ZAPADOCESKA i i a1 1
A University of West Bohemia in Pilsen

Department of Computer Science and Engineering
Univerzitni 8
306 14 Plzen

Czech Republic

Methods for Implicit Surfaces
Polygonization

State of the Art and Concept of Doctoral Thesis

Martin Cermak

Technical Report No. DCSE/TR-2003-01
January, 2003

Distribution: public

Technical Report No. DCSE/TR-2003-01
January, 2003

Methods for Implicit Surfaces
Polygonization

Martin Cermak

Abstract

Both object modeling and visualization belong to the fundamental tasks of the
computer graphics. In recent years, implicit modeling has become attractive.
Because of the fact that the implicit surfaces conveniently define volumes, they
are frequently used in CSG-based solid modelers. The visualization of objects
defined in such way is possible either by direct rendering based on Ray-tracing
principle or by approximation of the implicit models by polygons, triangular
mesh usually. Such approximation process is called polygonization. The
polygonal (triangular) meshes are supported by a wide range of graphics
hardware and, therefore, working with them is very fast as well as their
arbitrarily transformations are possible without repeated solution of the implicit
function. Programs for 3D graphics support polygonal meshes as well. It is not
complicated to import such object and also its additional modification is possible
with these professional tools.

The offered work contains an overview of commonly used principles for
polygonization of implicit objects as well as information about our previous
research in this field. Advantages and disadvantages of presented algorithms
are discussed. The outlook of our future work is presented in conclusion.

This work was supported by the Ministry of Education of the Czech Republic —
project MSM 235200005.

Copies of this report are available on
http://www.kiv.zcu.cz/publications/
http://herakles.zcu.cz/publications.php

or by surface mail on request sent to the following address:

University of West Bohemia in Pilsen

Department of Computer Science and Engineering
Univerzitni 8

306 14 Plzen

Czech Republic

Copyright © 2003 University of West Bohemia in Pilsen, Czech Republic

Abstract

Both object modeling and visualization belong to the fundamental tasks of the
computer graphics. In recent years, implicit modeling has become attractive. Because of
the fact that the implicit surfaces conveniently define volumes, they are frequently used
in CSG-based solid modelers. The visualization of objects defined in such way is
possible either by direct rendering based on Ray-tracing principle or by approximation
of the implicit models by polygons, triangular mesh usually. Such approximation
process is called polygonization. The polygonal (triangular) meshes are supported by a
wide range of graphics hardware and, therefore, working with them is very fast as well
as their arbitrarily transformations are possible without repeated solution of the implicit
function. Programs for 3D graphics support polygonal meshes as well. It is not
complicated to import such object and also its additional modification is possible with
these professional tools.

The offered work contains an overview of commonly used principles for
polygonization of implicit objects as well as information about our previous research in
this field. Advantages and disadvantages of presented algorithms are discussed. The
outlook of our future work is presented in conclusion.

Contents

CHAPTER T ..ottt et sttt st e s 5
INEEOAUCTION ..ttt ettt et e st e et esebeebeesateenbeeenseeseesnseans 5
Relation to parametric SUITACES......ccuiiriierieeiieeie et eeiie et eeiee e eseeeve et e esaeesaeeeaneens 5
Continuity, Differentiability and Manifoldness...........coceeeieriiieniiiniiiiiieiiciiee, 7
SUITACE CUIVALUIEveiiiiiiieciie ettt ettt et e eaeebeessaeeseeenseenseeeens 8
CHAPTER 2 ..ttt ettt st 12
SEALE OF The ATT...eiiieiieiiicie ettt ettt et eb e e be e e be e teeesbeesseessseesaeensaens 12
Modeling of IMPIiCit ODJECES.....eoiuiiiiiiiiieiiee et 12
Polygonal 1epreSentation........ccueeeiieriieriieiiieeie et e eie et e et e eieeebeereesereeseeeeseeseeeens 15
APPLOXIMALION @ITOT «..eeeeveentieiieeiiesiieeieeseteeteessteeteesseesseesseesnseesseesnseesseesnseenseesnns 15
EXhaustive eNUMETatiONcccvieiiieriieiieeiiieeieeteeeiteeteeeeeeereeeaeeseeseseeseessseesseannns 17
Piecewise-Linear CONtINUAtIONcc.eeruiieiiienieeiie ettt et 18
Predictor-Corrector CONtINUALIONceecvvieeriieeriieeeieeeeieeeereeevee e eareeeaee e 19
Adaptive POLYZONIZAtIONeevuiieiieiieeiieeie ettt ettt et st 20
Surface refiNeMENTcooviiiiiiiiecie ettt et eeeennaens 24
Non-Manifold polygonization............c.eeceeiiieriiniiiiienie et 25
CHAPTER 3.ttt ettt sttt ettt sneenaeenees 26
Previous work and CONCIUSIONScocvieiuieriieiieiie ettt eve et e easeeneeas 26
Marching triangles improvemMentcccuierueeriienieeriienie et 26
Edge spinning algorithm and its accelerationcccceevveeveeeieeniiesieeniieeee e 27
EXPerimental TESULLScouiiiiiiiiieiieee ettt et s 31
CONCIUSION ...ttt ettt ettt et e st e e beestaeebeesaseessaessseesseessseenseesssaesseansseenseas 34
CHAPTER 4 ...ttt sttt st 36
Further reSearchoc.oo i 36
RETEICNCES ..veieiieiiieciie ettt ettt ettt e bt eesbeeseeesbeeseesnseenneas 37
APPENDIX A ...ttt ettt ettt ettt bbbt ettt et eas I
PUDIICATIONS ...t ettt ettt e st e et esate e bt e s abeebeesnbeeneanns i
APPENDIX B ..ottt sttt et sttt ettt et naeenees II

Chapter 1
Introduction

The use of real functions of several variables for defining geometric objects is quite
common in mathematic and computer science. Functionally represented volumes and
surfaces appear to be useful in solid modeling, computer aided geometric design
(CAGD), animation, range data processing and volume graphics.

Implicit surfaces are two-dimensional, geometric shapes that exist in
three-dimensional space. An implicit surface is mathematically defined by the equation
f(p) = 0, where p = [px.py.p.] is a point in three-dimensional Euclidean space. An iso-
surface is a similar set of points for which f(p) = ¢, where ¢ is the iso-contour value of
the surface. More precise mathematical definition is described in [37]. A subset O ¢ R"

is called an implicit object if there exists a function f:U — R*, O c U, and a subset
V < R, such that O = f'(V). That is:

O={peU:f(p)eV}. (1)

There are two different definitions for implicit objects. The first one [3], [4], [5]
defines an implicit object as f(p) <0 and the second one, F-rep (functional
representation) [17], [28], [35], defines it as f(p) > 0. These inequalities describe a half
space in E*. An object defined by these inequalities is usually called solid (or volume).

If fis an arbitrary procedural method (i.e. a ‘black-box’ function that evaluates p)
then the geometric properties of the surface can be deduced only through numerical
evaluation of the function.

The implicitly defined object can be bounded (finite in size), such as a sphere, or
unbounded, such as a plane. The value of fis often a measure of distance between p and
the surface. The measure is Euclidean if it is ordinary (physical) distance. For an
algebraic surface, f measures algebraic distance.

Because an implicit representation does not produce points by substitution,
root-finding has to be employed to render its surface. One such method is ray-tracing
[12], which generates excellent photo-realistic images of implicit objects. Alternatively,
an image of the function can be created with volume rendering.

Relation to parametric surfaces

Both parametric and implicit methods are well developed in computer graphics.
Traditionally, computer graphics has favored polynomial parametric over implicit
surfaces because they are simpler to render and more convenient for geometric

-5-

operations such as computing curvature and controlling position and tangency.
Parametric surfaces are generally easier to draw, tessellate, subdivide, bound, and
navigate along.

An implicit surface naturally describes an object’s interior, whereas a comparable
parametric description is usually piecewise. The ability to enclose volume and to
represent blends of volumes provides a straightforward (although less precise) implicit
alternative to fillets, rounds, and other ‘free-form’ parametric surfaces that require care
in joining so that geometric continuity is established along the seams. Consequently,
animations of organic shapes commonly employ implicit surfaces.

Point classification (determining whether a point is inside, outside, or on a surface) is
simpler with implicit surfaces, depending only on the sign of f. This facilitates the
construction of complex objects from primitive ones and simplifies collision detection.

Certain shapes may be described exactly in both parametric and implicit form, as
demonstrated for the unit circle, [6]. The three-dimensional case is:

trigonometric x = (cos(a)cos(P), y = sin(a), z = cos(a)sin(P), a€[0,x], B[0,27)

rational X =4st/w,y = 2t(1-s%)/w, z = (1-t%)(1+s%)/w,
for w = (1+s?)(1+t)), s,te[0, 1]
implicit f(x,y,z) = x2+y2+22-l 2)

Points on the parametrically defined sphere are readily found by substitution of
o and f into the equations for x, y, z (similarly for s and 7). By sweeping (a,) through
its domain in E%, points along the entire surface are conveniently generated for display,
piecewise approximation, etc. This natural conversion from the parametric (two-
dimensional) space of a surface to the geometric (three-dimensional) space of an object
is a fundamental convenience. There is no comparable mechanism for implicit surfaces
(unless the implicit equation is reduced to two explicit equations, as is possible for some
low degree algebraic surfaces).

The surface normal for a regular point on an implicit surface is computed as the unit-
length gradient; the normal to a parametric surface is usually computed as the cross-
product of the surface tangents in the two parametric directions.

The class of algebraic surfaces subsumes that of rational parametric surfaces. Thus,
implicit surfaces are more likely to be closed under certain operations than their
parametric counterparts. For example, the offset surface from an implicit surface
remains an implicit surface, whereas the offset from a parametric surface is, in general,
not parametric. Because parametric and implicit forms have complementary advantages,
it is useful to convert from one form to the other.

Conversion from parametric to the implicit form is known as implicitization, and
may be performed on any rational parametric surface (or curve). This is accomplished
by elimination of the parameters in the parametric form. For example, elimination of s
and ¢ from the rational equations yields the implicit form in x, y, z.

The conversion from implicit to parametric form is known as parameterization.
Associating a point (x,y,z) with its equivalent parametric position (s,t) is known as
inversion. Parameterization is not always possible because implicit surfaces defined by
certain polynomials of fourth and higher degree cannot be parameterized by rational

-6 -

functions. Conversion is always possible for non-degenerate quadrics and for cubics
that have a singular point, [6].

Continuity, Differentiability and Manifoldness

In order that normals are defined along an implicit surface, the function f must be
continuous and differentiable. That is, the first partial derivatives Fy = 0f/0x, Fy = 0f/dy,
F, = 0t/0z must be continuous and not all zero, everywhere on the surface. Such a
function is known as analytic (or is considered analytic in a region that is
differentiable). When given as an ordered triplet, the partials define the gradient Vf of
the function. The unit-length gradient is usually taken as the surface normal.

F
n=(n,n,n,) =(FTX,TY,%} where J=,/F’ +Fy2 +F . (3)

For a ‘black-box’ or other non-differentiable function, the gradient may be
approximated numerically using forward differences and some discrete step size A:

Vi(p) = (f(p + &%)~ f(p), f(p + Ay) ~ f(p). f(p + Az) ~(p))/ A, (4)

where Ax, Ay, and Az are displacements by A along the respective axes. For small A,
the error is proportional to A. If Vf is computed by central differences:

Vi(p) = (f(p + Ax) ~ f(p ~ Ax). f(p + Ay) ~ f(p - Ay). fp + Az) - f(p - A2))/ 24, (5)
the error is proportional to A%, [6].

If the gradient is non-null at a point p, then p is said to be regular (or simple) and
Vi(p) is normal (perpendicular) to the surface at p. If, however, the gradient (or,
equivalently, the tangent vector) is indeterminate, the point is singular (also called
critical or non-regular), [26]. For example, the cone f(x.y,z) = -x*+y*+2z” is regular with
the exception of a singularity at the origin S, see Figure 1. The normal at a singular
point is sometimes given as the average of the normals of surrounding vertices.

Figure 1. The apex of a cone is a singular point.

If the surface is regular and the second partial derivatives are continuous, then the
surface has continuous curvature (the surface is G* continuous). Furthermore, if the
surface is regular, it defines a topological manifold and such implicit object is also
called valid, [37].

The 2-manifold is a fundamental concept from algebraic and differential topology. It
is a surface embedded in E* such that the infinitesimal neighborhood around any point
on the surface is topologically equivalent (‘locally diffeomorphic’) to a disk. Intuitively,
the surface is ‘watertight’ and contains no holes or dangling edges. Typically, the
manifold is bounded (or closed). For example, a plane is a manifold but is unbounded
and thus not watertight in any physical sense. A manifold-with-boundary is a surface
locally approximated by either a disk or a half-disk. All other surfaces are non-
manifold, see Figure 2.

Figure 2. Manifold, manifold with boundary, and non-manifold surface,
the picture is taken from [6].

From the implicit function theorem it may be shown that for f(p) =0, where 0 is a
regular value of f and f is continuous, the implicit surface is a two-dimensional
manifold. The Jordan-Brouwer Separation Theorem states that such a manifold
separates space into the surface itself and two connected open sets: an infinite “outside’'
and a finite ‘inside’, [6].

Consider two examples for which no manifold exists. The first is simply f(p) = 0.
Here, V{ is everywhere 0, there is no “inside' nor ‘outside' and no boundary between the
two. The second is a degenerate sphere f(x.y,z)=x>+y*+z”. Here, Vf=(2x.2y.2z),
which is null at the origin, the only point satisfying f. Intuitively, the ‘inside' is
degenerate. Whether or not a surface is manifold concerns its polygonal representation.

Surface curvature

The Hessian
The Hessian form associated with a function f(x;,X»,...,X,) is the matrix of second-
order partial derivatives of / with respect to x;:

or o
0Xx,0X, 0x,0X
Hf(x) = : . : . (6)
orf of
6XH8X1 6Xnaxn

The Hessian indicates the rate of change in the gradient of fand will be useful for,
among other things, computing the curvature of implicit objects, [37].

The Gauss map

We know that for curves the curvature at a point p is measured by a number. For
surfaces, it is measured by a map.

Let M be an oriented codimension-1 sub-manifold in R™"". Denote by N(p) the unit

normal vector to M at p. The Gauss map, N:M — S", associates to each peM the point
N(p) on the unit n-dimensional sphere S", see Figure 3.

Ne) |

z DN
i N

Figure 3. The Gauss map, taken from [37].

The derivative N of N is a measure of how the normal vector is changing. Because
N is a unit vector, N' indicates the change in its direction, and therefore N' conveys
information about the curvature of the surface, [37]. It is easy to show that:

- N'(p) is a linear operator on T,M,

- N'(p) is self-adjoint.
N'(p) is sometimes called the Weingarten map in the literature.

The fundamental forms

For any self-adjoint linear transformation on a vector space with dot product there is
a real-valued function O(v) = N(v)-v called the Quadratic form associated with V.

The First fundamental form of M at p is the quadratic form F, associated with the
identity transformation on T,M.

E(v)=v-v (7)

Therefore, this quadratic form defines the inner product in each tangent plane to the
surface. All the metric properties of the surface are connected to it.

The Second fundamental form of M is the quadratic form S, associated with the
Weingarten map N,, at a point p.

S,(V)=N/(v)-v ®)

A surface is completely determined up to rigid motion by its first and second
fundamentals forms, [26], [31].

If M=f"(c) is a regular implicit surface in R™" with orientation given by the
normal vector field and v = (vy,...,vn+1) is a tangent vector to M at a point p, ve T,M, the
second fundamental form is related to the Hessian form of /. More precisely in matrix
notation:

1
S = _vI'.Hf(p)- 9

Surface curvature
The second fundamental form allows us to investigate the curvature of a surface. The
Normal curvature of M at p in the direction v is defined by

k(v)=S,(v)= <N; (V)V>, when ||V|| =1. (10)

In other words, k(v) is equal to the normal component of acceleration of any curve,
contained in M, passing through p with velocity v.

Because N'(p) is a self-adjoint linear transformation of T,M, there exists an
orthonormal basis vi,...,v, of T,M whose vectors, vi, are eigenvectors of N'(p). The
eigenvalues k;(p),..., kn(p) of N'(p) are called principal curvatures of M at p and the
correspondent unit eigenvectors of N'(p) are called principal directions. The principal

curvatures are stationary values of normal curvature k(p) and among them k(p) attains
its minimum and maximum values.

In general, we can diagonalize the Hessian matrix H to obtain the eigenvalues and
eigenvectors of N'(p). Alternatively, the following formulas allow us to compute the

principle curvatures k; and the principle directions v; directly from H, [37].

. _a'Ha+b"Hb (a’Ha—b'Hb) +4a Hb)

- , (11)
2|ve]
||Vf||k]- —a'Ha
a, +blT—
b Ha
||Vf||ki —a'Ha
V. =|a, +b2T) (12)
|V£|k; —a"Ha
a, +b3—bTHa
fori=1, 2, where
T T
a=[la—f,—la—f,0j,b=[Lot of 1 of 6f’-yj. 13)
yox, yox, v|VE| ox, ox, " y|ViE| ox, ox; VL]

-10 -

The trace and determinant of the Gauss map are important intrinsic properties of a
surface.

The mean curvature K(p) of M at p is 1/n times the trace of S(p):

K(p) = race S(p) == >k, (0) (14)

It is the average value of the principal curvatures at p.
The determinant of S(p) is called the Gauss-Kronecker curvature K of M at p.

Ko (p) = det S(p) =] [k, (p) (s)

It is equal to the product of the principal curvatures.

-11 -

Chapter 2

State of the Art
Modeling of Implicit objects

Constructive Solid Geometry

With Constructive Solid Geometry (CSG), an object is evaluated ‘bottom-up’
according to a binary tree. The leaf nodes are usually restricted to low degree
polynomial primitives, such as spheres, cylinders, ellipsoids, half-spaces, and tori. The
internal nodes represent Boolean set operations.

The primitives in CSG may be represented implicitly and combined by set-theoretic
Boolean operations, [40]. These operations may create hard-edged functions that
conventional polygonizers cannot accurately approximate, see Figure 4.

Figure 4. A corner of a cube modeled as intersection of six half-spaces.

The exact analytical definitions of the set-theoretic operations of functionally
described objects have been proposed in the theory of R-functions, [28], and applied for
solving problems of mathematical physics.

Let the geometric object G| be defined as fi(x,y,z) > 0 and the geometric object G,
be defined as f>(x,y,z) > 0. The resultant object will have the defining function as
follows:

R-union =16

R-intersection H=fi&f
R-subtraction f3=\56

-12-

One of the possible analytical descriptions of R-functions is:

£ |f, =L(f1 £, +4/f2 + 2 =20 £/f,)
1+a

1

1+a

f &f, = (f] £, —[f7 +£7 =20.ff,) (16)

where o=a(fi,f) is an arbitrary continuous function satisfying the
conditions -1 < ()L(fl,fz) <1, O((fl,fz) = O((fz,fl) = O((-fl,fz) = O((fl,-fz).

The expression for the subtraction operation is] \ f; = f;&(-f>). Note that with this
definition of the subtraction, the resultant object includes its boundary. If a=1, the
functions (16) become:

f1 [= min(fy.f)
fi&f, = max(fl,fz) (17)

This is the particular case, the functions are very convenient for calculations but have
C! discontinuity when f; = f,. If a=0, the functions (16) take the most useful in practice
form:

f|f, =f, +f, +/f +f,°
£ &F, =f +f, —/f +£,° (18)

The functions above have C' discontinuity only in points where both arguments are
equal to zero. If C™ continuity is to be provided, one may use another set of
R-functions:

£t =(fl o, 1+ f))(fﬁ o))
£ &, =(f1 o, = £ 41, j(ff o)) (19)

The more examples of set-theoretic operations, such as blending (linear, hyperbolic,
super-elliptic), offsetting, bijective mapping, affine mapping, projection, Cartesian
product and metamorphosis can be found in [9], [11], [24], [25], [38].

Skeleton based modeling

The skeleton is a collection of elements, each of which generates a volume. Within
an implicit context, such a volume is called a skeletal primitive, which is denoted by
fi(p), for skeletal element i. Thus, 7is a function from E? (or E? for illustrative purposes)
to E', and, usually, is C' continuous. The implicit surface function may be a blend of
these primitives, i.e., f(p) = g(p, f1.f,....fn) = 0, and the implicit surface is the covering,
or manifold, of the skeleton, [4].

-13 -

When used in a biological context, ‘skeleton’ usually refers to the rigid, mechanical
support system found in most animals. In such a system, a subordinate element rotates
with respect to a superior one.

Although an organism’s inner structure need not be organized hierarchically, for our
purposes we assume that a skeleton is topologically equivalent to a directed acyclic
graph. Such a graph, or tree, organizes the internal components of an object and is,
therefore, a powerful means for the representation and manipulation of the object. The
basic data structure for a skeleton, which we call an element (or, sometimes, limb), is
recursive and contains the following fields, [4]:

- parent: pointer to element

- children: list of pointer to element
- transformation from parent: matrix

- geometry: geometric object

- ancillary data:

The transformation is Euclidean, allowing rotation and translation. Usually the
geometry is a tapered cylinder defined by two three-dimensional endpoints and their
associated radii.

Each skeletal element can readily define a surrounding volume, or primitive.
Although the collection of these volumes may yield a topologically complex surface,
the skeletal elements remain easily defined, articulated, and displayed.

o) 2O

nen-convex, non-convex,
three regions three regions, one hole

=D O

Non-convex, two regions convex, ong region

Figure 5. A skeleton and possible resulting surfaces, taken from [4].

A skeleton is related to its resulting shape but its geometric complexity is not
necessarily comparable to that of the shape. For example, in Figure 5, the skeleton
contains a single loop. Depending on the radii associated with the skeletal elements, the
resulting surface can contain a hole or not, can be convex or not, and can consist of one,
two, or three convex regions.

The skeleton modeling is important for interactive modeling, [39], when a designer
creates a shape by interactively defining the skeleton and various parameters that
control how the skeleton becomes a polygonized surface.

-14 -

Polygonal representation

For many applications it is useful to approximate an implicit surface with a mesh of
triangles or polygons (formally, a discrete set of piecewise-linear, semi-disjoint
elements). Conversion of a functionally specified implicit surface to a polygonal
approximation can require considerable computation, but is required only once per
surface and allows rendering of the surface by conventional polygon scan conversion.
For differentiable £, [29], this is always possible because all manifold surfaces may be
triangulated. Such mesh conversion is popularly known as polygonization.

Approximation error

The approximation error is a measure of difference between the polygonal model and
its mathematical description. There are several possibilities how to evaluate this
difference.

One way is to determine the distance of polygonal mesh’s elements from the real
(mathematically defined) surface. Let the distance between a point x and an implicit
surface be defined as follows:

dist(x) = min{ |x-x, | :f(x,) = 0 (20)

Then, the average error in the vertices positioning (actually, it is the error of a root
finding algorithm) can be evaluated as:

N
Z dist(v,)
E =12 , 21
av N 21)
where vj is a vertex in the triangulation and N is a number of vertices.
The average error of the approximation by triangles can be determined as:
M
> dist(t;)
B — il , 22
at M ()

where t; is the centre of gravity of a triangle and M is a number of triangles.

-15 -

Figure 6. Approximation of an implicit object with a triangular net (contours and lines
in two-dimensional example); distance of point ti (the centre of gravity of a triangle)
from the real surface.

Determination of the exact (real) distance of the given point to the implicit surface is
computationally expensive and, therefore, several approximations are often used.

Each vertex coordinates are usually computed by an iteration process which is
stopped when the function value in the given point is less then some €. In such cases, the
real distance between the surface vertex and the implicit surface is approximated by the
Algebraic distance defined as:

dist , (x) = |f (%) (23)

For normalized implicit functions, the Algebraic distance is equal to the real distance
(Euclidian distance in Euclidian space) but in majority, it is only proportional to the real
distance. For example, the Sphere implicit function is usually defined as:

r’—x’ -y’ -z>=0. (24)

The normalized version of the Sphere function is defined as:

r—yx>+y’+z> =0. (25)

The other approximation of the real distance is the Taubin’s distance, [33], defined
as follows:

[feo)

dist, (x) = el

(26)

The Taubin’s distance is the first order approximation to the exact distance, but the
approximate distance is also biased in some sense, [10]. If, for instance, a data point x is

close to a critical point of the function, i.e., |[Vf (x)||z0, but f(x)# 0, the distance

becomes large which is certainly a limitation.
An alternative evaluation of the approximation error between the implicit model and

its triangular mesh is the comparison of their surface areas. The usage of this
measurement is limited only to implicit functions we know or we can compute their

-16 -

surface area. Surface area of an implicit model approximated by triangles can be
determined as:

M
S, = ZSﬁ , (27)
ti=1

where S; is the surface area of the i" triangle.

Then, the relative error of the approximated model can be computed as:

S

E, =‘1——P : (28)

m

where Sy, is the real surface area of the model defined by the implicit function. As
the model is approximated by triangles we can assume that S, < Sp,..

Exhaustive enumeration

Exhaustive enumeration operates on a set of samples of f arranged as a regular,
typically rectilinear lattice known as a scalar grid or voxel array. The samples may be
experimental, such as CAT and MRI scans, or computed, as in simulations of fluid
flow. The lattice is readily represented by a three-dimensional memory array, which can
be filled by a hardware scanner in constant time.

Once the samples are obtained, each transverse cell is polygonized. Given ¢; and c;,
lattice neighbors of opposite sign, a surface vertex v is usually computed using linear
interpolation:

v=ac, +(1-a)c,, wherea = f(cz)/(f(cz) —f(cl)), f(c,).f(c,)#0 (29)

This method is popularly known as ‘marching cubes’ or ‘marching tetrahedra’. The
standard Marching cubes (MC) and the Marching tetrahedra (MTE) algorithms [3], [4]
are often used for an iso-surface extraction. These methods can be performed both the
continuation schemes (see bellow) and the exhaustive enumeration approaches. The
process of polygonization consists of two principal steps: partitioning the space into
cells and the processing of each cell to produce polygons. Each cell is represented by a
cube or by a tetrahedron. The implicit surface function is evaluated at corners.

A cell is transverse if any of its edges intersects the implicit surface (one edge
endpoint evaluates negatively, the other positively). For each transverse edge, a surface
vertex is computed (by the Infermediate Value Theorem, a point p: f(p) = 0 must exist
along a transverse edge if f is continuous). Function f may be evaluated at arbitrary
locations, which allows methods such as binary sectioning to compute surface vertex
locations with arbitrary precision, unlike linear interpolation. These algorithms seek to
minimize the number of evaluations of f, which may be arbitrarily demanding to
evaluate.

-17 -

The surface vertices belonging to the transverse edges of a cell are connected to form
one or more polygons (alternatively, patches may be produced). The edges of the
polygons lie within the faces of the cell. The order of vertex connectivity is often stored
in a table of polarity configurations of the cell corners. For a cube (8 corners) and a
tetrahedron (4 corners, i.e., a three-dimensional simplex) there are 256 and 16
possibilities, respectively. The 256 possible configurations of a cube can be reduced to
only 15 fundamentals and the others can be obtained by rotation and application of
symmetry. Figure 7a shows the basic 15 configurations of a cube and the configurations
of a tetrahedron are shown in Figure 7b.

a
@ negative function

b A © positive function
case 0000 case 0001 case 0010 case 0011 @ surface vertex
¢ {bd, cd, ad} {ac, cd, be} {ad, bd, bc, ac}

Y,
D
d
¢S
se 10 case 1001 case 1010 case 1011 ‘\
{ab, ad, ac} {ab, bd, cd, ac} {ab, ad, cd, bc} {ab, bd, bc}
\‘.
d
YV

case 1100 case 1101 case 1110 case 1111
{ad, ac, bc, bd} {cd, ac, be} {bd, ad, cd} {

°

case 0100 case 0101 case 0110 case 0111
{ab, bc, bd} {ad, ab, bc, cd} {ab, ac, cd, bd} {ab, ac, ad}

L

producing a trian?Ie
or quadrilateral
16 table entries

a) b)

Figure 7. a) The basic 15 configuration of a cube, b) the configuration of a tetrahedron,
taken from [3].

Because the tetrahedral edges include the diagonals of the cube faces, the tetrahedral
decomposition yields to a greater number of surface vertices per surface area than the
cubical polygonization does.

The Marching cubes and the Marching tetrahedra algorithms generate a triangular
mesh which is much influenced by a regular grid. Therefore, next adjustment of the
mesh is suitable.

The application of the Marching cubes algorithms includes electron motion,
computational electromagnetic, polypeptide visualization, biomedical visualization,
molecular modeling, etc.

Piecewise-Linear continuation

Piecewise-linear principles have been applied to implicit surfaces using a tetrahedral
cell and a cubic cell, [3], [34]. Beginning with a single transverse ‘seed’ cell, new cells
are propagated across transverse faces until the entire surface is enclosed.

Because only transverse cells are generated, piecewise-linear continuation requires
O(N?) function evaluations, where N is a measure of the size of the object (thus, N
corresponds to the object’s surface area, [3], [4]), see Figure 8. In comparison,
exhaustive enumeration requires O(N®) samples. Compared with subdivision,
continuation appears less prone to under-sampling.

-18 -

surface

N

Figure 8. Continuation scheme, 2D example for illustration, taken from [3].

Exhaustive enumeration yields all disjoint surface components (with detectable size).
Continuation, however, produces a single component for each seed cell; to polygonize
all disjoint surface components, continuation must be performed for each, using an
appropriate seed cell.

Predictor-Corrector continuation

Predictor-corrector methods [1], [14], [15], [16] apply directly to the surface,
creating elements (usually triangles or polygons) by joining an initial surface point with
additional points. New points are computed by displacement from a known point along
the tangent plane and then corrected (e.g., using Newton iteration) onto the surface.
These methods are problematic for surfaces because surface vertices are not intrinsically
ordered (unlike a one-dimensional contour), which complicates detection of global
overlap.

Figure 9. Continuation scheme, new triangles are directly
generated on an implicit surface.

Marching triangles
The idea of the Marching triangles (MTR) algorithm, [14], consists of five steps:

Step 0: Arbitrarily choose a starting point s in the neighborhood of the surface and
find the point p; that lies on the surface. Surround p; with a regular hexagon
q2,--..q7 in the tangent plane. Determine the points p,,...,p7 corresponding to the
starting points q,...,q; that lie on the surface (Figure 10a). The triangles
(p1.pipi+1) are the first six triangles of the triangulation. The ordered array of
points pa....,p7 form the first actual front polygon' []o.

! the border of the triangulation

-19-

Step 1: For every point of the actual front polygon []o, determine the angle of the
area till to be triangulated and form front angles (Figure 10b).

Step 2: Check if any point p; of the actual front polygon is near:

a) to a point of []o that is different from p; and its neighbors. Then divide the
actual front polygon []o into a smaller one and an additional front polygon
(Figure 11a).

b) to a point of any other front polygon [[n, m>0. Then unite the polygons []o,
[Im to a new and larger actual front polygon (Figure 11b). Delete [[1.

AR
| circle in q;angent plane

triangulated area

near points

a)

ITi

triangulated area

near points

b)

Figure 11. (a) Dividing the actual front

o e polygon (step 2a of the MTR algorithm) and
Figure 10. The first steps of the (b) uniting two front polygons
Marching triangles algorithm, (step 2b of the algorithm).

taken from [14].

Step 3: Determine a front point p; of the actual front polygon [[p with a minimal
front angle. Surround p; with triangles with angles ~ 60°. Delete p; from the actual
front polygon [[y and insert the new points into the actual front polygon [.

Step 4: Repeat steps 1-3 until the actual front polygon [y consists of only three
points that generate a new triangle. If there is another (nonempty) front polygon
left, it becomes the new actual front polygon []o and steps 1-3 are repeated. If
there are no more front polygons then the triangulation is finished.

Adaptive polygonization

Polygonization is a sampling process. If the spacing between samples is large with
respect to surface curvature, detail is lost. Resolution requirements may also change
with viewpoint. Any fixed sampling rate may be excessive for relatively flat regions of
the surface and insufficient for relatively curved regions. If the cell size is inversely
proportional to local curvature, the resulting adaptive polygonization minimizes

-20 -

polygon count while maintaining geometric accuracy. Both subdivision and
continuation may be performed adaptively, [1], [7], [30]. Accurate representation of
non-differentiable £, however, may require explicit computation of its singular points.

Adaptive Marching cubes

The estimate of the surface may be improved by subdividing those cubes containing
highly curved or intersecting surfaces. As is introduced in [7], using the polygon
resulting from an octree node, criteria for subdivision of the node include:

- whether any edge of the cube intersects the surface,

- whether a maximum subdivision depth or a minimum cube size has been
reached,

- whether more than one polygon results from the cube,

- the planarity of the polygon, and

- the divergence of vertex normals from the normal at the polygon center.

Given the polygon vertices, pi, their unit length normals m;, and the unit length
normal n at the polygon center, the planarity of the polygon can be estimated by:

max (vi- n), i € [1,nPoints] and v; the unit length vector (p;,pi+1), and the divergence
of the vertex normals can be estimated by:

min (n;* n), 1 € [1,nPoints]

Certain topological criteria, [13], warrant the subdivision of an adjacent cube. If the
edge of a parent cube connects two equally signed corners and the midpoint is
differently signed, as in Figure 12 left, then the three neighbors along that edge should
be subdivided. For each face of a parent cube, if the four child corners that are
midpoints of the four edges of the face all agree in sign but disagree with the center of
the face, Figure 12 right, then the face neighbor should be subdivided. Without such
subdivision, a hole will appear in the surface.

Z e
v
\
\\ -
% ; E 4%
i 4
\ H
\
; - S
Edge Nfl;qhbor‘r- . Pt
4
Edge Neighor 2 /Edge Neighbor 3 Face Neighbor,
’
.

Figure 12. Conditions warranting subdivision of adjacent cubes;
midpoint of an edge (left) and midpoint of a face (right), taken from [7].

The generalized cylinder in Figure 13 was created by this adaptive algorithm.

221 -

I
A
[

R
/Tl

N

| .

- Zara
I 1
T
1

R 7

N " =

Figure 13. Adaptively subdivided generalized cylinder, taken from [7].

Adaptive Marching triangles

The algorithm introduced in [1] is based on the surface tracking approach. Starting
from a seed triangle on an implicit surface, the marching triangles algorithm iteratively
creates new triangles on the surface from the boundary edges. It is the improved version
of the method [15] with adaptivity depending on surface curvature.

The edges of the seed triangle are inserted into the list of boundary edges. New
triangles are created from the boundary edges and their new edges are appended to the
end of the list, referred as L.. Each new generated triangle has to satisfy the Delaunay
property: A triangle T(xy,Xk+1,Xp) can be added to the mesh boundary at edge e(Xi,Xi+1)
if no part of the surface of the existing mesh, i.e., no existing triangle, intersects the
sphere centered at cr circumscribing the triangle T(xp,Xk,Xk+1) With the same orientation
(see Figure 14).

Figure 14. Creation of a new triangle T: the empty sphere criterion does not apply as
the sphere S intersect another part of the mesh (at vertex x;) whose surface normals nt-
and np~ exhibits a different orientation than nt. The picture is taken from [1].

The algorithm proceeds as follows, iteratively analyzing each edge e(xy,Xk+1) in the
list:

1. Create a new vertex x in the plane of the triangle T(x;,xk,Xx+1) that contains the
edge e(xk.Xk+1). This point will be used as a first guess in the computation of the
surface vertex x,.

2. Create a new surface vertex X, by projecting x onto the implicit surface
following the gradient of the field function Vf .

3. Apply the Delaunay surface constraint to the new triangle T(x,Xk,Xi+1) and
proceed as follows:

-2

a. If T(xp.Xk.Xk+1) passes the constraint, then add the triangle to the mesh and
stack the edges e(xp.Xx) and e(Xp,Xi+1) to the list of edges L. that need to be
processed.

b. If T(xp.Xi.Xk+1) does not pass the constraint, check if one of the triangles
T(Xk-1,.Xk,Xk+1) and T(xg,Xk+1,Xk+2) satisfy the Delaunay surface constraint,
and modify the mesh accordingly if needed.

c. Otherwise, step over the edge e(xy.Xk+1) to the next candidate edge.

4. Close the cracks that may appear in the triangulation.

The method is implemented as a single pass through the edge list L.. Whenever the
mesh growing scheme fails, the edges are left in the edge list. At the end of the
algorithm, L. forms an open contour in the polygonization. Enclosing of the left edges is
in detail described in [1] and it is not necessary for understanding to the adaptive
polygonization principle that is described in the next paragraphs.

In [15] the point x, is computed by projecting a point X on the surface, where x is
created at a constant distance d from the edge e in the plane of the triangle 7. Authors in
[1] used a better approach consists in adapting the parameter d to the local curvature of
the surface.

Anticipating the local curvature of the field function consists of the three
following steps.

1. Geometry correction step. Let x,, denote the mid point of the boundary edge e.
At first, the point Xy, is projected onto the implicit surface in the direction of the
gradient Vf(x) so as to fit to the local geometry of the implicit surface, see
Figure 15. This step creates a new point on the surface denoted as x;.

Figure 15. Characterization of the surface point x; and the projected
point x,, taken from [1].

2. Computation of the starting point. Let t be the unit tangent vector (see Figure 15)
to the surface at the surface vertex position x; defined as:

e xVi(x,)
t= e, x VEx)| 30)

-23 -

The point x may be written as x=x,t+dt where d is a variable distance
parameter computed as:

V3 ||ek_1 ” + ”ek ” + ||ek+1 ”

d=—=¢, where €=
2 3

, G

and the edges ey.|, ex+] are the neighboring edges of the edge ey.

The wvariable d 1is constrained with some limit value dp;, and
if d<dmin then dpey = 3/4d + 1/4dmin.
Computation of the new surface vertex. Let x and y denote the two points that
converge to the surface by following the gradient of the field function. The
algorithm may be written as follows:

a. Initialize y with the starting point x.
b. While both points are on the same side of the implicit surface, i.e., f(x)
and f(y) are of the same sign, perform the following sub-steps.

- Evaluate an approximation of the distance to the surface by the Taubin’s
distance, equation (26).

- Compute the new location for point y, marching from x along the
direction of the gradient vector V{(x) .

Cu f(x)V1(x)
Vi

(32)

where o is a scalar factor.

- If f(x) and f(y) are of the same signs, store y in x and restart loop at
step b.

c. When the algorithm reaches this step, x and y are on opposite sides of the
surface, so perform bisection over the line segment [x,y].

Surface refinement

One possible solution for polygonization of implicit object with sharp features is
refinement of an initial triangular mesh, [2], [18], [21], [22], [36]. Simple, efficient and
numerically stable algorithm is used for constructing of an initial mesh. Algorithms
based on the marching cubes principle are often used. A coarsely polygonized surface is
followed by subdivision of insufficiently accurate polygons. For example, if the center
of a triangle is too distant from the surface, the triangle may be split at its center, which
is moved to the surface. Similarly, a triangle may be divided along its edges if the
divergence between surface normals at the triangle vertices is too great.

-4 -

Figure 16. The initial mesh (left) created by the Marching cubes algorithm and its
optimized version (right), taken from [22].

The algorithm introduced in [22] consists of following two steps. Given an implicit
surface f(x,y,z) = 0 and its initial polygonization then the mesh optimization procedure
is as follows.

1. Construct the dual mesh consisting of the centroid of the original mesh, modify
the dual mesh by projecting its vertices onto the implicit surface, and find the
tangent planes at the vertices of the modified dual mesh.

2. For each vertex, update its position by minimizing an error function equal the
sum of squared distances from the vertex to tangent planes at the neighboring
vertices of the modified dual mesh.

The method has several limitations. The mesh optimization process does not change
the topology of an initial coarse mesh. Therefore, if fine topological details are not
captured by the initial mesh, the method may produce a wrong reconstruction of the
implicit surface. Another drawback of the method is a large number of calls of a
function which defines the implicit surface. If the function is very complex, the method
becomes computationally expensive.

Non-Manifold polygonization

Although a manifold-with-boundary may be specified by a continuous function, all
points off the zero set are of the same sign. Consequently, conventional polygonization
fails. A non-manifold can be implicitly represented by extending the definition of f'to be
the separation between arbitrary regions of space. A continuation method using this
scheme is given in [8].

Figure 17. Polygonized non-manifold, taken from [8].

-25-

Chapter 3

Previous work and conclusions

Marching triangles improvement

Acceleration

The original algorithm described in [14] contains some parts that can be
implemented more effectively. The most time-consuming part is the distances checking
of the front polygons’ points (Step 2 of the MTR algorithm mentioned above). Our
modification of the algorithm is directed precisely towards achieving this step.

One possible solution is the subdivision of the computing area into smaller sub-areas.
Each sub-area contains only one part of a set of front polygons’ points. The average
number of points in sub-areas depends on the sub-areas’ size. Our main requirement is
to minimize the number of distance checks, i.e. a selection of the most restricted set of
points into which the actual front polygon can be divided or united.

The actual front polygon is divided or united only if the distance between two
specified points is shorter than some limit distance ¢ (more information in [14]).
Therefore, the most suitable choice for the size of the sub-areas side is o, i.e. the shape
of sub-areas is a cube. For this choice, the distance checks (FDC and SDC) can be
accomplished only with front polygons’ points which lie in adjacent sub-areas of the
new point’s area. Figure 18 shows a distance check for a new included point (for
illustration only the E* example).

front polygon

(i-14+1) |@,j+1) (i+1+1)
{ o O
*\nea‘rest}ﬁ) 21; subarea list of points
(i-1) (. it+1,)) 1 R . IR = IR == "1IE = 1IN
new point 2 < =
L 3 € Dk PE jep po]
(-13-1) |Gg-D) |G

{ !

b } !
neighboring subareas

yf ‘actual ffront polygon N < pi P2
< »|
=) Figure 19. The data structure for the
Figure 18. Space subdivision scheme. space subdivision scheme.

=26 -

Each sub-area contains a list of front polygons’ points located inside. The data
structure used for subdivision scheme, is shown in Figure 19. Each front polygon also
has its own set of points (similar as above) and each point contains one pointer to its
sub-area and one pointer to its front polygon as well.

Edge detection

Detection of sharp edges is a modification of the MTR method (mentioned above) at
the step of finding location of a new point (in step 3 of the MTR algorithm). The
principle of the algorithm is in knowledge of normal vectors in points p and q. The
point p already has its own accurate position and the point q lies in the tangent plane of
the point p. Then the algorithm is as follows.

5. initialization, a = p, b = q, n, ... normal vector in the point a, n; ... normal
vector in the point b

6. c¢=0.5%Ca+b) ... binary subdivision between the points a, b

7. let the normal vector in the point ¢ be n., and a be the angle between vectors n,

and n,

ifoa>o;nthenb=celsea=c

9. if the distance between points a, b is less then some ¢, the desired point is b, else
return to step 2

*®

ST ISR

AN ‘%vnxﬁﬁ\\\‘@\
AiravaRo | !
oo st

o
%
X

Figure 20. The implicit object modeled as intersection of two spheres; polygonized
a) without edge detection; b) with edge detection algorithm.

Note: The algorithm works well, see Figure 20, but it is simple and does not contain
another improving of the shape of triangles lying near the edge, see Figure 20b, the
triangles are deformed by the edge.

Edge spinning algorithm and its acceleration

We have developed a new algorithm for polygonization of the implicit surfaces. The
Edge spinning (ES) method put emphasis on the shape of triangles generated and on the

-27 -

polygonization speed. The algorithm is a variant of marching triangles methods [1],
[14], [15], [16], i.e. it is based on the continuation (surface tracking) scheme.

Data structures

The presented algorithm works only with the standard data structures used in
computer graphics. The main data structure is an edge used as a basic building block for
the polygonization. We use the standard winding edge and therefore, the resulting
polygonal mesh is correct and complete with neighborhood among all generated
triangles. If a triangle’s edge lies on the triangulation border, it is contained in the list of
active edges (dynamically allocated list) and it is called as an active edge. Each point
contained in an active edge has two pointers to its left and right active edge (left and
right directions are in active edges’ orientation).

Idea of the algorithm

Our algorithm is based on the surface tracking scheme and therefore, there are
several limitations. A starting point must be determined and only one separated implicit
surface can by polygonized for this first point. Several disjoint surfaces can be
polygonized from a starting point for each of them. The whole algorithm consists of
following steps:

Find a starting point po.

Create the first triangle T, see Figure 21a.

Include the edges (eg.e1,e2) of the first triangle T into the active edges list.

Polygonize the first active edge e from the active edges list.

Delete the actual active edge e from the active edges list and include the new

generated active edges to the end of the active edges list.

6. Check the distance between the new generated point pyew and all the other points
lying on the border of already triangulated area (lying in all the other active
edges).

7. If the active edges list is not empty return to step 4

W=

pk_r2

pk_1l -

“pk ... nearest point

! O :
triangulation border LTSl LD

\
. \\
pi_r2 "\

piti

pii2

a) b)

Figure 21. a) The first steps of the Edge spinning algorithm; b) Distance ¢ between the
new point p; and the nearest point py.

-28 -

Root finding

The algorithm looks for a new points’ location by spinning of edges of already
generated triangles. Usually, the polygonization algorithms seek points’ coordinates
following the gradient of an implicit function, [14]. Differential properties, [29], for
each implicit function are different with the dependence on the modeling technique;
therefore, the computing of a gradient of function f is influenced by a major error.
Because of these reasons, in our approach, we have defined these restrictions for finding
a new surface point ppew:

The new point ppew is sought in a constant distance, i.e. on a circle; then each
new generated triangle preserves the desired accuracy of polygonization — the
average edge’s length Je. The circle radius is proportional to the J.

The circle lies in the plane defined by the normal vector of triangle Tqyq (see
Figure 22) and axis o of the actual edge e; this guarantees that the new generated
triangle is well shaped (isosceles).

Figure 22. The root finding principle.

Then, the algorithm is as follows:

1.

Set the point ppew to its initial position; the initial position is on the triangle’s Toq
plane on the other side of the edge e, see Figure 22. Let the angle of the initial
position be a=0.

Compute the functional values f(ppew) = f(@), f(P'new) = f(a+Aa) — initial
position rotated by the angle +Aa, f(p”new) = f(a-Act) - initial position rotated by
the angle -Aa; the rotation axis is the edge e.

Determine the right direction of rotation; if |f(a+Aa)| < [f(at)| then +Aa else -Aat.
Let the functional values be f;=f(a) and f, =f(atAa); actualize angle
o = otAa.

If (f; - f) <0 then compute the accurate coordinates of the new point ppey by the
binary subdivision between the last two points corresponding to functional
values f; and f5; else return to step 4.

Check if both triangles Tyg and Tpew do not cross themselves; if the angle
between these triangles f > Bim (see Figure 23) then point pyey is accepted; else
point ppey 1S rejected and return to step 4.

-29.

TnCW
D%

Figure 23. Angle between two triangles; the view is in direction of the edge’s vector e.

Distance test

The Edge spinning algorithm marches over the surface of an implicit object. During
this process, the new included point into the triangular mesh can lie near to the
triangulation border (border of already triangulated area), see Figure 21b. The algorithm
looks for the nearest point p, to the new point p;, which lies on the triangulation border.
If the distance 0 is less then dji, then the algorithm has to solve this situation. The
original algorithm checks distances with the algorithm complexity O(N), where N is a
number of points on the triangulation border. This is the most time consuming part of
the algorithm and its acceleration is suitable.

Acceleration

The original distance check algorithm takes more time if required scene details grow
(growing number of points on the triangulation border). In case that the new included
point can lie near to any point of the boundary, it is not possible to determine some
subset of candidates to the nearest point ahead.

Advantageous solution is dividing of space into sub-spaces (sub-areas), similarly as
in case of the Marching triangles algorithm above. The date structure of the point has to
be extent of a pointer to its sub-area. Each sub-area contains its own list of incidence
points, similarly as in Figure 19.

Then, the nearest point must lie in the same sub-area like the new included point or
in the closest neighborhood. In order to validity of this theorem the next equation must
be valid as well: 6 > d;m, where o is the size of sub-areas (cube shape), see Figure 24,
and Jjip, 1s the limit distance for distance check.

trianngation border
o

G-14+1) [Gj+1) [G+1j+1)
o
0
BN nearest ﬁ)}tﬁ
(1) | 1)
new point
o m)
(-14-1) |G- |GEN-D
of o
[m} . .
neighboring subareas
i
y c

X

Figure 24. The space subdivision scheme for the Edge spinning algorithm.

-30 -

The algorithm complexity of this solution is O(M), where M is a number of points in
adjacent sub-areas and M<<N. Figure 24 shows 9 possible sub-areas in E* case, there
are 27 possible sub-areas in E* case.

If we divide the computational time into two parts, the polygonization time and the
distance check time, Figure 25 shows the percentage ratio of time with and without
acceleration.

Polygonization time Polygonization time
6,8% 70,3%

Distance test time Distance test time
a) 93,2% b) 29,7%
Figure 25. The time ratio between the Polygonization time and the Distance test time of
the ES algorithm; a) without the space subdivision scheme,
b) with the space subdivision.

The time needed for distance checking was significantly decreased. This acceleration
technique is effective in result and simple for implementation. More examples are in the
next section.

Experimental results

All the next experiments were accomplished on the implicit object Genus 3, Figure
26. Its implicit function is described as follows:

et 12| 2] ooy es-leny oo,

I, r,

where r,=6, 1,=3.5, r,=4, r;=1.2, x,=3.9. (33)

S

I
NERNN
AANTAS

NN SIS
S DDA

Figure 26. The implicit object Genus 3, 2 784 triangles, 1 388 vertices.

231 -

The implemented algorithms and methods have been included into the Modular
Visualization Environment, [19], [27], developed by the Centre of Computer Graphics
at University of West Bohemia.

Accelerated Marching triangles

Figure 27 shows the speed-up between the original MTR algorithm and the
accelerated one. It can be seen that speed-up grows with the resolution linearly in the
range of resolution used for experiments. The experiments proved that the proposed
algorithm is especially convenient for cases where highly detailed objects are to be
generated. Nevertheless, even for small resolution the proposed algorithm is
significantly faster than the original one [14].

1000

831

40

100

106

Speed-up

43

10

160 240 400 630

Figure 27. Speed-up between the original MTR algorithm and
the accelerated version.

Table 1 contains values measured during this experiment. The next histogram, Figure
28, illustrates that the triangular mesh generated by the accelerated version of the MTR
method consists of triangles with the similar shape properties.

N 160 | 240 | 400 630

. Triangles | 15 535| 34 945| 97 785| 244 295
grglfr‘ﬁi;MTR Vertices | 7763 | 17468| 48886| 122143
fime [ms] | 5 147] 27 600|340 459 2 263 275

Triangles | 15 679| 35 067| 97 867| 244 103

gz‘c’)ﬂfﬁi‘ad MIR otices | 7835] 17529] 48920] 122047
time [ms] 120 260 1001 2 724

Table 1. Values measured for both versions of the MTR algorithm.

The N variable, used in Figure 27 and in Table 1, represents a desired object detail.
Specifically, the average triangles edges’ length is proportional to N and to the
computing area’s size as well. With growing N, the triangles’ edges are shorter, i.e. each
side of the computing area is as though divided into N parts and length of such part is

-32-

in
1

d

[<-16,16>,<-16,16>,<-16,16>].
isua

For v

d by these algorithms.

S S1Z€ us€

) for the MTR

1€

O Original
B Accelerated

see Table 1.

b

-80 80-90 90-100

degrees

n
630

70 70

shape (angle distribution

50-60 60
Angle's intervals
les’
generated for N

-50
and the Marching cubes [3] algorithms

>

3040 40
ithms
inning,

algor

,00
,00
,00
,00

Number of angles [%]
35,00
30,00
25,00
20
15
5
0

10,00

[<Xminaxmax>><Ymin>Ymax>9<Zmin>Zmax>]
Igorithm

Figure 29 shows the Genus 3 object polygon

S is
>l

t

inning a

Figure 28. Histogram of the triang
les [14], Edge sp

experimen
At first, we compare a number and shape of triangles generated by the Marching

the average edges’ length of generated triangles. The computing area’
triang

Edge sp
comparison

SRS
R
L AvAT ATAY o b o
SRR
SSEEROORRK]
AR
SRR
AR
SRR

N
1%

X

3
N

3
A,
O

Wy,
%

K

KA
S

Rt ROK9AT

AT) 0T A

KD ARRISOK] ey,

£ SR SO KA

s STaTATaTay, STAVATOTY, A
ek ATV AN Wi s o
e YAV, VA VYA A R
FarAV AT A e
AN I 0 i
AT AT ATALY, 7, Y % A7avivy
R X
RRRISRISISRORS AR,

ERRRPRB SRR o

t

12

b

1S experimen

inning

)

2

30. Th

TAVAY)

'V
STpraraa

X

2

SO

PO
OO
R R S RS S
T ATAVAN S ALy

i
W
TN

ANy

S S e

) SR DN
KRNI ODDRSRE OB SIS
R AL R
DA SNSRI TSRO AR NN A A KT
R I KRR RN
A O R SR
VO o I
) KKSRDROSI0SSEES e
OGRS PKERRS
A CKRAAAA L3 SRS
RO A O
ARSI, PRI
KPR i
RN Ao
ORI O
DR KT
RO K
PO DR
SR R
R Kl
o b

S e (NN
S R oA
e
RN KK 5555
ST ave TS
SN IS

igure

bes algorithm.

F

rave

252

201
s,
SR

S

vAvaYy

ing cu

al
PN

o

v

hown

1S S

dence
-33-

ARSI
FOROREOOOSERY
RS
S

A

R
SRR
R

X R

RO DR iTAvaN,

SRR S

HIACK

v

XA

G

XA

TR

BAARN

K]

0y

Kl

%

N

K

<

RE) K]

5)

KN K

) <

SN KI%

ROORERER KX
ATAvATS S AT LSS

O R {4

R N A,

SO RIS A2 KISKIN

DO R R R SRR A KK

OO RRI LA oA KN

S ATATTAYAva S ATy Aﬂﬂﬂﬁﬁﬁhsﬂﬂn KK

DK

X SR R O

KX KR

OO IS

oL
Pos
ooy
e
2

7
i

o
£
5
ALK

4
yAvaA"
v
e
W0
7

S el
VAV s SVAYS i
ORI
Sl
e

¢) by the March

inci

>

AT

AT raTATATATATATATAT,

SO0

T T

Figure 29. The Genus 3 object generated by a) the Edge sp
b) the Marching triangles

The percentage ratio of the angles
demonstrates that the Edge spinning algorithm has the highest number of angles in

triangulation in interval <50°, 70°>. The Marching triangles method also generates well-
shaped triangles and the Marching cubes algorithm generates poor polygonal mesh. The
presented results were verified by using many nontrivial implicit surfaces.

50,00 —

45,00 | — DEdge§p|nn!ng ||
= 40,00 EMarc:!ng trlabngles ||
E 35,00 arching cubes
D 30,00
&

5 25,00
5 20,00
Ke]
£ 15,00
=]
Z 10,00
5,00
0,00 - A 0 a o o
o (o] (@] o (=] (o] o (@] (@] o o (@] (@] o
-~ N o < o © N~ (o] (o] (=] ~ N [sp] <
© © © © © o © © o T T T % %
-~ N o < w © ~ «© Q (o] o (o] (o]
® @ T & @&
Angle’s intervals in degrees

Figure 30. Histogram of angle distribution of triangular mesh,
generated for N=1000, see Table 2.

Table 2 contains measured values from which follows that the Edge spinning
algorithm generates about 15% triangles less then the Marching triangles algorithm and
about 24% less then the Marching cubes algorithm.

N 160 240 400 630 1000
Edge spinning Triangles 13368 29892 81708|207290| 521 320
Vertices 6680 14942| 40850| 103 641| 260 656
Marching triangles | Triangles 15689 | 35267 97943 244 107 613 641
Vertices 7840| 17 629| 48967| 122 049| 306 816
Marching cubes | Triangles 17568 39520] 109 608 | 271 344 | 684 016
Vertices 8772 19756| 54800(135668 | 342 004

Table 2. A number of triangles and vertices generated by mentioned algorithms.

Conclusion

We have presented a new fast modification of the Marching triangles algorithm,
originally introduced in [14]. The used acceleration technique is an effective way to
speed-up such type of geometric algorithms. The similarly good results were obtained
by application to our new algorithm Edge spinning. This algorithm marches over the
implicit object’s surface and computes the accurate coordinates of new points by
spinning the edges of already generated triangles. The ES method puts emphasis on the

-34 -

shape of triangles of the resulting polygonal mesh but the presented algorithm can
polygonize implicit surfaces which comply C' continuity. In future work, we want to
modify the current algorithm for implicit functions with sharp features and with only C°
continuity.

We have introduced the simple principle how to detect sharp edges in an implicit
object. This approach was verified by the Marching triangles method and the obtained
results proved its efficiency.

-35-

Chapter 4
Further research

All the polygonization algorithms developed so far have always had several
disadvantages. The volume approaches (methods based on the Marching cubes and
tetrahedra principle) usually generate polygonal meshes consisting of badly-shaped
triangles. Due to the next processing, these meshes have to be further modified:
improvement of the shape of triangles, reduction of the number of triangles in regions
with a low curvature, etc. The reason why they are still in use is the fact that these
methods are numerically stable. On the contrary, the surface approaches (methods based
on the Marching triangles principle) generate well-shaped triangular meshes consisting
of triangles shaped close to equilateral. These methods are limited by their high
numerical sensitivity to the properties (continuity, differentiability, etc.) of the given
implicit model.

In our previous work, we have verified and explored in the details the properties of
the mentioned polygonization methods. In our further research, we will develop a
hybrid algorithm that will take advantages of the both approaches (the volume based
and the surface based). The algorithm will generate a triangular mesh locally adapted to
the surface curvature. The whole polygonization algorithm will be controlled by the
approximation error proportional to the distance of triangles from the real implicit
surface, deviation of surface normals, surface curvature, etc. Our primary objective is
the robustness of that algorithm and its independence on the concrete implicit object.
The second objective is the polygonization speed, because the algorithm should be at
least as fast as the volume approach with its surface refinement.

To sum up all the information given above, the aims of the doctoral thesis are as
follows:
- to find a proper evaluation of the approximation error for controlling the
polygonization process,
- to develop the algorithm solving implicit functions with only C° continuity,
- to minimize the approximation error in places with high curvature.

-36 -

References

[1]
2]
[3]
[5]

[6]

[16]
[17]
[18]

[19]

Akkouche, S., Galin, E.: Adaptive Implicit Surface Polygonization using
Marching Triangles, Computer Graphic Forum, 20(2): 67-80, 2001.

Balsys, R.J., Suffern, K.G.: Visualisation of Implicit Surfaces, COMPUTERS &
GRAPHICS 25, 89-107, 2001.

Bloomenthal, J.: Graphics Gems IV, Academic Press, 1994.

Bloomenthal, J.: Skeletal Design of Natural Forms, Ph.D. Thesis, 1995.
Bloomenthal, J., Bajaj, Ch., Blinn,J., Cani-Gascuel, M-P., Rockwood, A.,
Wyvill, B., Wyvill, G.: Introduction to Implicit Surfaces, Morgan Kaufmann,
1997.

Bloomenthal, J.: Implicit surfaces, Unchained Geometry, Seattle.

Bloomenthal, J.: Polygonization of Implicit Surfaces, Computer Aided Geometric
Design, vol. 5, no. 4, Nov. 1988, pp. 341-355.

Bloomenthal, J., Ferguson, K.: Polygonization of Non-Manifold Implicit Surfaces,
Computer Graphics, pp. 309-316 (Proc. SIGGRRAPH 95).

Dekkers, D., Overveld, K., Golsteijn, R.: Combining CSG Modeling with Soft
Blending using Lipschiz-based Implicit Surfaces, 1996.

Faber, P., Fisher, R.B.: Pros and Cons of Euclidean Fitting, Proc. Annual German
Symposium for Pattern Recognition (DAGMO1, Munich), Springer LNCS 2191,
Berlin, pp 414-420.

Gomez, J., Velho, L.: Implicit Objects for Computer graphics, IMPA, 1998.

Hart, J.C.: Ray Tracing Implicit Surfaces, SIGGRAPH 1993, pp. 1-16.

Hart, J.C., Stander, B.T.: Guaranteeing the Topology of an Implicit Surface
Polygonization for Interactive Modeling, SIGGRAPH 1997, pp. 279-286.
Hartmann, E.: A marching method for the triangulation of surfaces, The Visual
Computer (14), pp.95-108, 1998.

Hilton, A., Stoddart, A.J., Illingworth, J., Windeatt, T.: Marching Triangles:
Range Image Fusion for Complex Object Modeling, International conf. On Image
Processing, Lusanne, 1996, pp. 381-384.

Hilton, A., Illingworth, J.: Marching Triangles: Delaunay Implicit Surface
Triangulation, Computer Graphic Forum 20 (2) pp. 67-80, 2001.

“Hyperfun: Language for F-Rep Geometric Modeling”,
http://cis.k.hosei.ac.jp/~F-rep/

Kobbelt, L.P., Botsch, M., Schwanecke, U., Seidel, H.-P.: Feature Sensitive
Surface Extraction from volume data, SIGGRAPH 2001 proceedings.

MVE — Modular Visualization Environment project,
http://herakles.zcu.cz/research.php, University of West Bohemia in Plzen, Czech
Republic, 2001.

-37 -

[20]

[21]

[23]

[24]

[33]
[34]
[35]
[36]
[37]

[38]

[39]

Ning, P., Bloomenthal, J.: An Evaluation of Implicit Surface Tilers, IEEE
Computer Graphics and Applications, vol. 13, no. 6, IEEE Comput. Soc. Press,
Los Alamitos CA, Nov. 1993, pp. 33-41.

Ohraje, Y., Belyaev, A.G., Pasko, A.: Dynamic Meshes for Accurate
Polygonization of Implicit Surfaces with Sharp Features, Shape Modeling
International 2001, IEEE, 74-81.

Ohtake, Y., Belyaev, A.G.: Dual/Primal Mesh Optimization for Polygonized
Implicit Surfaces, ACM Solid Modeling Symposium, Saarbrucken, Germany,
ACM Press, 2002, pp. 171-178.

Pasko, A., Adzhiev, V., Karakov, M., Savchenko, V.: Hybrid system architecture
for volume modeling, Computer & Graphics 24 (67-68), 2000.

Pasko, A., Adzhiev, V., Sourin, A., Savchenko, V.: Function Representation in
Geometric Modeling: Concepts, Implementation and Applications, The Visual
Computer, 8 (2), pp. 429-446, 1995.

Pasko, A., Sourin, A., Savchenko, V.: Using Real Functions with Application to
Hair Modeling, C&G(20), 1996, pp. 11-19.

Rektorys, K.: Piehled uzité matematiky, the textbook of mathematics (in Czech),
SNTL 1981.

Rousal, M., Skala, V.: Modular Visualization Environment - MVE, Int. Conf. ECI
2000, Herlany, Slovakia, pp.245-250, ISBN 80-88922-25-9.

Rvachev, A.M.: Definition of R-functions,
http://www.mit.edu/~maratr/rvachev/p1.htm

Shapiro, V., Tsukanov, I.: Implicit Functions with Guaranteed Differential
Properties, Solid Modeling, Ann Arbor, Michigan, 1999.

Shu R., Zhou, Ch., Kankanhalli, M.S.: Adaptive Marching Cubes, The Visual
Computer, 11: 202-217, 1995.

Stoker, J.J.: Differential geometry, New York: Willey-Interscience, ISBN 0-471-
50403-3, 1989.

Takahashi, T., Yonekura, T.: Isosurface Construction from a Data Set sampled on
a Face-Centered-Cubic Lattice, Int. Conf. ICCVG 2002, Zakopane, Poland, ISBN
839176830-9.

Taubin, G.: Distance Approximations for Rasterizing Implicit Curves, ACM
Transactions on Graphics, January 1994.

Triquet, F., Meseure, F., Chaillou, Ch.: Fast Polygonization of Implicit Surfaces,
WSCG 2001 Int.Conf., pp. 162, University of West Bohemia in Pilsen, 2001.
Uhlit, K., Skala, V.: Kompilovany HyperFun, Research report (in Czech) No.
DCSE/TR-2002-07, University of West Bohemia, 2002.

Velho, L.: Simple and Efficient Polygonization of Implicit Surfaces, Journal of
Graphics Tools, Volume 1 Number 1, 1996, pp. 5-24.

Velho, L., Gomes, J., Figueiredo, L.H.: Implicit Objects in Computer Graphics,
Springer, ISBN 0-387-98424-0, 2002.

Wyvill, B., Guy, A., Galin, E.: Extending the CSG Tree Warping, Blending and
Boolean Operations in an Implicit Surface Modeling System, Computer Graphics
Forum, 18(2), 149-158, June 1999.

Wyvill, B., Bloomenthal, J.: Interactive Techniques for Implicit Modeling,
Symposium on Interactive 3D Computer Graphics, Snowbird, UT, in Computer
Graphics, 24, 2, Mar. 1990, pp. 109-116.

-38 -

[40] Wyvill, B., Overveld, K.: Polygonization of Implicit Surfaces with Constructive
Solid Geometry, Journal of Shape Modeling, vol. 2, no. 4, World Scientific
Publishing, 1997, pp. 257-273.

[41] Wyvill, B., Jepp, P., Overveld, K., Wyvill, G.: Subdivision Surfaces for fast
Approximate Implicit Polygonization, University of Calgary, Dept. of Computer
Science, Research Report 2000-671-23, 2000.

-39.-

Appendix A

Publications

[i]

[1]

[iii]

[iv]

Cermék, M., Skala, V.: Space Subdivision for Fast Polygonization of Implicit
Surfaces. The Fifth International Scientific Conference, ECI 2002, Slovakia,
ISBN 80-7099-879-2, pp. 302-307, October 10-11, 2002.

Cermaék, M., Skala, V.: Polygonization by the Edge Spinning. 16th Conference on
Scientific Computing, Algoritmy 2002, Slovakia, ISBN 80-227-1750-9, pp. 245-
252, September 8-13, 2002.

Cermék, M., Skala, V.: Accelerated Edge Spinning Algorithm for Implicit
Surfaces. International Conference on Computer Vision and Graphics,
ICCVG 2002, Poland, ISBN 839176830-9, pp. 174-179, September 25-29, 2002.

Cermék, M., Skala, V.(supervisor): Visualization of Scenes which are Defined by
Implicit Functions and CSG trees, MSc. Thesis (in Czech), University of West
Bohemia in Pilsen, 2001.

Accepted for publication:

[v]

Cermék, M., Skala, V.: Edge Spinning Algorithm for Implicit Surfaces. Accepted
for publication in journal ‘Mathematics and Computers in Simulation’,
IMACS/Elsevier Science B.V., Roma, Italy.

Citation:

[vi]

Uhlit, K., Skala, V.: The Implicit Function Modeling System — Comparison of
C++ and C# Solutions, C# and .NET Technologies’ 2003, Workshop proceedings,
pp. 87-92, February 5.-8., 2003.

Appendix B

Stays and Lectures Abroad

Stays:
15.2.2000 — 15.6.2000

Conferences:

1.9.2002 - 6.9.2002
8.9.2002 —13.9.2002
25.9.2002 —29.9.2002
10.10.2002 — 11.10.2002

University of Lisboa, Portugal, Erasmus/Socrates
project

Eurographics 2002, Saarbriicken, Germany
Algoritmy 2002, Podbanske, Slovakia, [ii]
ICCVG 2002, Zakopane, Poland, [iii]

ECI 2002, Herlany, Slovakia, [i]

-1 -

