

University of West Bohemia in Pilsen

Faculty of Applied Sciences

Department of Computer Science and Engineering

DIPLOMA THESIS

 Plze , 2003 Tomáš Smlsal

University of West Bohemia in Pilsen

Faculty of Applied Sciences

Department of Computer Science and Engineering

Diploma Thesis

Grafical Interface Direct X for C#
within ROTOR Project

Plze , 2003 Tomáš Smlsal

originál zadání

Abstract

A new technology called .NET was recently introduced to wide public. Latest

developments in computer graphics are showing popularity of MS DirectX on Windows

platforms. Incorporation of such applications, particularly targeted to high performance

gaming and multimedia, with .NET Framework environment brings a lot of benefits. A

brief description of the DirectX interface is included as well as a short introduction to

.NET environment. Also, specific tasks about Shared Source CLI (known as ROTOR)

are presented. The main point is correct DirectX interface in .NET Framework

implementation. Since only this might not be a problem due to a DirectX 9.0 Managed

release, we can still find certain troubles when we need to solve some specific tasks.

Solution to it is described in this work. The presented approach is based on COM

technology, which allows us to simplify many steps. The idea of COM Interoperability

will be briefly described as well. Reached results, advantages, and disadvantages of the

selected approach are presented and discussed.

This work is a part of Microsoft Research Ltd.
(U.K.): ROTOR project and was supported by the
Ministry of Education of The Czech Republic –

Project MSM 235200005.

Content

1 INTRODUCTION .. 1

1.1 The Structure ...1

1.2 DirectX Versions..2

2 KNOWLEDGE SURVEY .. 3

2.1 Terms definition...3

2.2 The .NET Framework..4

2.3 CLI ...5

2.4 C# Language ..7

2.5 The ROTOR Project..8

2.6 DirectX ...9

2.7 Graphical Interface: Direct3D, DirectDraw ...10

3 BIBLIOGRAPHIC SEARCH... 12

4 POSSIBLE APPROACHES REVIEW .. 14

4.1 COM Interoperability..14

4.1.1 How To Create a COM Class Wrapper ..16

4.1.2 Declaring a COM coclass..17

4.1.3 Creating a COM Object ...17

4.1.4 Declaring a COM Interface..18

4.1.5 Using Casts Instead of QueryInterface...21

4.1.6 COM Interfaces...22

4.2 Type Library..24

4.3 Managed DirectX9.0 ..24

4.4 Wrapping in detail...26

5 IMPLEMENTATION DESIGN... 28

6 SOLUTION CORRECTNESS... 30

6.1 Verification Design ..30

6.2 Verification...30

7 SOLUTION DESCRIPTION.. 31

7.1 Implementation..31

7.2 Functionality Demo..31

7.3 Implementation Notes..32

7.3.1 HRESULT in Detail ..34

8 PERFORMANCE EVALUATION ... 35

9 DISCUSSION ... 37

10 CONSTRAINTS... 38

11 ACKNOWLEDGEMENTS ... 39

12 CONCLUSION .. 40

USEFUL ACRONYMS ... 42

REFERENCES... 43

ANNEX A - SOURCE CODE TO FORCE FEEDBACK SUPPORT 46

ANNEX B - USER MANUAL.. 50

ANNEX C - DEPLOYMENT MANUAL... 51

ANNEX D - PROGRAM MANUAL (DEVELOPER GUIDE) 52

I hereby declare that this diploma thesis is completely my own
work and that I used only the cited sources.

Plze

�
, 15.th July 2003, Tomáš Smlsal.

..

 - 1 -

1 Introduction

The purpose of this work is to provide design to implementation and implementation

of DirectX graphical interface components for use in a C# language at the .NET

Framework. A goal is to have such environment where the code for C# looks similar to

the C++ unmanaged one, yet keeping the rules of .NET managed environment. This

work is a part of project ROTOR, which is carried out by universities over the entire

technical world, more detailed information is placed at [Cen03]. To better understand

the expressions given above, it is essential to spend some time with documentation as

[Vis03], or go to particular chapter of interest.

1.1 The Structure

This section contains information on considered topics and structure of this work. The

following section 2. Knowledge Survey introduces the Project ROTOR and development

environment together with a DirectX interface, C# language, and the CLI. The

Bibliographic Search chapter describes results of the literature search, when satisfactory

literature had been finally found, as described there. The chapter 4. Possible approaches

review defines the theoretical foundation and prepares to understand the next

implementation steps. With all the available knowledge, a very simple implementation

design has been stated at the chapter 5. Implementation Design, which immediately

results from the previous chapter 4. Proving details to designed verification are given in

chapter 6.1. Verification Design. There is also explained, why the little testing has been

enough to decide that the solution is correct. Then, the chapter 6.2. Verification

describes the own verification. Own DirectX interface implementation is described in

chapter 7. Solution Description. There is also a screenshot of demonstration application

to force-feedback joystick. The chapter 8. Performance Evaluation answers to

performance issues. Then it follows up with the Discussion and Constraints. Conclusion

summarizes how given aims were fulfilled.

 - 2 -

1.2 DirectX Versions

Although the version 9 is adumbrated at the first point of the assignment, DirectX

version 8.1b is mostly assumed, if not said explicitly. The reason for this is simple: at

the time of beginning of this work the version 9 was unexpected to be released so early,

and the difference between unmanaged versions 9 and 8.1b is not so significant, it is just

stated in [MS03a]. For the thing itself, the principle of how to solve it is the same for

both considered versions, and that is important.

 - 3 -

2 Knowledge Survey

In this section will be given a short description of the most important programming

tools and environments, which were abundantly used to create a described work. It will

be introduced the ROTOR Project, described a C# language, and presented the DirectX

interface.

2.1 Terms definition

Before clarifying a meaning of the ROTOR Project, it is necessary to define some

needed terms.

.NET Framework is a platform that supports developing and running applications

and therefore it is simpler to develop such applications. It is mentioned mainly for the

distributed (Internet) applications.

Managed code is a code supplied by additional information, which is needed for

some core services. These can be method metadata localization, walking a stack,

handling exceptions, and storing and retrieving security information. An exemplary

advantage is that developers do not need to care about memory allocation, memory

release, and all other memory-management related tasks.

Managed data is data that is allocated and released automatically by the core of the

.NET Framework, through a process called garbage collection, which is known e.g.

from Java. Managed data can be accessed within the managed code only, but programs

that are written in managed code can access both managed and unmanaged data.

CLR (Common Language Runtime) manages memory, thread execution, code

execution, code safety verification, compilation, and other system services. These

features are intrinsic to the managed code that runs on it [MS01a].

BCL (Base Class Library) is a library of classes, interfaces, and value types that are

included in the .NET Framework. This library provides access to system functionality

and is designed to be the foundation on which .NET Framework applications,

components, and controls are built.

 - 4 -

CLI (Common Language Infrastructure) is one of the fundamentals of the

technology that supports the .NET Framework functionality. Simply,

CLI ~ CLR ∪ BCL. It provides a specification for executable code and the execution

environment (the Virtual Execution System, or VES) in which it runs [MS01b].

Executable code is presented to the VES as modules. A module is a single file

containing executable content in the format specified in [MS01c]. At the center of the

CLI is a single type system, the Common Type System (CTS), which is shared by

compilers, tools, and the CLI itself. It is the model that defines the rules the CLI follows

when declaring, using, and managing types. The CTS establishes a framework that

enables cross-language integration (language independence), type safety, and high

performance code execution. Note that sometimes an acronym CLI is muddled with a

CLR.

2.2 The .NET Framework

The .NET Framework is something like a (Java) virtual machine. It allows runtime

environment functionality to any .NET application on whatever hardware platform or

operating system, where the .NET Framework is implemented. The .NET is based on

CLI technology, which ensures a right communication between independent application

and specific hardware or operating system. The CLI is used by many libraries, which

are extending it. These libraries are referred to as frameworks. For example, they

provide application interfaces (APIs) or programming abstractions.

This platform should fulfill the following intents, as stated in [MS01a]:

• Full object orientation, with no relation between object code and a place where

the code is executed.

• Minimum software deployment and versioning conflicts.

• Security of code execution.

• Elimination of scripted and interpreted environments performance problems.

• Unification of Windows- and Web-based applications development.

• All inner communication built on industry standards.

 - 5 -

2.3 CLI

CLI is one of the basic .NET Framework components. It consists of Common Language

Runtime (CLR) and Base Class Library (BCL). Each .NET application has to suit the

CLI. A better clearness on .NET components gives the Fig. 2.1.

CLR is a runtime environment for .NET Framework applications. It provides many

services such as code compilation and execution, application memory management,

exceptions management, metadata access, intermediate language (MSIL: MicroSoft

Intermediate Language) to native code conversion. BCL provides a wide set of classes,

interfaces, and value types which provides access to system functionality and are

designed to be the foundation on which .NET Framework applications, components,

and controls are built. A significant treat of BCL library is a logical structure of

namespaces, units, where all the classes, types, and interfaces are placed. To facilitate

interoperability between languages, the .NET Framework types are CLS (Common

Language Specification) compliant and can therefore be used from any programming

language whose compiler conforms to the CLS.

 - 6 -

The CLR includes several topics, which are very important for software development

and can be represented in the chart at Fig. 2.2. The more significant are COM Marshaler

and Garbage Collector for us.

The runtime of .NET Framework has some features, such as memory management,

based on garbage collector (GC). It automatically controls the lifetime of existing

objects, their location in memory to prevent fragmentation and removes them from

memory since there is no reference to them. A code written for this managed

environment can be called safe code and no pointers are allowed. Having a reference to

an object, GC can shift the object in memory and the reference is still pointing to it. But

once the pointer is initialized to some address, GC must keep away from the object

lying there to avoid its possible shifting and invalidating the pointer. To switch to this

unmanaged mode, where pointers are used, the unsafe code has to be used. To pass data

into DirectX methods, pointers should be necessary as well as the unmanaged mode.

But the managed one is preferred.

CLS: Common Language Specification

WinForms

ADO .NET:
Data and XML

CLI

BCL: Base Class Library

CLR: Common Language Runtime

ASP .NET

Web Services WebForms

VB C++ C# JS ...

 Fig. 2.1 - MS .NET Framework (courtesy of MS electronic archives).

 - 7 -

2.4 C# Language

C# [read as "c sharp"] is a native programming language of the .NET Framework and

has been standardized [ECM02]. It is very similar to Sun's JAVA in the sense of syntax

and with some significant exceptions mentioned later, it is executed in the comparable

way as a JAVA. It allows more inheritance, deriving and polymorphism to the business

software development. Although .NET Framework provides a high level of language

interoperability (every object code can be written in whatever language suiting the CLI),

the C# language still remains the closest to the .NET by its idea.

Some beginners to the .NET have problems with correct understanding of language

interoperability. It may seem that C# is the basic programming language of a whole

.NET and that other languages are only something as extensions. In particular, .NET

applications can be written in any language, which meets all the requirements given by

specifications (exactly the Common Language Specification). The language

interoperability is conditioned by some mechanisms as common data types system

(CTS), data marshalling, etc. All the .NET languages at the same way share the CTS. It

has to be noted that a source code is compiled into something similar to byte-code and

additional type information is included as metadata. The result is mixture of

intermediate code and metadata, which are still carrying a description of which types

will be available at the runtime. In other words, the intermediate code contains complete

information to be compiled into a native code of a used processor. Let us mention at

Th read Support COM Marshaler

Base Class Library Support

Class Loader

Type Checker Exception Manager

Security Engine Debug Engine

MSIL to Native

Compilers
Code

Manager
Garbage
Collector

Fig. 2.2 - CLR components

 - 8 -

least one advantage of the previously stated principle. It is possible for execution engine

to verify the type safety and code correctness just before the execution is done.

It is important to understand this idea to be able to read the documentation provided

by the Microsoft Company.

2.5 The ROTOR Project

Now the reader should be ready to understand what is a ROTOR. It is a code word for

the Shared Source CLI (also known as SSCLI) Project. Shared Source CLI means that

the CLI code (CD- ROM: / publ i c/ r ef er ences/ sscl i . code/ sscl i 20020326. t gz) for

the .NET Framework platform has been released to a wide academic public for the

improvement (and other, mainly experimental and educational) purposes.

It should be also mentioned that the difference between .NET Framework and SSCLI

is in the missing support for the COM (Component Object Model) at the SSCLI side

and at the OS existing implementations. This makes DirectX implementation impossible

to the SSCLI. .NET is currently available only on the MS Windows, SSCLI both on

Windows and BSD-Unix. As a notice, writing of own compilers is also a part of the

ROTOR Project.

Later on, it will be clarified that the only successful implementation of DirectX is

possible only on the platform, which supports both COM and HW (by drivers) and this

platform is the .NET only. Therefore, it is not possible to implement it in ROTOR's

SSCLI. For the other hand, the ROTOR exists because of the .NET academic openness,

and from this point of view, this work can be treated as a part of the ROTOR Project.

The most known places to the author, where the ROTOR is carried out, are Microsoft

Research, Cambridge, United Kingdom and University in Pisa, Italy. In Cambridge,

there had been the first Rotor Workshop, the second one had been in Pisa. The idea of

these workshops lies in progress reports presentation of Rotor Award winning groups

on their activities and in interaction with other members from the Rotor and CLI teams,

doing an active research, involving Rotor. Workshop format support invited speakers,

rich project presentations and panel discussions

 - 9 -

2.6 DirectX

The next definition is adopted from [MS02b]:

"Microsoft DirectX is a set of low-level application programming interfaces (APIs)

for creating games and other high-performance multimedia applications. It includes

support for two-dimensional (2-D) and three-dimensional (3-D) graphics, sound effects

and music, input devices, and networked applications such as multiplayer games."

DirectX allows programmers to access the available hardware devices, such as

graphical adapter, sound card, and so forth. It takes the advantage of device independent

functions to simplify game related tasks, performed by the computer. It is decomposed

into several components, each targeted to a particular area of usability. These

components are

• Direct Graphics – graphical output interface, discussed in a detail later,

• DirectInput – input devices interface, supporting (in addition to standard

peripherals) joysticks, game-pads and force-feedback devices,

• DirectPlay – multiplayer networking,

• DirectSound – high-performance audio applications dealing for example with

capturing waveform audio,

• DirectMusic – software support for soundtrack based waveforms, MIDI,

• DirectShow – high-quality capture and playback of multimedia streams,

• DirectSetup – supports one-call installation of necessary components to DirectX,

• DirectX Media Objects – supports development and using data-streaming

objects such as encoders, decoders, and effects.

As given in assignment, it will be considered (in the following text) the graphical

part of DirectX – Direct Graphics, which is of the interest.

COM technology was used also at DirectX production, because it helps to outshine

the DLL-hell problem. This problem resulted from sharing dynamically linked libraries

by different applications, where one application could install its library with changed

 - 10 -

functionality over another existing library of other application, what caused for example

crash of the previously running application.

2.7 Graphical Interface: Direct3D, DirectDraw

The DirectX API handles most of the I/O aspects which programmer needs at a very

low-level, and therefore it will certainly pay off to not use the standard Windows I/O

functions provided by the GDI in order to gain as much speed as possible.

Consequently, managed memory is also a nice thought, but if working with high

performance graphics, consideration of classic memory manipulation is also essential.

In fact, this is an ideological problem, because the main idea of the .NET is an

abstraction (even in memory area), compared to high performance DirectX, which

mostly needs characteristic memory support at the developer side (e.g. while working

with Vertex Buffer). Despite these difficulties, with some compromise, the problem can

be solved, mainly if the performance issue is not the point.

Very important fact is that all this technology is based on a Component Object

Model (COM), even if it is not mentioned immediately at the first line of the

documentation. In other words, DirectX is a set of COM components, each providing

some interfaces, which can be divided into subsets with a similar functionality. One of

the subsets handles whatever about the graphics and is called DirectX Graphics. It

combines previous 3D and 2D graphic components Direct3D and DirectDraw into one

and the name Direct3D remained for both. (Now, the entire planar graphic must be done

via 3D component.)

The .NET Framework seemed to be very interesting for people from the area of

computer graphics that originators of this work decided to implement some of the well-

known graphical interfaces for it. The DirectX Direct3D has been taken into account.

This interface is widespread and having it prepared in the .NET Framework, it is easy to

extend our old working algorithms with new features and functionality. For example, a

developer used to write a code for DirectX8.0 can simply continue with a development

with it, build it in .NET Framework and easily add whatever other network functionality

he wants.

 - 11 -

DirectX provides a low-level access to HW, what sometimes makes the code for

beginners hard to read, especially in the case desiring the most performance from that

hardware. Generally, many devices are supporting the DirectX well.

Example of graphical output is shown at Fig 2.3.

Fig. 2.3 - Example of graphical output. Implemented in C#.

The aim of this work is programming safety and comfort of the use of the ported

interface. The idea of pure .NET look of the DirectX ported interface is being reached,

i.e. avoiding unmanaged blocks of code in order to communicate with the interface.

 - 12 -

3 Bibliographic search

The library of home university – University of West Bohemia in Pilsen – has been

recently connected to several scientific bibliographic search databases offering very

sophisticated access to worldwide-published literature. Among them, these particular

systems have been tried and answered some results:

• Web of Science – ht t p: / / wos. cesnet . cz/

• Eiffel Direct – ht t p: / / sear ch. gl obal . epnet . com/

• Inspec (Dialog) – ht t p: / / di al og. cvut . cz/

• Compendex (Dialog) – ht t p: / / di al og. cvut . cz/

• IEEE Computer Society - Digital Library – ht t p: / / di al og. cvut . cz/

• IEEE/ACM Transactions and Networking – ht t p: / / www. acm. or g/ t on/

• Journal of the ACM – ht t p: / / www. acm. or g/ j acm/

• Transactions on Programming Languages and Systems –

ht t p: / / www. acm. or g/ t opl as/

However, the processed topic is so new and special, that it probably had rare chance

to get into these systems and no useful stuff has been found. Let's suppose there is a

developer, doing specific research as this one, demanding vital information on

incorporating some COM components into .NET. The highly appreciated information

place is certainly the Internet, if not directly the Microsoft site. On this reason, the well-

known search engine Google (ht t p: / / www. googl e. com) has been tested.

As it was expected, with one exception the only available site at the Internet,

concerning the solved topic, was the Microsoft's MSDN (MicroSoft Developer

Network) Library ht t p: / / msdn. mi cr osof t . com, both with several running discussions

on .NET development. For a screenshot of MSDN, see Fig. 3.1. The exception stands

for a C-Sharp Corner site ht t p: / / www. cshar p- cor ner . com, where occurred a few

subscriptions on DirectX topic. As it was found later, the information lying there is just

a rehash of MSDN.

 - 13 -

After some exploration of Microsoft pages, the following list of found expert books

can be compiled:

• Bargen, Bradley and Peter Donnelly, Inside DirectX, Microsoft® Press®, 1998.

• Kovach, Peter J., Inside Direct3D, Microsoft Press, 2000.

• Thompson, Nigel, 3D Graphics Programming for Windows, Microsoft Press,

1996.

• Rogerson, Dale E., Inside COM, Microsoft Press, 1997.

These sources are useful to better understand some insides, but for purpose of this

work, it is insufficient. More or less surprisingly, this situation just reflects the

following idea: any developer should be able to work even only with the generally

accessible sources collected at one well known place. This place is the previously

mentioned MSDN Library, available via Internet and on many Microsoft product

installation CDs. Finally, it is possible to make a decision: only MSDN Library can be

singled out as satisfactory source of related information.

Further literature to .NET programming is available also in different languages, as

for example the [Kac03].

Results of this section had been lately briefly discussed with thesis supervisor.

Fig. 3.1 - Screenshot of the MSDN Library: a characteristic layout.

 - 14 -

4 Possible Approaches Review

After a closer investigation, there were found the three principal ways to solve the

given problem. First, advancing from the COM foundations of the DirectX, is the

solution based on a COM interoperability approach. This approach employs the

Syst em. Runt i me. I nt er opSer vi ces namespace tools, which helps to build COM into

.NET managed environment. Second way to solution is use of the type library, where

is stored the essential information about COM object (and its interfaces) as types,

enums, methods and so on. With having the type library, a lot of programming effort

from the first approach is saved. Finally, the third solution is an existing solution

released by Microsoft itself. It is called the DirectX9.0 Managed, contains nearly all

the functions of DirectX8.1b (or DirectX9.0) with exception of DirectShow component

and is prepared for immediate use. Unfortunately, this package had been released too

late after assigning this topic. Notice that the lack of anything similar to DirectX 9.0

Managed had just been the motivation for this work.

4.1 COM Interoperability

To take the easiest decision in sense of expended programming effort, it is necessary to

use the .NET Framework facilities to bring the DirectX functionality into .NET. These

facilities are particularly called COM Interop (Component Object Model

Interoperability) and expectably they are suitable to get-in those functions written in

COM.

It is easy to ask a question, why not only to simply take existing DirectX dll's and

wrap their functions into a .NET assembly as it was done in [Han03] with OpenGL. The

short and the long of it is just the COM. Previously mentioned dll's contains only a few

functions, but all DirectX functions are packed in there lying objects and are accessible

via object interfaces only. Concluding it, the COM technology has to be taken into

account, what seemingly complicates the entire work.

By [MS01d], COM Interop provides access to existing COM components without

requiring that the original component be modified. A step to incorporate COM code

into a managed application is to import the relevant COM types by using a COM

 - 15 -

Interop utility (TlbImp.exe) for that purpose. Once imported, the COM types are ready

to use. After execution, the common language runtime marshals data between COM

objects and managed objects as needed.

Unfortunately, in the case of DirectX, this does not work at all, as seen in Fig 4.1. As

some investigation had been done with the TLBI MP. EXE (Type Library Importer), a

command-line tool included in the .NET Framework SDK, it seems there is no type

library included in the DirectX DLL's. The author suspects that it is simply from the

efficiency reasons. It may be generally wrong to include a type library into a DLL

supposing that a developer, even the program user, will need this functionality for some

wrapping. Other question, which appears then, is why in contrast the quartz.dll can

contain its type library.

Let us remind what particular facilities does .NET Framework provide to C# while

performing COM Interop. C# has support for

• creating COM objects,

• determining if a COM interface is implemented by an object,

• calling methods on COM interfaces, and

• implementing objects and interfaces that can be called by COM clients. (Stated

only for completeness reason. This would be used e.g. in case of writing DirectX

component in C# and expecting its usage also in unmanaged C++ as a COM.)

Notice that The .NET Framework handles reference-counting issues with COM

Interop so there is no need to call or implement AddRef() and Release() functions.

C: \ ap \ dp \ dl l . t ool s>t l bi mp d3d8. dl l
Mi cr osof t (R) . NET Fr amewor k Type Li br ar y t
o Assembl y Conver t er 1. 0. 3705. 0
Copyr i ght (C) Mi cr osof t Cor por at i on 1998 - 20
01. Al l r i ght s r eser ved.

Tl bI mp er r or : The i nput f i l e ' C: \ ap \ dp \ dl l .
t ool s \ d3d8. dl l ' i s not a v al i d t ype l i br ar y

Fig. 4.1 - Screen copy. TlbImp.exe does not help.

 - 16 -

4.1.1 How To Create a COM Class Wrapper

For C# code to reference COM objects and interfaces is necessary to include a .NET

Framework definition for the COM interfaces in the C# build. As known, the

TlbImp.exe cannot help, so a COM type library conversion into .NET Framework

metadata – effective creation of a managed wrapper that can be called from any

managed language – has to be done a quite trickily. The matter is to manually define the

COM definitions in C# source code using C# attributes. Once the C# source mapping

has been created, all to do is simply compile the C# source code to produce the managed

wrapper. Wrapper is an original entity being converted together with additional code to

support functionality at new environment.

The following conversions have to be performed manually as well:

• COM coclasses conversion to C# classes with a parameterless constructor,

• COM structs (structures) conversion to C# structs with public fields.

A great way to check registered COM components as a feedback to our effort is to

run the .NET Framework SDK command-line tool I l dasm. exe (Microsoft Intermediate

Language Disassembler) to view the result of the conversion.

The main attributes needed to understand them to perform COM mapping are:

• ComI mpor t - Marks a class as an externally implemented COM class.

• Gui d – Used to specify a universally unique identifier (UUID) for a class or an

interface.

• I nt er f aceType – specifies whether an interface derives from I Unknown or

I Di spat ch.

• Pr eser veSi g – specifies whether the native return value should be converted

from an HRESULT to a .NET Framework exception.

Each of these attributes has own specific values, which should be very clear to

everyone before using them.

 - 17 -

4.1.2 Declaring a COM coclass

COM coclasses are represented in C# as classes. These classes must have the

ComI mpor t attribute associated with them. The following restrictions apply to these

classes:

• The class must not inherit from any other class.

• The class must implement no interfaces.

• The class must also have a Gui d attribute that sets the globally unique identifier

(GUID) for the class.

The following example declares a coclass in C#:

/ / dec l ar e Fi l gr aphManager as a COM cocl ass

/ /

[ComI mpor t , Gui d(" E436EBB3- 524F- 11CE- 9F53- 0020AF0BA770")]

c l ass Fi l gr aphManager

{

}

The C# compiler will add a parameterless constructor that can be called to create an

instance of the COM coclass.

4.1.3 Creating a COM Object

COM coclasses are represented in C# as classes with a parameterless constructor.

Creating an instance of this class using the new operator is the C# equivalent of calling

CoCr eat eI nst ance() . Using the class defined above, it is simple to instantiate the

class:

c l ass Mai nCl ass {

 publ i c s t at i c voi d Mai n() {

 / /

 / / Cr eat e an i nst ance of a COM cocl ass - cal l s

 / /

 / / CoCr eat eI nst ance(

 - 18 -

 / / E436EBB3- 524F- 11CE- 9F53- 0020AF0BA770,

 / / NULL, CLSCTX_ALL,

 / / I I D_I Unknown, &f)

 / /

 / / r et ur ns nul l on f ai l ur e.

 / /

 Fi l gr aphManager f = new Fi l gr aphManager () ;

 }

}

The short and the long of it is that the COM object is created automatically by .NET

Framework runtime.

4.1.4 Declaring a COM Interface

COM interfaces are represented in C# as interfaces with ComI mpor t and Gui d attributes.

They cannot include any interfaces in their base interface list, and they must declare

the interface member functions in the order that the methods appear in the COM

interface.

COM interfaces declared in C# must include declarations for all members of their

base interfaces with the exception of members of I Unknown and I Di spat ch – the .NET

Framework automatically adds these. COM interfaces which derive from I Di spat ch

must be marked with the I nt er f aceType attribute.

When calling a COM interface method from C# code, the common language runtime

must marshal the parameters and return values to (from) the COM object. For every

.NET Framework type, there is a default type that the common language runtime will

use to marshal when marshaling across a COM call. For example, the default

marshaling for C# string values is to the native type LPTSTR (pointer to TCHAR char

buffer). You can override the default marshaling using the Mar shal As attribute in the

C# declaration of the COM interface. The exact manner of marshalling particular

arguments is not so important as long as the own process of marshalling is

straightforward (mentioned the marshalling at runtime), because interface definitions

just exist. The problem arises earlier, at time of manual rewriting COM interface

methods into C# code, when it must be exactly known how the argument types have to

be substituted. See later in Chapter 6: Solution Description.

 - 19 -

In COM, a common way to return success or failure is to return an HRESULT and have

an out parameter marked as r et val in MIDL (Microsoft Interface Definition Language)

for the real return value of the method (in syntax of IDL):

HRESULT _st dcal l MyMet hod(

 [out , r et val] I nMyFace* * Ret ur nVal) ;

HRESULT _st dcal l MyOt her Met hod(

 [out , r et val] VARI ANT_BOOL* Ret ur nVal) ;

HRESULT _st dcal l Cr eat eDevi ce(

 [i n] UI NT Adapt er ,

 [i n] D3DDEVTYPE Devi ceType,

 [i n] HWND hFocusWi ndow,

 [i n] DWORD Behavi or Fl ags,

 [i n] D3DPRESENT_PARAMETERS*

 pPr esent at i onPar amet er s,

 [out , r et val] I Di r ect 3DDevi ce8* *

 ppRet ur nedDevi ceI nt er f ace) ;

In C# (and the .NET Framework), the standard way to indicate an error has occurred

is to throw an exception. By default, the .NET Framework provides an automatic

mapping between the two styles of exception handling for COM interface methods,

which are called by the .NET Framework:

• The return value changes to the signature of the parameter marked r et val (voi d

if the method has no parameter marked as r et val).

• The parameter marked as r et val is left off of the argument list of the method.

• Any non-success return value will cause a Syst em. COMExcept i on exception to

be thrown.

The next example taken from [MS01d], and shortened, shows a COM interface

declared in MIDL and the same interface declared in C# (note that the methods use the

COM error-handling approach).

 - 20 -

The original MIDL version of the interface:

[odl ,

 uui d(56A868B1- 0AD4- 11CE- B03A- 0020AF0BA770) ,

 hel pst r i ng(" I Medi aCont r ol i nt er f ace") ,

 dual ,

 ol eaut omat i on

]

i nt er f ace I Medi aCont r ol : I Di spat ch {

. . .

 [i d(0x60020006) , pr opget]

 HRESULT Fi l t er Col l ect i on(

 [out , r et val] I Di spat ch* * ppUnk) ;

 [i d(0x60020007) , pr opget]

 HRESULT RegFi l t er Col l ect i on(

 [out , r et val] I Di spat ch* * ppUnk) ;

 [i d(0x60020008)]

 HRESULT St opWhenReady() ;

} ;

Here is the C# equivalent of this interface:

us i ng Syst em. Runt i me. I nt er opSer v i ces;

/ / Decl ar e I Medi aCont r ol as a COM i nt er f ace whi ch

/ / der i ves f r om t he I Di spat ch i nt er f ace.

[Gui d(" 56A868B1- 0AD4- 11CE- B03A- 0020AF0BA770") ,

 I nt er f aceType(ComI nt er f aceType. I nt er f aceI sDual)]

i nt er f ace I Medi aCont r ol / / cannot l i s t any base i nt er f aces

 / / her e

{

 / / Not e t hat t he member s of I Unknown and I nt er f ace

 / / ar e NOTl i s t ed her e

 / /

. . .

 - 21 -

 [r et ur n : Mar shal As(UnmanagedType. I nt er f ace)]

 obj ect Fi l t er Col l ect i on() ;

 [r et ur n : Mar shal As(UnmanagedType. I nt er f ace)]

 obj ect RegFi l t er Col l ect i on() ;

 voi d St opWhenReady() ;

}

Note how the C# interface has mapped the error-handling cases. If the COM method

returns an error, an exception will be raised on the C# side. To prevent the translation of

HRESULTs to COMExcept i ons, attach the Pr eser veSi g(t r ue) attribute to the method in

the C# declaration. For details, see Pr eser veSi gAt t r i but e Class in documentation.

4.1.5 Using Casts Instead of QueryInterface

A C# coclass would be not very useful until it could access an interface that it

implemented. In C++, developer would navigate an object's interfaces using the

Quer yI nt er f ace() method on the I Unknown interface. In C#, the same thing is

possible by explicit casting the COM object to the desired COM interface. If the cast

fails, then an invalid cast exception is thrown:

/ / Cr eat e an i nst ance of a COM cocl ass:

MyCOMCocl ass myCOMCC = new MyCOMCocl ass() ;

/ / See i f i t suppor t s t he I MyCOMI nt er f ace COM i nt er f ace.

/ / Not e t hat t hi s wi l l t hr ow a Syst em. I nval i dCast Except i on

/ / i f t he cast f ai l s . Thi s i s equi val ent t o Quer yI nt er f ace

/ / f or COM obj ect s :

I MyCOMI nt er f ace i MyCOMI = (I MyCOMI nt er f ace) myCOMCC;

/ / Now cal l a met hod on a COM i nt er f ace:

i MyCOMI . MyMet hod() ;

 - 22 -

This kind of approach seems to be a little puzzling. Even though the COM interface

functionality is needed, and interface methods have to be declared firstly, why to

complicate it by defining coclasses and cast them to interface? Why not to directly use

the interface only? It is very probably that it is a step needed in general case, but in this

work it does not seem to be useful.

4.1.6 COM Interfaces

Once the COM interface is declared in C#, all its methods can be called as pleased. But

here is a hidden problem: how to retrieve all necessary attribute values for interface

declaration (mainly Gui d) and attributes for arguments marshalling (I n, Out)? Note that

there exists an IDL (Interface Definition Language), which syntax supports description

capabilities of COM interface. See the IDL part of IDirect3D8 interface, which was

obtained by OLE/COM Object Viewer (TypeLib Viewer) tool from a Dx8vb. dl l Type

Library (the original IDL file was unavailable!):

[

 odl ,

 uui d(1DD9E8DA- 1C77- 4D40- B0CF- 98FEFDFF9512) ,

 hel pcont ext (0x00014453)

]

i nt er f ace Di r ect 3D8 : I Unknown {

 [hel pcont ext (0x00014460)]

 HRESULT _st dcal l Regi s t er Sof t war eDevi ce(

 [i n] voi d* I ni t i al i zeFunct i on) ;

 [hel pcont ext (0x0001445a)]

 i nt _st dcal l Get Adapt er Count () ;

. . .

 [hel pcont ext (0x00014459)]

 HRESULT _st dcal l EnumAdapt er Modes(

 [i n] i nt Adapt er ,

 [i n] i nt Mode,

 [i n, out] D3DDI SPLAYMODE* Di spl ayMode) ;

. . .

 [hel pcont ext (0x0001445e)]

 l ong _st dcal l Get Adapt er Moni t or ([i n] i nt Adapt er) ;

 - 23 -

 [hel pcont ext (0x0001446b)]

 HRESULT _st dcal l Cr eat eDevi ce(

 [i n] i nt Adapt er ,

 [i n] CONST_D3DDEVTYPE Devi ceType,

 [i n] l ong hFocusWi ndow,

 [i n] CONST_D3DCREATEFLAGS

 Behavi or Fl ags,

 [i n] D3DPRESENT_PARAMETERS*

 Pr esent at i onPar amet er s,

 [out , r et val] Di r ect 3DDevi ce8* *

 ppRet ur nedDevi ceI nt er f ace) ;

} ;

If compared to description of the exactly same interface contained in header d3d8. h,

it is possible to see some similarity:

DECLARE_I NTERFACE_(I Di r ect 3D8, I Unknown)

{

. . .

 / * * * I Di r ect 3D8 met hods * * * /

 STDMETHOD(Regi st er Sof t war eDevi ce)

 (THI S_ voi d* pI ni t i al i zeFunct i on) PURE;

 STDMETHOD_(UI NT, Get Adapt er Count) (THI S) PURE;

. . .

 STDMETHOD(EnumAdapt er Modes)

 (THI S_ UI NT Adapt er ,

 UI NT Mode,

 D3DDI SPLAYMODE* pMode) PURE;

. . .

 STDMETHOD_(HMONI TOR, Get Adapt er Moni t or)

 (THI S_ UI NT Adapt er) PURE;

 STDMETHOD(Cr eat eDevi ce)

 (THI S_ UI NT Adapt er ,

 D3DDEVTYPE Devi ceType,

 HWND hFocusWi ndow,

 DWORD Behavi or Fl ags,

 D3DPRESENT_PARAMETERS* pPr esent at i onPar amet er s,

 I Di r ect 3DDevi ce8* * ppRet ur nedDevi ceI nt er f ace)

 - 24 -

 PURE;

} ;

As it was stated, there are no available IDL files for considered components of

DirectX, what little complicates the situation, because it is necessary the resolve the

component structure directly from the DirectX header files. In the d3d8. h, there are

defined 12 interfaces, including totally about 260 COM interface function declarations.

4.2 Type Library

.NET Framework metadata lying in the Type Library are included in a C# build via the

/R compiler option, or as reference addition (reference to the COM type library) at the

Visual Studio development environment. The main conversion is done automatically.

To demanding readers' satisfaction, type library (.tlb, .dll) is a binary file that stores

information about a COM or DCOM object's properties and methods in a form that is

accessible to other applications at runtime. Using a type library, an application or

browser can determine which interfaces an object supports, and invoke an object's

interface methods. This can occur even if the object and client applications were written

in different programming languages. The COM/DCOM run-time environment can also

use a type library to provide automatic cross-apartment, cross-process, and cross-

machine marshaling for interfaces described in type libraries. The type library is

generated from a special file (see IDL later), which syntax is based on an ODL

[MS02c]. The only problem connected to this is a missing support to a modul e type (?)

at the .NET side. It results in particularly missing functions, e.g. utilizing mathematical

functions with vectors, matrices, etc. If there was found a way in which to bring the

module-functions to life, the necessity of own implementation in the helper assembly

DxVBLi bA1 would be void. Details about the modul e are described in [MS02d].

4.3 Managed DirectX9.0

On December 2002, Microsoft has released the DirectX 9.0 Managed version of the

DirectX, which should meet all the requirements stated at the previous pages. Thus it is

used as a reference for comparison to reached results. At the next few paragraphs only

its significant graphic namespaces will be shortly described: Microsoft DirectX,

Direct3D and DirectDraw.

 - 25 -

The namespace Microsoft.DirectX provides utility operations and data storage for

DirectX application programming, including exception handling, simple helper

methods, and structures used for matrices, clipping planes, quaternion, vector

manipulations and so forth. Microsoft.DirectX.Direct3D enables to manipulate visual

models of 3-D objects and take advantage of hardware acceleration and

Microsoft.DirectX.DirectDraw that provides functionality across display memory, the

hardware blitter, hardware overlay support, and flipping surface support. It seems that

small inconsistency appeared because Direct Graphics 8.1b should combine both D3D

and DDraw into one, but in the version 9.0 it is formally divided again.

This is the best solution, which provides a complete DirectX functionality in the style

of .NET Framework. An example demonstrating DirectX lighting is at the Fig. 4.2.

Advanced information for DirectX .NET development is available in [Csc03] and

[Vis03].

Fig. 4.2 - DirectX9.0 Managed: Lighting Sample.

 - 26 -

4.4 Wrapping in detail

The advantage that DirectX is a COM based is highly welcome. The .NET Framework

runtime environment can save a lot of work to developer in a wrapping task because of

its runtime callable wrappers feature. The functionality of GC can be used although the

pointers are needed as well. Each time the method of a COM is called, the runtime

callable wrapper (RCW) is automatically created for accessing the unmanaged code of

that COM. It is created every time that the call occurs. This could seem to be

unacceptably high overhead cost, but, if considering the fact that for e.g. rendering 10 or

10 billions facets takes only one call and one RCW build, it is feasible. And how it

works?

The common language runtime exposes the COM objects through a proxy called as

runtime callable wrapper (RCW). Although the RCW appears to be an ordinary object

to other .NET clients, its primary function is to marshal calls between a .NET client and

COM object, as given in [MS01a].

The runtime creates exactly one RCW for each DirectX COM object, regardless of

the number of references that exist on that object. Any number of managed clients can

hold a reference to the COM objects that expose some interfaces. The runtime maintains

a single RCW for each object.

Using metadata derived from a type library, the runtime creates both the COM object

being called and a wrapper for that object. Each RCW maintains a cache of interface

pointers on the COM object it wraps and releases its reference on the COM object when

the RCW is no longer needed. The runtime also performs garbage collection on the

RCW.

Among other activities, the RCW marshals data between managed and unmanaged

code, on behalf of the wrapped object, which is essential to this work. Specifically, the

RCW provides marshaling for method arguments and method return values whenever

the client and server have different representations of the data passed between them.

The standard wrapper enforces built-in marshaling rules. For example, when a .NET

client passes a String type as part of an argument to a managed object, the wrapper

converts the String to a BSTR type. Should the COM object return a BSTR to its

 - 27 -

managed caller, the caller receives a String. Both the client and the server send and

receive data that is familiar to them. Other types require no conversion. For instance, a

standard wrapper will always pass a 4-byte integer between managed and unmanaged

code without converting the type, what is very useful.

When created as an early-bound object, the RCW is a specific type. It implements

the interfaces that the COM object implements and exposes the methods, properties, and

events from the object's interfaces. In the illustration, the RCW exposes the INew

interface but consumes the IUnknown and IDispatch interfaces. Further, the RCW

exposes all members of the INew interface to the .NET client.

 - 28 -

5 Implementation Design

This chapter is a direct follow-up to the previous one. The next paragraph stark

proposition can be formed only after a very serious consideration of previously given

facts. Moreover, some intensive investigations had to be done, in Visual Studio .NET

and its tools, to recover that simple principle. The following result has been found.

Wrapping task can be defined as a process when migrating some functionality from

foreign development environment into ours without changes at the original source code.

In the other words, it can be also named as porting as in [Han03]. To create a port of

some dynamically linked library (.dll) means to somehow provide headers of all

necessary functions and to do all the necessary steps for the .dll import. But having the

original functionality in a COM, it is simple to let the .NET Framework runtime to do

everything automatically. The runtime has methods for handling components written in

an unmanaged mode and its basic idea is described in the next paragraph.

Forgetting whatever possible solution � exists or not, suppose that a very effective

and robust solution
�
 to our problem is presented. Bearing in mind the facilities of .NET

Framework for COM technology, it is easy to expect that
�
 will be based on the COM

Interoperability. Now, the implementation task is reduced to interface declarations only.

But re-declaring of interfaces (same as re-implementing COM interfaces) again, if they

are once declared in type library, is like the saying about selling coals to Newcastle.

From the stated facts it reasonably implies that

� �
�
.

In other words, to save the programming effort, the implementation of DirectX

graphical interface is best done via the type library approach, which is highly similar to

COM Interoperability. Particularly, the type library lies at file dx8vb. dl l and is named

DirectX 8 for Visual Basic Type Library. If developer knows the Visual Basic well

(i.e. types representation, array indexing, etc.), he is able to easy use this library in C#

too. Only those functions requiring some nonstandard techniques as callbacks or

memory manipulations have prepared their improved versions to work fine, which

could be treated as a small exception to the previous idea.

 - 29 -

Example can be the available devices enumerating. In C++, a callback is necessary to

this procedure, while in C# is used a function that by default accesses given enumerated

device by its order. Though, nearly always the first device will be right (index set to

zero), when the e.g. 101st device will cause an exception (if there is not 101 available

graphical devices).

 - 30 -

6 Solution Correctness

Before continuing in reading, it should be noticed that author is not a software

engineer expert. It means that there probably exists a standard and certified ways of

software packages verification and validation procedure, but this thesis is completed by

a person from the field of computer graphics, who asks for a pardon if anything is not so

correct. However, even with the qualification author has, it will be tried to provide a

good proof of solution correctness.

6.1 Verification Design

After some approach being done, it is now right to state the important thesis: in the way

the implementation is done, only the standard recommended programming techniques

are used. That means, if we have correct declarations, we can expect some problem

while calling the interface method, e.g. error in marshaler, impossible type-casting, etc.

This kind of error would arise just by first run of the application, but once working, it

should work forever. All other problems, which could appear, would arise on the side of

DirectX, which in principle cannot be handled, or on the side of .NET Framework,

where it is again out of the author responsibility.

The previous suggestions are valid for general case of COM Interfaces approach.

Considering the fact, that the implementation is done via type library approach, where

we can expect that it was verified (it has been released by Microsoft), the necessity of

verification is void.

6.2 Verification

The verification of solution correctness has been tested on selected functions. As it was

stated in the previous section, we can expect that the type library dx8vb. dl l is not

erroneous, because even after half a year of using, there has been found neither mistake

nor error in this library.

For complete picture on tested functions, see the content of directory pr ogr ams on

the attached medium. For its largeness, it would be inefficient to include all the program

listings into this text or to the attachments.

 - 31 -

7 Solution Description

This chapter contains description of selected approach implementation for graphical

interface mentioned in previous sections. One of the terms used for porting a library to

.NET is the wrapper. To use a wrapper or to wrap a library means to create a set of

functions (or objects) that shall make interface accessible from particular environment.

These functions usually perform system dependent task and call a wrapped function

(i.e., particular function of the original library).

The implementation of the graphical interface DirectX has been done with use of

type library, originally designated to a Visual Basic programming language. After a

deep exploration, there have been found rules for correct incorporation of included

functions. It is beyond author strength to provide a complete list of these rules.

Probably, it would be also inefficient. Reader should rather see the code of provided

samples at the attached medium, which is much more intuitive.

7.1 Implementation

Own implementation consists of a type library DxVBLi bA from dx8vb. dl l and

additional functions exported in a namespace DxVBLi bA1. Both DxVBLi bA and

DxVBLi bA1 represent the provided solution.

Note: DxVBLi bA1 assembly is contained in directory called helper by each project.

7.2 Functionality Demo

To support the stated theses about solution correctness, there has been prepared a

demonstration application. It is a very simple game, where the quality topic is not the

important one. It provides a picture of incorporating some DirectX components in one

application: DirectDraw, DirectInput and DirectSound. As it is required in assignment,

the application uses a force-feedback device Microsoft Sidewinder Force Feedback II

joystick, which is also required for running of this application.

The screenshot is plotted to Fig. 7.1.

 - 32 -

Fig. 7.1 - The screenshot of force-feedback application.

7.3 Implementation Notes

There exist several C# compilers, but for purpose of this work the Visual C# .NET

csc. exe with the Microsoft Visual Studio .NET IDE had been selected and used as the

most convenient.

Some problems encountered while looking up the GUIDs for needed objects.

Particularly, there were non found for the Direct3D object coclasses (in headers).

Also, there was a problem with correct understanding with the meaning of returning

nul l value on function call failure. Originally, this wrong way was used:

a = met hodCal l i ng(. . .) ;

i f (a == nul l)

 f ai l ur e_message() ;

It will never reach the line with f ai l ur e_message() , because failure means

exception! Instead, use approach as in this example:

 - 33 -

/ / Cr eat e a DI nput obj ect

t r y {

 di = dx. Di r ect I nput Cr eat e() ; / / Cr eat e t he di nput dev i ce

 i f (di == nul l) {

 MessageBox. Show(" dx. Di r ect I nput Cr eat e() Fai l ed. ") ;

 r et ur n f al se;

 }

}

cat ch (COMExcept i on e) {

 MessageBox. Show(e. Message+" ,

 HResul t : 0x" +e. Er r or Code. ToSt r i ng(" x")) ;

 r et ur n f al se;

}

cat ch (Except i on e) {

 MessageBox. Show(e. Message) ;

 r et ur n f al se;

}

While discussing the failures, the interesting question arises. In C++ style, the

failures are reported as HRESULT values. It can be treated as exception, because

something unexpected – unwanted – happened. So it should be implemented in

exception style in C#. But for the other hand, it is a used practice to place such a call in

an infinite loop, where the program stays until the function has been called with success

(e.g. waiting for receiving exclusive access to a specific device, hold by another

application). And this contradicts the idea that exceptions must be used only in the last

resort, in other words not so often.

It would be interesting to compare the approaches of different error handling – one

based on the true HRESULT value returning and the second based on nonsuccess HRESULT

value to exception conversion. Which is better in performance? The way to do it begins

with experimenting with the Pr eser veSi g attribute value.

If the type library would be unusable from some reason, the approach of own

interface methods declaration would be necessary. Then, more attention will have to be

given to function arguments marshalling (see the marshalling attributes).

 - 34 -

7.3.1 HRESULT in Detail

The HRESULT data type is a 32-bit value that is used to describe an error or warning.

t ypedef LONG HRESULT;

On 32-bit platforms, the HRESULT data type is the same as the SCODE data type. On

16-bit platforms, an SCODE value is used to generate an HRESULT value.

An HRESULT value is made up of the following fields:

• A 1-bit code indicating severity, where zero represents success and 1 represents

failure.

• A 4-bit reserved value.

• An 11-bit code indicating responsibility for the error or warning, also known as

a facility code.

• A 16-bit code describing the error or warning.

 - 35 -

8 Performance evaluation

The performance issue is always a crucial one. Since there are even approximately

260 functions only in the Direct3D component, it was not possible to test in

performance all of them. There are also many influences, which gives the total

performance. If the HRESULT return value function is called in C++, it always returns

some code in very similar time interval. In C#, the exception handling presents some

delays, which are not caused by the implementation itself, but makes one function

sometimes faster and sometime slower, depending on whether exception occurred or

not.

Other reason for stating the performance issue so generally is that every function

(even interface) needs own specific comprehension to be able to call it. How to

correctly prepare the input arguments, when it can be called and so on.

It is also important to keep in mind that DirectX performance highly depends on

existing HW support on machine, where it is running. It is nice to provide some

particular measurements done in software emulation, but in time when many computers

support it by HW, it would be meaningless.

For purity, only some significant graphical operations have been tested (see Tab 8.1,

Fig 8.1). From experience of the author, there hadn't appeared any significant

performance gap between C++ version and the .NET one.

C# .NET C++ Function type

27,9 23,2 billboarding

10,3 9,4 clipping

15,6 14,0 vertex shader

9,1 6,6 enhanced mesh

17,0 23,4 lights

7,2 6,3 vertex shader

Tab. 8.1 - Time [ms] to render the tested scene.

Each time the method of a COM is called, the runtime callable wrapper (RCW) is

automatically created for accessing the unmanaged code of that COM. It is created

 - 36 -

every time that the call occurs. This could seem to be unacceptably high overhead cost,

but, if considering the fact that for e.g. rendering 10 or 10 billions facets takes only one

call and one RCW build on initialization, it is possible to suppose that the performance

is not so significantly influenced by wrapping DirectX in .NET.

Figure 8.1 - Time [ms] to render scene.

 - 37 -

9 Discussion

It has been implemented the DirectX graphical interface for use within the .NET

Framework. It fulfills well the objectives given at the early beginning. Now, graphics

developers can also work with the fully object oriented programming (OOP)

language C#. Advantage of the described solution is a general investigated approach.

Not only DirectX, but also any COM software can be handled by the same strategy

now.

Three methods of DirectX implementation in C# were introduced and described.

Until a version 9.0 has been released in December, the only suitable way for C#

developers was the second method based on type library import. Since it has been

released, the only recommended way is the third one, DirectX9.0 (managed version).

With C# and this version can be reached all features of managed runtime .NET

Framework environment and OOP even with reasonable overhead compared to C++.

However the problem seems to be solved, there is still some kind of feeling that the

purely correct solution can be provided even much more easily. As it results from some

exploration of MSDN documentation about MIDL, shortly IDL (Interface Definition

Language) and COM topic, it is possible to generate a type library directly from an IDL

file. Also, all COM objects implement one or more interfaces. When a custom COM

object is created, the creator must describe the interface or interfaces in an IDL file,

which is the needed one. Having the IDL files, for any COM, means a very high

possibility of having a type library, from which it is easy to generate an assembly as

well. Assumption of Microsoft generating DirectX9.0 Managed assemblies at the

previously stated way seems to be probable.

The future work could be aimed at functionality improving, and stability and safety

of the implementation. Currently this implementation has been tested due to given

capabilities and furthermore, functionality is improved. It is already usable, but shall not

be considered to be absolutely error-proof.

 - 38 -

10 Constraints

The Type Library approach is constrained to DirectX versions up to 8.1b. It does not

support mainly functions operating with memory (Ver t exBuf f er 8: : Lock()) and

callbacks. Instead, improved versions of these functions, originated for use in Visual

Basic, are incorporated.

The COM Interfaces approach is generally valid, not only for DirectX, but for any

software written in COM. But here the constraint is given by knowledge of interface

description.

 - 39 -

11 Acknowledgements

This work is a part of Microsoft Research Ltd. (U.K.): ROTOR project and was

supported by the Ministry of Education of The Czech Republic – Project MSM

235200005.

Great thanks also belong, for a strong support, motivation and experience, to the

supervisor of this thesis, Prof. Ing. Václav Skala, CSc.

 - 40 -

12 Conclusion

Originally, the assignment of this diploma thesis seemed to be very easy. Problems

arrived, when there was not found the first function declaration in its DLL.

Unexpectedly, an extra effort had to be devoted to the COM technology, what in return

helped to find a very elegant solution in this task.

At this work, it is provided in the second chapter the introduction with project

ROTOR, C# language, CLI and both DirectX 8.1b and DirectX 9.0.

The bibliographic search gave very poor results, but satisfactory literature had been

finally found, as described in the third chapter. The lesson is that only the Microsoft's

MSDN is the most convenient source.

Thanks to a very strong investigation in programming manuals and developers

guides, supported by uncountable experiments done in Visual Studio .NET, the very

nice solution could be found and implemented with the minimal effort of routine slavery

work. However it has its weaknesses – in one person it is an unimaginable deal.

With all the available knowledge, a very simple implementation design has been

stated at the chapter Implementation Design, which immediately results from the

previous chapter 4.

A designed verification is not so strong, because of missing adequate experience in

software engineering, but is still sufficient. Proving details are given in chapter 6.1.

There is also explained, why the little testing has been enough to decide that the

solution is correct – some procedures had to remain observed to reach it. Hence, the

chapter 6.2 describes the verification required in 6th point of the assignment.

DirectX interface implementation is described in chapter 7. There is also a screenshot

of demonstration application to force-feedback joystick as compelled at point 5. Very

valuable notes to implementation are stated here, every developer should be familiar

with them.

The answer to point 7 is as general as it covers very heterogeneous software unit.

Even though some proximal investigation had been carried out and with certain effort,

several graphical functions were tested. It is justified why.

 - 41 -

The user and program documentations are placed at appendixes part, source code is

reasonably commented.

The implementation, documentation and source codes are marked as a freeware as a

part of project ROTOR.

The discussion can be found in chapter 9.

Work on this thesis has been valuable to the author even from the reason that all the

essential knowledge had to be collected while processing this job: COM objects,

interfaces, Visual Basic, DirectX, .NET Framework. Before assigning the topic, all of

these keywords were a quite mysterious to the author. Fortunately, it was found what

benefits these modern technologies bring and understood in which points to be more

careful.

Advantage of the described solution is a generality of investigated approach. Not

only DirectX, but also any COM software can be handled by the same strategy now.

 - 42 -

Useful Acronyms

API Application Programming Interface

BCL Base Class Library

CLI Common Language Infrastructure

CLR Common Language Runtime

CLS Common Language Specification

CTS Common Type System

COM Component Object Model

DLL Dynamically Linked Library

GC Garbage Collector

GDI Graphics Device Interface

GUID Globally Unique Identifier

IDE Interactive Development Environment

IDL Interface Definition Language

MIDL Microsoft Interface Definition Language

MSDN Microsoft Developer Network

MSIL Microsoft Intermediate Language

ODL Object Definition Language

OLE Object Linking and Embedding

OS Operating System

RCW Runtime Callable Wrapper

SDK Software Development Kit

UUID Universally Unique Identifier

VES Virtual Execution System

 - 43 -

References

[Cen03] Centre of Computer Graphics and Data Visualisation.

ht t p: / / her akl es. zcu. cz/ r esear ch. php

[Csc03] C# Corner.

ht t p: / / www. c- shar pcor ner . com/ Di r ect x. asp

[Han03] Hanák, I., Frank, M., Skala, V.: OpenGL and VTK interface for .NET. In

C# and .NET Technologies 2003 proceedings, UNION Agency, Science

Press, Plze
�
, 2003.

[ECM02] ECMA TC39/TG2: C# Language Specification. Final Draft, ECMA

Technical Committee 39 (TC39) Task Group 2 (TG2), (electronic

resources), 2002.

CD- ROM: / publ i c/ mat er i al s/ r ef er ences/ manual s/ C- Shar p/

 CShar p. zi p

[Kac01] Ka� má� , D.: Programming .NET applications.. (in Czech) Computer Press,

Praha, 2001.

[MS01a] Microsoft Corp.: Overview of the .NET Framework. .NET Framework

Developer's Guide, MSDN (electronic resources), 2001.

ht t p: / / msdn. mi cr osof t . com/ l i br ar y/

CD- ROM: / publ i c/ mat er i al s/ r ef er ences/ Over vi ew of t he _NET

 Fr amewor k. ht m

[MS01b] Microsoft Corp.: Common Language Infrastructure (CLI) Partition I :

Concepts and Architecture. Microsoft .NET Framework SDK Tool

Developer's Documentation, Microsoft Corporation, 2001.

ht t p: / / msdn. mi cr osof t . com/ l i br ar y/

CD- ROM: / publ i c/ mat er i al s/ r ef er ences/ CLI / docs/ Par t i t i on I

 Ar chi t ect ur e. doc

 - 44 -

[MS01c] Microsoft Corp.: Common Language Infrastructure (CLI) Partition I I :

Metadata Definition and Semantics. Microsoft .NET Framework SDK

Tool Developer's Documentation, Microsoft Corporation, 2001.

ht t p: / / msdn. mi cr osof t . com/ l i br ar y/

CD- ROM: / publ i c/ mat er i al s/ r ef er ences/ CLI / docs/ Par t i t i on I I

 Met adat a. doc

[MS01d] Microsoft Corp.: COM Interop Part 1: C# Client Tutorial. C#

Programmer's Reference, MSDN (electronic resources), 2001.

ht t p: / / msdn. mi cr osof t . com/ l i br ar y/

CD- ROM: / publ i c/ mat er i al s/ r ef er ences/ COM I nt er op Par t 1 C#

 Cl i ent Tut or i al . ht m

[MS02a] Microsoft Corp.: The .NET architecture review. Microsoft's promotional

material (Daniel Rubiolo et al), 2002.

[MS02b] Microsoft Corp.: Microsoft DirectX 9.0. Microsoft Corporation, 2002.

ht t p: / / msdn. mi cr osof t . com/ l i br ar y/

CD- ROM: / publ i c/ mat er i al s/ r ef er ences/ Di r ect X9/ Di r ect X9_c. chm

[MS02c] Microsoft Corp.: ODL File Syntax. Platform SDK: Automation, MSDN

(electronic resources), 2002.

ht t p: / / msdn. mi cr osof t . com/ l i br ar y/

CD- ROM: / publ i c/ mat er i al s/ r ef er ences/ ODL Fi l e Synt ax. ht m

[MS02d] Microsoft Corp.: module. Platform SDK: Automation, MSDN (electronic

resources), 2002.

ht t p: / / msdn. mi cr osof t . com/ l i br ar y/

CD- ROM: / publ i c/ mat er i al s/ r ef er ences/ modul e. ht m

[MS03] Microsoft Corp.: Microsoft COM Technologies. 2003.

ht t p: / / www. mi cr osof t . com/ com/

[MS03a] Microsoft Corp.: What's New in DirectX 9.0. 2003.

ht t p: / / msdn. mi cr osof t . com/ l i br ar y/ en-

 us/ di r ect x9_c/ di r ect x/ gr aphi cs/ what snew. asp

 - 45 -

[Sml03] Smlsal, T., Skala, V.: DirectX in C#. In C# and .NET Technologies 2003

proceedings, UNION Agency, Science Press, Plze
�
, 2003.

[Vis03] Visual Studio .NET Documentation.

ht t p: / / msdn. mi cr osof t . com/ l i br ar y/ def aul t . asp?ur l =/ l i br ar y/ en

 - us/ vsi nt r o7/ ht ml / vsst ar t page. asp

 - 46 -

Annex A - Source Code to Force Feedback Support

/ / Tomas SMLSAL, 2003
/ / Suppor t i ng c l ass t o Joyst i ck wi t h For ce- Feedback
/ /

us i ng Syst em;
usi ng Syst em. I O;
us i ng Syst em. Wi ndows. For ms;

/ / us i ng Syst em. Component Model ;
us i ng DxVBLi bA;
us i ng Syst em. Runt i me. I nt er opSer v i ces;

namespace SpaceBr eakout {
 / / / <summar y>
 / / / Summar y descr i pt i on f or DI nput FF.
 / / / </ summar y>
 publ i c c l ass DI nput FF {
 publ i c const i nt TRUE = 1;
 publ i c const i nt FALSE = 0;

 / / -
 / / Gl obal var i abl es
 / / -
 Di r ect X8Cl ass DX8C = new Di r ect X8Cl ass() ; / / Whol e Cl ass
 Di r ect X8 dx = new Di r ect X8() ; / / Di r ect X 8 obj ect
 DxVBLi bA. D3DX8 g_pD3DX = new DxVBLi bA. D3DX8() ;

 publ i c Di r ect I nput 8 di ; / / Di r ect I nput obj ect
 publ i c Di r ect I nput Devi ce8 di Joyst i ck; / / Di r ect I nput devi ce obj ect
 publ i c Di r ect I nput EnumDevi ces8 enumDevi ce; / / DI nput enumer at i on f or devi ces obj ect
 publ i c DI DEVCAPS Caps; / / s t or e capabi l i t i es of t he di Joyst i ck
 publ i c Di r ect I nput Ef f ect di Ef f ect ; / / St or e t he FF ef f ect
 publ i c Di r ect I nput Ef f ect di Ef f ect Lef t ; / / St or e t he FF ef f ect
 publ i c Di r ect I nput Ef f ect di Ef f ect Ri ght ; / / St or e t he FF ef f ect
 publ i c DI JOYSTATE2 di JoySt at e2; / / Joyst i ck st at e.

 / / do not hi ng i n const r uct or . .
 publ i c DI nput FF () { }

 / / -
 / / Name: I ni t Di r ect I nput ()
 / / Desc: I ni t i al i ze t he Di r ect I nput var i abl es.
 / / -
 publ i c bool I ni t Di r ect I nput (Syst em. I nt Pt r hDl g) {
 i nt j ; / / Count var i abl e
 DI PROPLONG pr op = new DI PROPLONG() ; / / Devi ce pr oper t y st r uct ur e
 Di r ect I nput EnumDevi ceObj ect s di edo; / / Hol ds t he col l ect i on of i ndi v i dual
 / / obj ect s on a devi ce
 Di r ect I nput Devi ceObj ect I nst ance di doi ; / / Hol ds t he i nst ance of an obj ect on a
 / / devi ce
 i nt FFAxi sCount = 0; / / Hol ds t he number of ax i s t hat suppor t FF

 / / Set up t he g_Ef f ect sLi st c i r cul ar l i nked l i s t
 / / g_Ef f ect sLi st = new Ar r ayLi st () ;

 / / Cr eat e a DI nput obj ect
 t r y {
 di = dx. Di r ect I nput Cr eat e() ; / / Cr eat e t he di r ect i nput devi ce

 - 47 -

 i f (di == nul l) {
 MessageBox. Show(" dx. Di r ect I nput Cr eat e() Fai l ed. ") ;
 r et ur n f al se;
 }
 }
 cat ch (COMExcept i on e) {
 MessageBox. Show(e. Message+" , HResul t : 0x" +e. Er r or Code. ToSt r i ng(" x")) ;
 r et ur n f al se;
 }
 cat ch (Except i on e) {
 MessageBox. Show(e. Message) ;
 r et ur n f al se;
 }

 / / Get t he f i r s t enumer at ed f or ce f eedback devi ce
 t r y {
 / / di . Cr eat eDevi ce(() ; / / Enumer at e al l j oyst i cks t hat ar e at t ached t o t he syst em
 enumDevi ce = di . Get DI Devi ces(CONST_DI 8DEVI CETYPE. DI 8DEVCLASS_GAMECTRL,
 CONST_DI ENUMDEVI CESFLAGS. DI EDFL_ATTACHEDONLY
 | CONST_DI ENUMDEVI CESFLAGS. DI EDFL_FORCEFEEDBACK) ;
 i f (enumDevi ce == nul l) {
 MessageBox. Show(" di . Get DI Devi ces() Fai l ed. ") ;
 r et ur n f al se;
 }
 di Joyst i ck = di . Cr eat eDevi ce(enumDevi ce. Get I t em(1) . Get Gui dI nst ance()) ;
 i f (di Joyst i ck == nul l) {
 MessageBox. Show(" di . Cr eat eDevi ce() Fai l ed. \ nNo f or ce f eedback devi ce f ound. ") ;
 r et ur n f al se;
 }
 di Joyst i ck. Get Capabi l i t i es(r ef Caps) ; / / Get t he capabi l i t es of t he devi ce
 / / Get i nf o about al l t he axi s on t he devi ce
 di edo = di Joyst i ck. Get Devi ceObj ect sEnum(CONST_DI DFTFLAGS. DI DFT_AXI S) ;
 i f (di edo == nul l) {
 MessageBox. Show(" di Joyst i ck. Get Devi ceObj ect sEnum() Fai l ed. ") ;
 r et ur n f al se;
 }

 / / Thi s l oops t hr ough t o make sur e t hat t her e
 / / ar e at l east t wo axi s t hat suppor t FF
 f or (j =1; j <=di edo. Get Count () ; j ++) {
 di doi = di edo. Get I t em(j) ;
 i f ((di doi ! =nul l)
 && ((di doi . Get Fl ags() &
 CONST_DI DEVI CEOBJI NSTANCEFLAGS. DI DOI _FFACTUATOR) ! =0)
)
 FFAxi sCount ++;
 }

 i f (FFAxi sCount >1) {
 / / Set t he f or mat of t he devi ce t o t hat of a j oyst i ck. .
 di Joyst i ck. Set CommonDat aFor mat (CONST_DI COMMONDATAFORMATS. DI FORMAT_JOYSTI CK2) ;
 / / Set t he cooper at i ve l evel of t he devi ce as an excl us i ve
 / / backgr ound devi ce, and at t ach i t t o t he f or m' s hwnd
 di Joyst i ck. Set Cooper at i veLevel (hDl g. ToI nt 32() ,
 CONST_DI SCLFLAGS. DI SCL_BACKGROUND
 | CONST_DI SCLFLAGS. DI SCL_EXCLUSI VE) ;

 pr op. l Dat a = 0;
 pr op. l How = (i nt) CONST_DI PHFLAGS. DI PH_DEVI CE;
 pr op. l Obj = 0;
 I nt Pt r i p = (I nt Pt r) nul l ;
 / / di Joyst i ck. Set Pr oper t y(" DI PROP_AUTOCENTER" , i p) ; / / Tur n of f
 / / aut ocent er
 di Joyst i ck. Acqui r e() ; / / Make sur e t o aqui r e t he devi ce
 / / di Ef f ect = di Joyst i ck. Cr eat eEf f ect Fr omFi l e(" . . / / . . / / c l i ck1. f f e" ,

 - 48 -

 / / (i nt) CONST_DI FEFFLAGS. DI FEF_MODI FYI FNEEDED,
 / / " hst h") ;
 / / di Joyst i ck. RunCont r ol Panel (hDl g. ToI nt 32()) ;

 }
 el se {
 MessageBox. Show(" Less t han 2 f or ce f eedback axes. ") ;
 r et ur n f al se;
 }

 / / t ur n OFF t he aut ocent er i ng by pl ay i ng a t est - ef f ect
 di Ef f ect = di Joyst i ck. Cr eat eEf f ect Fr omFi l e(" r eset . f f e" ,
 (i nt) CONST_DI FEFFLAGS. DI FEF_MODI FYI FNEEDED,
 Get Fi r st FFENameFr omFi l e(" r eset . f f e")) ;
 di Ef f ect . St ar t (1, (i nt) CONST_DI ESFLAGS. DI ES_SOLO) ;

 / / l ef t bound
 di Ef f ect Lef t = di Joyst i ck. Cr eat eEf f ect Fr omFi l e(" l eva. f f e" ,
 (i nt) CONST_DI FEFFLAGS. DI FEF_MODI FYI FNEEDED,
 Get Fi r st FFENameFr omFi l e(" l eva. f f e")) ;
 di Ef f ect Lef t . St ar t (- 1, 0) ;
 / / r i ght bound
 di Ef f ect Ri ght = di Joyst i ck. Cr eat eEf f ect Fr omFi l e(" pr ava. f f e" ,
 (i nt) CONST_DI FEFFLAGS. DI FEF_MODI FYI FNEEDED,
 Get Fi r st FFENameFr omFi l e(" pr ava. f f e")) ;
 di Ef f ect Ri ght . St ar t (- 1, 0) ;

 / / ok, downl oad t he needed ef f ect
 di Ef f ect = di Joyst i ck. Cr eat eEf f ect Fr omFi l e(" cr ash. f f e" ,
 (i nt) CONST_DI FEFFLAGS. DI FEF_MODI FYI FNEEDED,
 Get Fi r st FFENameFr omFi l e(" cr ash. f f e")) ;

 }
 cat ch (COMExcept i on e) {
 MessageBox. Show(e. Message+" , HResul t : 0x" +e. Er r or Code. ToSt r i ng(" x")
 +" \ n FF j oyst i ck i ni t i al i zat i on f ai l ed. ") ;
 r et ur n f al se;
 }
 cat ch (Except i on e) {
 MessageBox. Show(e. Message
 +" \ n FF j oyst i ck i ni t i al i zat i on f ai l ed. ") ;
 r et ur n f al se;
 }
 r et ur n t r ue;
 }

 / / -
 / / Name: Fr eeDi r ect I nput ()
 / / Desc: Fr ees t he DI
 / / -
 publ i c voi d Fr eeDi r ect I nput () {
 / / Rel ease any Di r ect I nput Ef f ect obj ect s.
 i f (di Joyst i ck ! = nul l) {
 di Joyst i ck. Unacqui r e() ;
 di Joyst i ck = nul l ;
 }

 / / Rel ease any Di r ect I nput obj ect s.
 di = nul l ;
 }

 - 49 -

 / / -
 / / Name: Pl ayEf f ect ()
 / / Desc: Pl ays a FF f i l e.
 / / -
 publ i c voi d Pl ayEf f ect () {
 t r y {
 i f (di Ef f ect ! = nul l)
 di Ef f ect . St ar t (1, 0) ;
 }
 cat ch (COMExcept i on e) {
 MessageBox. Show(e. Message+" , HResul t : 0x" +e. Er r or Code. ToSt r i ng(" x")) ;
 }
 cat ch (Except i on e) {
 MessageBox. Show(e. Message) ;
 }
 }

 / / r et r i eve necessar y i nf o f r om FFE f i l e (an ef f ect name)
 publ i c s t r i ng Get Fi r st FFENameFr omFi l e(st r i ng Fi l ename) {
 s t r i ng ef f ect Name = nul l ;
 t r y {
 St r eamReader sr =
 new St r eamReader (new Fi l eSt r eam(Fi l ename,
 Fi l eMode. Open,
 Fi l eAccess. Read,
 Fi l eShar e. Read
)) ;
 char [] buf f er = new char [sr . BaseSt r eam. Lengt h] ;
 sr . Read(buf f er , 0, (i nt) sr . BaseSt r eam. Lengt h) ;
 f or (i nt i =0; (ef f ect Name == nul l) && (i <buf f er . Lengt h) ; i ++) {
 i f ((buf f er [i] ==' e') &&(buf f er [i +1] ==' f ')
 &&(buf f er [i +2] ==' c ') &&(buf f er [i +3] ==' t ')
)
 f or (i nt j =0; (buf f er [i +4+j] ! =' \ 0') &&(j +i +4<buf f er . Lengt h) ; j ++) {
 ef f ect Name += buf f er [i +4+j] ;
 }
 }
 sr . Cl ose() ;
 }
 cat ch (I OExcept i on e) {
 ef f ect Name = nul l ;
 MessageBox. Show(e. Message) ;
 }
 r et ur n ef f ect Name;
 }
 }
}

 - 50 -

Annex B - User Manual

Run-Time Requirements

DirectX 8.1 can be used in the Microsoft Windows® 98, Windows Me, Windows

2000, and Windows XP environments.

Description

The type library DirectX 8 Visual Basic Type Library is used as follows:

• First, add reference in references settings to this library, which has to be

selected.

• Add the following line to the code: usi ng DxVBLi bA;

• To add required classes, interfaces or types, work with the namespace

DxVBLi bA.

For the exact parameters usage, see programs in the mediums pr ogr ams directory.

The only suggested documentation is the MSDN – Graphics Development – DirectX

– DirectX 8.1 (Visual Basic). Types are translated as given in .NET Framework

documentation.

 - 51 -

Annex C - Deployment Manual

It is necessary to install the .NET Framework, where are all necessary tools

supporting runtime. The deployment itself is from principal done by copying an

application. It is also clear that the correct version of DirectX has to be installed. Some

developers find even difficult if the SDK version of DirectX runtime is missing.

 - 52 -

Annex D - Program Manual (Developer Guide)

Since author did not find how to access functions hidden in type library modules, it is

necessary to implement these supporting routines in a helper class. While using the type

library approach, the implementation of this library is just prepared. If the library is not

available, it is essential to re-declare the COM interfaces as follows in the IDirect3D8

example. Nearly all the time has been spent by trying attributes values, so there did not

remained time to compose a handbook that would certainly specify the rules for

translating the declarations from a header files, which is unfortunately manual:

 / / Decl ar e I . . as a COM i nt er f ace whi ch
 / / der i ves f r om ??I Di spat ch i nt er f ace:
 [Gui d(" 1DD9E8DA- 1C77- 4d40- B0CF- 98FEFDFF9512")
 ,
 I nt er f aceType(ComI nt er f aceType. I nt er f aceI sDual)]
 publ i c i nt er f ace I Di r ect 3D8 { / / Cannot l i s t any base i nt er f aces her e
 / / Not e t hat I Unknown I nt er f ace member s ar e NOT l i s t ed her e:

 / * * * I Di r ect 3D8 met hods * * * /
 / / voi d Regi st er Sof t war eDevi ce([I n] voi d* pI ni t i al i zeFunct i on) ;
 voi d Regi st er Sof t war eDevi ce([I n] r ef Obj ect pI ni t i al i zeFunct i on) ; / / depr ecat ed! ! !
 ui nt Get Adapt er Count () ;
 voi d Get Adapt er I dent i f i er ([I n] ui nt Adapt er , [I n] ui nt Fl ags, [Out] out
 DxVBLi bA. D3DADAPTER_I DENTI FI ER8 pI dent i f i er) ;
 ui nt Get Adapt er ModeCount ([I n] ui nt Adapt er) ;
 voi d EnumAdapt er Modes([I n] ui nt Adapt er , [I n] ui nt Mode, [I n, Out] r ef
 DxVBLi bA. D3DDI SPLAYMODE pMode) ;
 voi d Get Adapt er Di spl ayMode([I n] ui nt Adapt er , [I n, Out] r ef
 myDXTypeLi b. D3DDI SPLAYMODE pMode) ;
 voi d CheckDevi ceType(ui nt Adapt er , DxVBLi bA. CONST_D3DDEVTYPE
 CheckType, DxVBLi bA. CONST_D3DFORMAT Di spl ayFor mat , DxVBLi bA. CONST_D3DFORMAT
 BackBuf f er For mat , bool Wi ndowed) ;
 voi d CheckDevi ceFor mat (ui nt Adapt er , DxVBLi bA. CONST_D3DDEVTYPE
 Devi ceType, DxVBLi bA. CONST_D3DFORMAT Adapt er For mat , ui nt
 Usage, DxVBLi bA. CONST_D3DRESOURCETYPE RType, DxVBLi bA. CONST_D3DFORMAT CheckFor mat) ;
 voi d CheckDevi ceMul t i Sampl eType(ui nt Adapt er , DxVBLi bA. CONST_D3DDEVTYPE
 Devi ceType, DxVBLi bA. CONST_D3DFORMAT Sur f aceFor mat , bool
 Wi ndowed, DxVBLi bA. CONST_D3DMULTI SAMPLE_TYPE Mul t i Sampl eType) ;
 voi d CheckDept hSt enci l Mat ch(ui nt Adapt er , DxVBLi bA. CONST_D3DDEVTYPE
 Devi ceType, DxVBLi bA. CONST_D3DFORMAT Adapt er For mat , DxVBLi bA. CONST_D3DFORMAT
 Render Tar get For mat , DxVBLi bA. CONST_D3DFORMAT Dept hSt enci l For mat) ;
 voi d Get Devi ceCaps(ui nt Adapt er , DxVBLi bA. CONST_D3DDEVTYPE
 Devi ceType, DxVBLi bA. D3DCAPS8 pCaps) ;
 I nt Pt r Get Adapt er Moni t or (ui nt Adapt er) ;
 ui nt Cr eat eDevi ce(ui nt Adapt er , DxVBLi bA. CONST_D3DDEVTYPE Devi ceType,
 I nt Pt r hFocusWi ndow,
 ui nt Behavi or Fl ags,
 r ef DxVBLi bA. D3DPRESENT_PARAMETERS pPr esent at i onPar amet er s,
 r ef DxVBLi bA. Di r ect 3DDevi ce8 ppRet ur nedDevi ceI nt er f ace) ;
 }

As long as it looks complicated, the most important is to preserve the order of

functions of the interface.

 - 53 -

Hereby I declare an agreement with this thesis to attendance loaning in university

library at University of West Bohemia in Pilsen, for academic purposes.

Tomáš Smlsal: ...

