtkPolyData 8

vtkProcessObject 12

vtkProp 6

vtkProp3D 6

vtkRectilinerGrid 8

vtkStructuredGrid 8

vtkTriangle 8

vtkUnstructuredGrid .. 8

wrapper layer 14

 76

 References

[Hana03a] Hanák, I., Frank, M., Skala, V.: OpenGL and VTK interface for .NET. In
C# and .NET Technologies 2003 proceedings, UNION Agency, Science
Press, Plzeň, 2003.

[Hana03b] Hanák, I. (2003). Graphical Interface OpenGL for .C#. M. A. thesis,
University of West Bohemia in Pilsen, Pilsen.

[Kacm01] Kačmář, D.: Programujeme .NET aplikace. Computer Press, Praha,
2001.

[Race98] Racek, S. Kvoch, M.: Třídy a Objekty v C++. Kopp, České Budějovice,
1998.

[Schr98] Schreder, W., Martin, K., Lorensen, B.: The Visualization Toolkit.
Prentice Hall, New Jersey, 1998.

[Schr01] Schreder, W., Avila, L., Martin, K., Hoffman, W., Law, C.: The VTK
User’s Guide. Prentice Hall, New Jersey, 2001.

[ECMA02a] Common Language Infrastructure (CLI). Standard ECMA-335,
December 2002.

[ECMA02b] C# Language Specification. Standard ECMA-334, December 2002.

[MSDN] Microsoft Development Network. http://msdn.microsoft.com/library/.

[Kitware] Home pages of VTK. http://public.kitware.com/vtk/.

[Herakles] Home pages of CCGDV and vtkDotNetWrap. http://herakles.zcu.cz.

