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Abstract 
This work presents a strategy for creating a CAD model of an existing 
physical object from a scanned point cloud containing badly scanned regions. 
This strategy can be applied for processing big clouds. Formalization of 
properties of point clouds and surface reconstruction algorithms from the 
point of view of the given problem is made. This work describes solutions for 
several problems, which lie outside the field of usually considered surface 
reconstruction problems. Also, several algorithms designed within the 
framework of the strategy are described. Majority of them can be used for 
tasks of general-purpose surface reconstruction. The offered work contains 
also an overview of commonly used approaches of surface reconstruction. 
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1. INTRODUCTION 
 
 

1.1 Formulation of the problem 
 
 
The problem of creating a CAD model for an existing physical object from a 

given point set of the object surface is important for many fields of science and 
industry. In most cases it is possible to receive the input point cloud having 
necessary properties (density, linear and angular isotropy). In this case a model 
can be successfully constructed by the application of existing algorithms. 
However, in some cases, obtaining of the initial point cloud with good enough 
characteristics can be complicated or impossible. Typical examples are 
architectural monuments, the objects explored from distance, e.g., objects in 
space. For the cloud of points obtained from these objects, there is a typical 
combination of regions having good allocation of points, and regions with 
unsatisfactory allocation of points, or without them. 

 
 

1.2 State of the art 
 
 
For general description of basic groups of existing surface reconstruction 

methods survey [MM97] is partially cited below. 
 
 

1.21 Spatial subdivision 
 
 
Common to the approaches that can be characterized by “Spatial 

Subdivision” is that some bounding box of the set P of sampling points is 
subdivided into disjoint cells. There is a variety of spatial decomposition 
techniques which were developed for different applications [LC87]. Typical 
examples are regular grids, adaptive schemes like octrees, or irregular 
schemes like tetrahedral meshes. Many of them can also be applied to surface 
construction. The goal of construction algorithms based on spatial subdivision is 
to find cells related to the shape described by P. The selection of the cells can 
be done in roughly two ways: surface-oriented and volume-oriented.  

 
 

1.211 Surface-oriented cell selection 
 
 
The surface-oriented approach consists of the following basic steps.  
Surface-oriented cell selection:  
1. Decompose the space in cells.  
2. Find those cells that are traversed by the surface.  
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3. Calculate a surface from the selected cells.  
 
 

The approach of Algorri and Schmitt 
An example for surface-oriented cell selection is the algorithm of Algorri and 

Schmitt [AS96] (figure 1.211-1). For the first step, the rectangular bounding box 
of the given data set is subdivided by a regular voxel grid. In the second step, 
the algorithm extracts those voxels which are occupied by at least one point of 
the sampling set P. In the third step, the outer quadrilaterals of the selected 
voxels are taken as a first approximation of the surface. This resembles the 
cuberille approach of volume visualization [HL79].  

In order to get a more pleasent representation, the surface is transferred into 
a triangular mesh by diagonally splitting each quadrilateral into two triangles. 
The cuberille artifacts are smoothed using a depth-pass filter that assigns a new 
position to each vertex of a triangle. This position is computed as the weighted 
average of its old position and the position of its neighbors. The approximation 
of the resulting surface is improved by warping it towards the data points. For 
more on that we refer to section 1.232.  

 
 

 
 

 
 

Figure 1.211-1 
 
 

The approach of Hoppe et al. 
Another possibility of surface-oriented cell selection is based on the distance 

function approach of Hoppe [HDD92, HDD93, HH94] (figure 1.211-2). The 
distance function of the surface of a closed object tells for each point in space 
its minimum signed distance to the surface. Points on the surface of course 
have distance 0, whereas points outside the surface have positive, and points 
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inside the surface have negative distance. The calculation of the distance 
function is outlined in section 1.221.  

The first step of the algorithm again is implemented by a regular voxel grid. 
The voxel cells selected in the second step are those which have vertices of 
opposite sign. Evidently, the surface has to traverse these cells. In the third 
step, the surface is obtained by the marching cubes algorithm of volume 
visualization [LC87]. The marching cubes algorithm defines templates of 
separating surface patches for each possible configuration of the signs of the 
distance values at the vertices of a voxel cell. The voxels are replaced with 
these triangulated patches. The resulting triangular mesh separates the positive 
and negative distance values on the grid.  
 
 

 
 

Figure 1.211-2 
 
 
A similar algorithm was suggested by Roth and Wibowoo [RGW97]. It differs 

from the approach of Hoppe et al. in the way the distance function is calculated, 
cf. section 1.221. Furthermore, the special cases of profile lines and multiple 
view range data are considered besides scattered point data.  

A difficulty with these approaches is the choice of the resolution of the voxel 
grid. One effect is that gaps may occur in the surface because of troubles of the 
heuristics of distance function calculation.  

 
 

The approach of Bajaj, Bernardini et al. 
The approach of Bajaj, Bernardini et al. [BBX95] differs from the previous 

ones in that spatial decomposition is now irregular and adaptive.  
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The algorithm also requires a signed distance function. For this purpose, a 
first approximate surface is calculated in a preprocessing phase. The distance 
to this surface is used as distance function. The approximate surface is 
calculated using α-solids which will be explained in section 1.212.  

Having the distance function in hand, the space is incrementally 
decomposed into tetrahedra starting with an initial tetrahedron surrounding the 
whole data set. By inspecting the signs of the distance function at the vertices, 
the tetrahedra traversed by the surface are found out. For each of them, an 
approximation of the traversing surface is calculated. For this purpose, a 
Bernstein-Bezier trivariate implicit approximant is used. The approximation error 
to the given data points is calculated. A bad approximation induces a further 
refinement of the tetrahedrization. The refinement is performed by incrementally 
inserting the centers of tetrahedra with high approximation error into the 
tetrahedrization. The process is iterated until a sufficient approximation is 
achieved.  

In order to keep the shape of the tetrahedra balanced, an incremental 
tetrahedrization algorithm is used so that the resulting tetrahedrizations always 
have the Delaunay property. A tetrahedrization is said to have the Delaunay 
property if none of its vertices lies inside the circumscribed sphere of a 
tetrahedron [PS85].  

The resulting surface is composed of trivariate implicit Bernstein-Bezier 
patches. A C1 smoothing of the constructed surfaces is obtained by applying a 
Clough-Tocher subdivision scheme.  

In Bernardini et al. [BBC97] an extension and modification of this algorithm 
is formulated [BBX97, BB97]. The algorithm consists of an additional mesh 
simplification step to reduce the complexity of the mesh represented by the 
α-solid [BS96]. The reduced mesh is used in the last step of the algorithm for 
polynomial-patch data fitting using Bernstein-Bezier patches for each triangle 
(by interpolating the vertices and normals and by approximating data points in 
its neighborhood). Additionally, the representation of sharp features can be 
achieved in the resulting surface.  

 
 

Edelsbrunner's and Mucke's alpha-shapes 
Edelsbrunner and Mucke [EPM92, EPM93, HE92] also use an irregular 

spatial decomposition. In contrast to the previous ones, the given sample points 
are part of the subdivision. The decomposition chosen for that purpose is the 
Delaunay tetrahedrization of the given set P of sampling points. A 
tetrahedrization of a set P of spatial points is a decomposition of the convex hull 
of P into tetrahedra so that all vertices of the tetrahedra are points in P. A 
tetrahedrization is a Delaunay tetrahedrization if none of the points of P lies 
inside the circumsphere of a tetrahedron. It is well known that each finite point 
set has a Delaunay tetrahedrization which can be calculated efficiently [PS85]. 
This is the first step of the algorithm.  

The second step is to erase tetrahedrons, triangles, and edges of the 
Delaunay tetrahedrization using so-called α-balls as eraser sphere with radius 
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α. Each tetrahedron, triangle, or edge of the tetrahedrization whose 
corresponding minimum surrounding sphere does not fit into the eraser sphere 
is eliminated. The resulting so-called α-shape is a collection of points, edges, 
faces, and tetrahedra.  

In the third step, the triangles are extracted out of the α-shape which belong 
to the desired surface, using the following rule. Consider the two possible 
spheres of radius α through all three points of a triangle of the α-shape. If at 
least one of these does not contain any other point of the point set, the triangle 
belongs to the surface.  

A problem of this approach is the choice of a suitable α. Since α is a global 
parameter the user is not swamped with many open parameters, but the 
drawback is that a variable point density is not possible without loss of detail in 
the reconstruction.  

An example for a reconstruction of a body is shown in figure 1.211-3. If α is 
too small, gaps in the surface can occur, or the surface may become 
fragmented.  
 
 

 
 

Figure 1.211-3 
 
 
Guo et al. [GMW97] also make use of α-shapes for surface reconstruction 

but they propose a so-called visibility algorithm for extracting those triangles out 
of the α-shape which represent the simplicial surface.  

 
 

Attali's normalized meshes 
In the approach of Attali [DA97], the Delaunay tetrahedrization is also used 

as a basic spatial decomposition. Attali introduces so-called normalized meshes 
which are contained in the Delaunay graph. It is formed by the edges, faces and 
tetrahedra whose dual Voronoi element intersects the surface of the object.  
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In two dimensions, the normalized mesh of a curve c consists of all edges 
between pairs of points of the given set P of sampling points on c which induce 
an edge of the Voronoi diagram of P that intersects c. The nice property of 
normalized meshes is that for a wide class of curves of bounded curvature, the 
so-called r-regular shapes, a bound on the sampling density can be given within 
which the normalized mesh retains all the topological properties of the original 
curve.  

For reconstruction of c, the edges belonging to the reconstructed mesh are 
obtained by considering the angle between the intersections of the two possible 
circles around a Delaunay edge. The angle between the circles is defined to be 
the smaller of the two angles between the two tangent planes at one 
intersection point of the two circles. This characterization is useful because 
Delaunay discs tend to become tangent to the boundary of the object. The 
reconstructed mesh consists of all edges whose associated Delaunay discs 

have an angle smaller than 
2
π . If the sampling density is sufficiently high, the 

reconstructed mesh is equal to the normalized mesh.  
While in two dimensions the normalized mesh is a correct reconstruction of 

shapes having the property of r-regularity, the immediate extension to three 
dimensions is not possible. The reason for that is that some Delaunay spheres 
can intersect the surface without being approximately tangent to it. Therefore, 
the normalized mesh in three dimensions does not contain all faces of the 
surface.  

To overcome this problem, two different heuristics for filling the gaps in the 
surface structure were introduced.  

The first heuristic is to triangulate the border of a gap in the triangular mesh 
by considering only triangles contained in the Delaunay tetrahedrization.  

The second heuristic is volume-based. It merges Delaunay tetrahedra to 
build up the possibly different solids represented in the point set. The set of 
mergeable solids is initialized with the Delaunay tetrahedra and the complement 
of the convex hull. The merging step is performed by processing the Delaunay 
triangles according to decreasing diameters. If the current triangle separates 
two different solids in the set of mergable solids, they are merged if the 
following holds:  

•  no triangle from the normalized mesh disappears;  
•  merging will not isolate sample points inside the union of these objects, 

i.e. the sample points have to remain on the boundary of at least one object.  
The surface finally yielded by the algorithm is formed by the boundary of the 

resulting solids.  
 
 

Weller's approach of stable Voronoi edges 
Let P be a finite set of points in the plane. P’ is an ε-perturbation of P if 

ε≤)( '
ii ppd  holds for all Ppi ∈ , '' Ppi ∈ , ni ,...,1= . An edge '' , ji pp  of the 

Delaunay triangulation is called stable if the perturbed endpoints '
ip , '

jp  are also 
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connected by an edge of the Delaunay triangulation of the perturbed point set 
P’.  

It turns out that for intuitively reasonably sampled curves in the plane, the 
stable edges usually are the edges connecting two consecutive sampling points 
on the curve, whereas the edges connecting non-neighboring sampling points 
are instable. The stability of an edge can be checked in time O(Voronoi 
neighbors) [FW97].  

The extension of this approach to 3D-surfaces shows that large areas of a 
surface can usually be reconstructed correctly, but still not sufficiently 
approximated regions do exist. This resembles the experience reported by Attali 
[DA97], cf. section 1.211. Further research is necessary in order to make 
stability useful for surface construction.  

 
 

1.212 Volume-oriented cell selection 
 
 
Volume-oriented cell selection also consists of three steps which at a first 

glance are quite similar to those of surface-oriented selection:  
 
Volume-oriented cell selection:  
1. Decompose the space in cells.  
2. Remove those cells that do not belong to the volume bounded by the 

sampled surface.  
3. Calculate a surface from the selected cells.  
 
The difference is that a volume representation, in contrast to a surface 

representation, is obtained.  
Most implementations of volume-oriented cell selection are based on the 

Delaunay tetrahedrization of the given set P of sampling points. The algorithms 
presented in the following differ in how volume-based selection is performed. 
Some algorithms eliminate tetrahedrons expected outside the desired solid, 
until a description of the solid is achieved [JB84, IBS97, RV94]. Another 
methodology is the use of the Voronoi diagram to describe the constructed solid 
by a “skeleton” [SB97, DA97].  

 
 

Boissonnat's volume-oriented approach 
Boissonnat's volume-oriented approach starts with the Delaunay 

triangulation of the given set P of sampling points. From this triangulation of the 
convex hull, tetrahedra having particular properties are successively removed. 
First of all, only tetrahedra with two faces, five edges and four points or one 
face, three edges and three points on the boundary of the current polyhedron 
are eliminated. Because of this elimination rule only objects without holes can 
be reconstructed, cf. figure 1.212-1. 
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Figure 1.212-1 
 
 
Tetrahedra of this type are iteratively removed according to decreasing 

decision values. The decision value is the maximum distance of a face of the 
tetrahedron to its circumsphere. This decision value is useful because flat 
tetrahedra of the Delaunay tetrahedrization usually tend to be outside the object 
and cover areas of higher detail. The algorithm stops if all points lie on the 
surface, or if the deletion of the tetrahedron with highest decision value does not 
improve the sum taken over the decision values of all tetrahedra incident to the 
boundary of the polyhedron.  
 
 

 
 

Figure 1.212-2 
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The approach of Isselhard, Brunnett, and Schreiber 
The approach of [IBS97] is an improvement of the volume-oriented algorithm 

of Boissonnat [JB84]. While Boissonnat cannot handle objects with holes, the 
deletion procedure of this approach is modified so that construction of holes 
becomes possible.  

As before, the algorithm starts with the Delaunay triangulation of the point 
set. An incremental tetrahedron deletion procedure is then performed on 
tetrahedra at the boundary of the polyhedron, as in Boissonnat's algorithm. The 
difference is, that more types of tetrahedron can be removed in order to being 
able to reconstruct even object with holes. The additionally allowed types of 
tetrahedra are those with one face and four vertices or three faces or all four 
faces or on the current surface provided that no point would become isolated 
through their elimination.  

The elimination process is controlled by observing an elimination function. 
The elimination function is defined as the maximum decision value (in the sense 
of Boissonnat) of the remaining removable tetrahedra. In this function, several 
significant jumps can be noticed. One of these jumps is expected to indicate 
that the desired shape is reached. In practice, the jump before the stabilization 
of the function on a higher level is the one which is taken. This stopping point 
helps handling different point densities in the point set which would lead to 
undesired holes through the extended type set of removable tetrahedra in 
comparison to Boissonnat's algorithm [JB84].  

If all data points are already on the surface, the algorithm stops. If not, more 
tetrahedra are eliminated to recover sharp edges (reflex edges) of the object. 
For that purpose the elimination rules are restricted to those of Boissonnat, 
assuming that all holes present in the data set have been recovered at this 
stage. Additionally, the decision value of the tetrahedra is scaled by the radius 
of the circumscribed sphere as a measure for the size of the tetrahedron. In this 
way, the cost of small tetrahedra is increased which are more likely to be in 
regions of reflex edges than big ones. The elimination continues until all data 
points are on the surface and the elimination function does not decrease 
anymore.  

An example point set and the deletion process is depicted in figure 1.212-2.  
 
 

The γ-indicator approach of Veltkamp 
To describe the method of Veltkamp [RV94, RV95] some terminology is 

required. A γ-indicator is a value associated to a sphere through three boundary 
points of a polyhedron which is positive or negative, cf. figure 1.212-3 for an 

illustration of the 2D-case. Its absolute value is computed as 
R
r−1 , where r is 

the circle for the boundary triangle and R the radius of the boundary 
tetrahedron. It is taken to be negative if the center of the sphere is on the inner 
side and positive if the center is on the outer side of the polyhedron. Note, that 
the γ-indicator is independent of the size of the boundary triangle (tetrahedron, 
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respectively). Therefore, it adapts to areas of changing point density. A 
removable face is a face with positive γ-indicator value.  

 
 

Figure 1.212-3 
 
 
The first step of the algorithm is to calculate the Delaunay tetrahedrization.  
In the second step, a heap is filled with removable tetrahedra which are 

sorted according to their γ-indicator value. The removable tetrahedra are of the 
same boundary types as in Boissonnat's volume-oriented approach [JB84]. The 
tetrahedron with the largest γ-indicator value is removed and the boundary is 
updated. This process continues until all points lie on the boundary, or there are 
no further removable tetrahedra.  

The main advantage of this algorithm is the adaption of the γ-indicator value 
to variable point density. Like Boissonnat's approach, the algorithm is restricted 
to objects without holes.  

Some intermediate stages during the construction of a surface are displayed 
in figure 1.212-4.  
 
 

 
 

Figure 1.212-4 
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The approach of Schreiber and Brunnett 
The approach of Schreiber and Brunnett [TS97, SB97] uses properties of 

the Voronoi diagram of the given point set for tetrahedra removal. The Voronoi 
diagram of a point set P is a partition of the space in regions of nearest 
neighborhood. For each point p in P, it contains the region of all points in space 
that are closer to p than to any other point of P. It is interesting to note that the 
Voronoi diagram is dual to the Delaunay tetrahedrization of P. For example, 
each vertex of the Voronoi diagram corresponds to the center of a tetrahedron 
of the tetrahedrization. Edges of the Voronoi diagram correspond to neighboring 
faces of the tetrahedra dual to its vertices. The same observation holds for 
Voronoi diagrams in the plane that are used in the following for the explanation 
of the 2D-version of the algorithm.  

In the first step, the Delaunay triangulation and the dual Voronoi diagram of 
P is determined. The second step, the selection of tetrahedra, uses a minimum 
spanning tree of the Voronoi graph, cf. figure 1.212-5. The Voronoi graph is the 
graph induced by the vertices and edges of the Voronoi diagram. A minimum 
spanning tree (MST) of a graph is a subtree of the graph which connects all 
vertices and has minimum summed edge length. Edge length in our case is the 
Euclidean distance of the two endpoints of the edge.  
 
 

 

 
 

Figure 1.212-5 
 

 
In the second step, a pruning strategy is applied to it which possibly 

decomposes it into several disjoint subtrees. Each subtree represents a region 
defined by the union of the triangles dual to its vertices.  
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Two pruning rules have been developed for that purpose:  
1. All those edges will be pruned for which no end point is contained in the 

circumcircle of the dual Delaunay triangle of the other end point.  
2. An edge will be pruned if its length is shorter than the mean value of the 

radii of both circumcircles of the dual Delaunay triangles of its voronoi 
end points.  

 
The number of edges to be pruned can be controlled by using the edge 

length as a parameter.  
The resulting regions are then distinguished into inside and outside. In order 

to find the inside regions, we add the complement of the convex hull as further 
region to the set of subtree regions. The algorithm starts with a point on the 
convex hull which is incident to exactly two regions. The region different from 
the complement of the convex hull is classified “inside”. Then the label “inside” 
is propagated to neighboring regions by again considering points that are 
incident to exactly two regions.  

After all regions have been classified correctly, the boundary of the 
constructed shape is obtained as the boundary of the union of the region 
labeled “inside”.  

An adaption of this method to three dimensions is possible.  
 
 

The α-solids of Bajaj, Bernardini et al. 
Bajaj, Bernardini et al. [BBX95, BBX97, BB97, BBC97] calculate so-called 

α-solids. While α-shapes are computed by using eraser spheres at every point 
in space, the eraser spheres are now applied from outside the convex hull, like 
in Boissonnat's approach [JB84]. To overcome the approximation problems 
inherent to α-shapes a re-sculpturing scheme has been developed. 
Re-sculpturing roughly follows the volumetric approach of Boissonnat in that 
further tetrahedra are removed. This goal is to generate finer structures of the 
object provided the α-shape approach has correctly recognized the larger 
structures of the object.  

 
 

1.22 Surface construction with distance functions 
 
 
The distance function of a surface gives the shortest distance of any point in 

space to the surface. For closed surface the distances can be negative or 
positive, dependent on whether a point lies inside or outside of the volume 
bounded by the surface. In section 1.21 we have already described an 
algorithm which uses the distance function for the purpose of surface 
construction. There the question remained open how a distance function can be 
calculated from the given set P of sample points. Solutions are presented in the 
next subsection.  
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Another possibility of calculating a distance function is to construct a surface 
to the given set P of data points and take the distance to this surface. The idea 
behind that is that this distance function may be used to get a better surface, for 
instance a smooth surface as in [BBX95].  

Besides marching cubes construction of surfaces as explained in section 
1.211, distance plays a major role in construction of surfaces using the medial 
axis of a volume. The medial axis consists of all points inside the volume for 
which the maximal sphere inside the volume and centered at this point does not 
contain the maximal sphere of any other point. Having the medial axis and the 
radius of the maximum sphere at each of its points, the given object can be 
represented by the union taken over all spheres centered at the skeleton points 
with the respective radius. An algorithm for surface construction based on 
medial axes is described in section 1.222.  

 
 

1.221 Calculation of distance functions 
 
 

The approach of Hoppe et al. 
Hoppe et al. [HDD92, HH94] suggest the following approach. At the 

beginning, for each point pi an estimated tangent plane is computed. The 
tangent plane is obtained by fitting the best approximating plane in the least 
square sense [DH73] into a certain number k of points in the neighborhood of pi. 
In order to get the sign of the distance in the case of close surfaces, a 
consistent orientation of neighboring tangent planes is determined by computing 
the Riemannian graph (figure 1.221-1). The vertices of the Riemannian graph 
are the centers of the tangent planes which are defined as the centroids of the k 
points used to calculate the tangent plane. Two tangent plane centers oi,oj are 
connected with an edge (i, j) if one center is in the k-neighborhood of the other 
center. By this construction, the edges of the Riemannian graph can be 
expected to lie close to the sampled surface. Each edge is weighted by 1 minus 
the absolute value of the scalar product between normals of the two tangent 
plane centers defining the edge. The orientation of the tangent planes is 
determined by propagating the orientation at a starting point, by traversing the 
minimum spanning tree of the resulting weighted Riemannian graph.  
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Figure 1.221-1 
 

 
Using the tangent plane description of the surface and their correct 

orientations, the signed distance is computed by first determining the tangent 
plane center nearest to the query point. The distance between the query point 
and its projection on the nearest tangent plane. The sign is obtained form the 
orientation of the tangent plane.  

 
 

The approach of Roth and Wibowoo to distance functions 
The goal of the algorithm of Roth and Wibowoo [RGW97] is to calculate 

distance values at the vertices of a given voxel grid surrounding the data points. 
The data points are assigned to the voxel cells into whcih they fall. An “outer” 
normal vector is calculated for each data point by finding the closest two 
neighboring points in the voxel grid, and then using these points along with the 
original point to compute the normal.  

The normal orientation which is required for signed distance calculation is 
determined as follows. Consider the voxel grid and the six axis directions ( x± , 
y± , z± ). If we look from infinity down each axis into the voxel grid, then those 

voxels that are visible must have their normals point towards the viewing 
direction. The normal direction is fixed for these visible points. Then the normal 
direction is propagated to those neighboring voxels whose normals are not fixed 
by this procedure. This heuristic only works if the nonempty voxel defines a 
closed boundary without holes.  

The value of the signed distance function at a vertex of the voxel grid is 
computed by taking the weighted average of the signed distances of every point 
in the eight neighboring voxels. The signed distance to a point with normal is 
the Euclidean distance to this point, with positive sign if the angle between the 
normal and the vector towards the voxel vertex exceeds 90°.  
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1.222 Bittar's et al. surface construction by medial axes 
 
 

The approach of Bittar et al. [BTG95] consists of two steps, the calculation of 
the medial axis and the calculation of an implicit surface from the medial axis.  

The medial axis is calculated from a voxelization of a bounding box of the 
given set of points. The voxels containing points of the given point set P are 
assumed to be boundary voxels of the solid to be constructed. Starting at the 
boundary of the bounding box, voxels are successively eliminated until all 
boundary voxels are on the surface of the remaining voxel volume. A distance 
function is propagated from the boundary voxels to the inner voxels of the 
volume, starting wiht distance 0 on the boundary voxels. The voxels with locally 
maximal distance value are included to the medial axis.  
 
 

 
 

Figure 1.222-1 
 
 
The desired surface is calculated by distributing centers of spheres on the 

medial, cf. figure 1.222-1. The radius of a sphere is equal to the distance 
assigned to its center on the medial axis. For each sphere, a field function is 
defined which allows to calculate a scalar field value for arbitrary point in space. 
A field function of the whole set of spheres is obtained as sum of the field 
functions of all spheres. The implicit surface is defined as an iso-surface of the 
field function, that is, it consists off all points in space for which the field function 
has a given constant value.  
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Figure 1.222-2 
 
 
In order to save computation time, a search strategy is introduced which 

restricts the calculation of the sum to points with suitable positions.  
The shape of the resulting surface is strongly influenced by the type of field 

function. For example, a sharp field function preserves details while a soft 
function smoothes out the details, cf. figure 1.222-2. Also the connectness of 
the resulting solid can be influenced by the shape function cf. figure 1.222-3.  
 
 

 
 

Figure 1.222-3 
 
 
Because of the voxelization, a crucial point is tuning the resolution of the 

medial axis. If the resolution of the axis is low, finer details are not represented 
very accurately. The display of the surface detail is improved if the resolution is 
increased but can also tend to disconnect parts of the surface if the resolution is 
higher than the sample density at certain regions.  

A result of this algorithm is shown in figure 1.222-1.  
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1.23 Surface construction by warping 
 
 
Warping-based surface construction means to deform an initial surface so 

that it gives a good approximation of the given point set P. For example, let the 
initial shape be a triangular surface to some or all of its vertices corresponding 
points in P are determined to which the vertices have to be moved in the 
warping process. When moving the vertices of the mesh to their new locations, 
the rest of the mesh is also deformed and yields a surface approximation of the 
points in P.  

Surface construction by warping is particularly suited if a rough 
approximation of the desired shape is already known. This simplifies detection 
of corresponding points.  

Several methods of describing deformable surfaces were developed in the 
past. Muraki suggested a “blobby model” to approximate 2.5 D range images 
[SM91]. Terzopoulos, Witkin and Kass [TM91, TWK88] made use of deformable 
superquadrics which have to fit the input data points.  

Miller et al. [MBL91] extract a topologically closed geometric model from a 
volume data set. The algorithm starts with a simple model that is already 
topologically closed and deforms the model on a set of constraints, so that the 
model grows or shrinks to fit the object within the volume while maintaining it 
closed and a locally simple non-self-intersecting polyhedron that is either 
embedded in the object or surrounds the object in the volume data 
representation. A function is associated with every vertex of the polyhedron that 
associates costs with local deformation adherent to properties of simple 
polyhedra, and the relationship between noise and feature. By minimizing these 
constraints, one achieves an effect similar to inflating a balloon within a 
container or collapsing a piece of shrink wrap around the object.  

A completely different approach to warping is modeling with oriented 
particles suggested by Szeliski and Tonnesen [ST92]. Each particle owns 
several parameters which are updated during the modeling simulation. By 
modeling the interaction between the particles themselves the surface is being 
modeled using forces and repulsion. As an extension Szeliski and Tonnesen 
describe how their algorithm can be extended for automatic 3D reconstruction. 
At each sample location one particle with appropriate parameters is generated. 
The gaps between the sample points (particles, respectively) are filled by 
growing particles away from isolated points and edges. After having a rough 
approximation of the current surface the other particles are rejusted to smooth 
the surface.  

In the following three subsections three approaches are outlined which stand 
for basically different methodologies, a purely geometric approach, a physical 
approach, and a computational intelligence approach.  
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1.231 Spatial free form warping 
 
 

The idea of spatial free-form warping is to deform the whole space in which 
an object to be warped is embedded in, with the effect that the object is warped 
at the same time. Space deformation is defined by a finite set of displacement 
vectors consisting of pairs of initial and target point, from which a spatial 
displacement vector field is interpolated using a scattered data interpolation 
method. There is a huge number of scattered data interpolation methods known 
in literature, cf. e.g. [HJL93]. Among them that one can be chosen that yields 
the most reasonable shape for the particular field of application.  

The resulting displacement vector field tells for each point in space its target 
point. In particular, if the displacement vector field is applied to all vertices of the 
initial mesh, or of a possibly refined one, the mesh is warped towards the given 
data points [RM95].  

The advantage of spatial free form warping is that usually only a small 
number of control displacement vectors located at points with particular features 
like corners or edges is necessary. A still open question is how to find good 
control displacement vectors automatically.  
 
 
1.232 The approach of Algorri and Schmitt 
 
 

The idea of Algorri and Schmitt [AS96] is to translate given approximate 
triangular mesh into a physical model, cf. figure 1.232-1. The vertices of the 
mesh are interpreted as mass points. The edges are replaced with springs. 
Each nodal mass of the resulting mesh of springs is attached to its closest point 
in given set P of sampling points by a further spring. The masses and springs 
are chosen so that the triangular mesh is deformed towards the data points.  
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Figure 1.232-1 
 
 
The model can be expressed as a linear differential equation of degree 2. 

This equation is solved iteratively. Efficiency is gained by embedding the data 
points and the approximate triangular mesh into a regular grid of voxels, like 
that one already yielded by the surface construction algorithm of the same 
authors, cf. section 1.211.  
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Figure 1.233-1 
 
 

1.233 Kohonen feature map approach of Baader and Hirzinger 
 
 

The Kohonen feature map approach of Baader and Hirzinger [BH93, BH94] 
can be seen as another implementation of the idea of surface construction by 
warping. Kohonen's feature map is a two-dimensional array of units (neurons), 
cf. figure 1.233-1. Each unit uj has a corresponding weight vector jw . In the 
beginning these vectors are set to normalized random values (of length equal to 
1). During the reconstruction or training process the neurons are fed with the 
input data which affects their weight vectors (which resemble their position in 
three-space). Each input vector i  is presented to the units j which produce 
output oj of the form iwo jj = . The unit generating the highest response oj is the 
center of the excitation area. The weights of this unit and a defined 
neighborhood are updated by the formula ))(()()1( twitwtw jijj −+=+ ε  
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Figure 1.233-2 
 
 
Note that after this update the weight vectors have to be normalized again. 

The value jj hηε =  contains two values, the learning rate η and the 
neighborhood relationship hj. Units far away from the center of excitation are 
only slightly changed.  

The algorithm has one additional difficulty. If the input point data do not 
properly correspond with the neuron network it is possible, that neurons might 
remain which had not been in any center of excitation so far. Therefore they had 
been updated only by the neighborhood update which usually is not sufficient to 
place the units near the real surface. Having this in mind, Baader and Hirzinger 
have introduced a kind of reverse training. Unlike the normal training where for 
each input point a corresponding neural unit is determined and updated the 
procedure in the intermediate reverse training is reciprocal. For each unit uj the 
part of the input data with the highest influence is determined and used for 
updating uj.  

The combination of this normal and reverse training completes the algorithm 
of Baader and Hirzinger and has to be used in the training of the network.  

A result is depicted in figure 1.233-2.  
 
  

1.24 Incremental surface-oriented construction 
 
 
The idea of incremental surface-oriented construction is to build-up the 

interpolating or approximating surface directly on surface-oriented properties of 
the given data points. This can be done in quite different manner.  

For example, surface construction may start with an initial surface edge at 
some location of the given point set P, connecting two of its points which are 
expected neighboring on the surface. The edge is successively extended to a 
larger surface by iteratively attaching further triangles at boundary edges of the 
emerging surface. The surface-oriented algorithm of Boissonnat explained in 
the first subsection may be assigned to this category.  
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Another possibility is to start with a global wire frame of the surface, in order 
to fill it iteratively to a complete surface. This is the idea of the approach of 
Mencl and Muller described in section 1.242.  
 
 

 
 

Figure 1.241-1 
 
 
1.241 Boissonat's surface-oriented approach 

 
 
Boissonnat's surface oriented contouring algorithm [JB84] usually starts at 

the shortest connection between two points of the given point set P. In order to 
attach a new triangle at this edge, and later on to other edges on the boundary, 
a locally estimated tangent plane is computed based on the points in the 
neighborhood of the boundary edge. The points in the neighbourhood of the 
boundary edge are then projected onto the tangent plane. The new triangle is 
obtained by connecting one of these points to the boundary edge. That point is 
taken which maximizes the angle between at its edges in the new triangle, that 
is, the point sees edge boundary edge under the maximum angle, cf. figure 
1.241-1. The algorithm terminates if there is no free edge available any more. 
The behavior of this algorithm can be seen in figure 1.241-2.  
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Figure 1.241-2 
 
 

1.242 Approach of Mencl and Muller 
 
 
The solution of Mencl and Muller consists of seven main steps [RM95, 

MM97]:  
1. The computation of the EMST (Euclidean minimum spanning tree) of the 

point set.  
2. Extension of the graph at leaf points of the EMST.  
3. Recognition of features.  
4. Extraction of different objects out of the graph.  
5. Connection of features of the same kind.  
6. Connection of associated edges in the graph.  
7. Filling the wire frame with triangles.  
 
The first two steps are designed to build up an initial surface description 

graph (SDG). This is performed by computing the EMST (Euclidean minimum 
spanning tree) and an graph extension step afterwards, cf. figure 1.242-1. Next, 
a feature recognition is performed to gain necessary information considering the 
possible structure of the surface in the third step. As in object recognition of 
raster images Mencl and Muller consider features to be regions with special 
information about the objects structure like paths, edges, point rings and so on. 
After that, these feature areas are disconnected and/or connected according to 
certain rules to have a proper description of the objects in the point set (step 4 
and 5). In the last step before the triangle filling procedure, the so far computed 
graph is extended more by connecting associated edges in the graph under 
consideration of certain constraints. Finally, the triangles are filled into this 
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surface description graph by using a rule system to assure a resulting surface 
with high accuracy.  

 
 

 

 

 
 

Figure 1.242-1 
 
 
As a main concept, Mencl and Muller introduce the concept of feature 

recognition and clustering to improve the accuracy of the surface description 
graph according to the assumed surface of the object [MM97]. The idea is the 
possibility to integrate different kind of recognition algorithms in the main 
algorithm while maintaining the structural consistency of the SDG.  

In contrast to many other methods this approach returns a piecewise linear 
surface which interpolates exactly the input point set. The algorithm can handle 
point sets with high changes in point density. This makes it possible to describe 
objects with only the least necessary amount of points since it is not necessary 
to oversample areas with low local curvature. The reconstruction of sharp edges 
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in artificial or synthetic objects can be done properly as well as the 
reconstruction of non-orientable surfaces like Mobius strips, for example.  

 
 

1.3 A motive for further researches 
 
 
Generally, for our task no one of the existing algorithms is enough suitable. 

The algorithms with a low cost aren’t enough robust to reconstruct damaged 
point clouds, and the robust algorithms are too costly for processing big point 
clouds.  
 
 
2. A GENERAL SURFACE RECONSTRUCTION STRATEGY 

 
 

2.1 Formalization of properties of a reconstructed surface 
 
 
Definition 2.1-1. A process of surface reconstruction from a point cloud is 

considered as successful if as a result we have a closed surface bounding a 
coherent volume and containing all the points of the cloud. 

 
A result of an unsuccessful surface reconstruction can be presented as the 

aggregate of correctly reconstructed surface regions and points, which don’t 
belong to such regions (let’s call these points free points). A boundary of a 
correctly reconstructed region is always closed. This boundary can be the 
external boundary of the given isolated reconstructed region (let’s call such 
region island) or the boundary of a hole in this region.  

For each boundary we need to determine its status (is it the boundary of an 
island or the boundary of a hole). Let’s consider, that the boundary is a smooth 
curve and the surface region bounded by this boundary is a smooth surface 
region, because any real reconstructed surface region (its boundary) can by 
approximated by a smooth surface (curve) as accurate, as it is needed. For the 
boundary let’s determine a main chord vector as a vector connecting two points 
on the boundary with condition, that these points split the boundary into two 
parts with equal length. Let we have a main chord vector (vector AB  in figure 
2.1-1). In an enough close neighborhood of point В, the boundary line can be 
approximated by the tangent line in this point. In the same neighborhood the 
reconstructed surface can be approximated by the tangent plane in B. The 
tangent line lies in the tangent plane and splits it into two half-planes. Let’s call 
the half-plane that approximating the reconstructed surface region the internal 
half-plane in B. Let’s define the angle φ in B as the angle between AB  and the 
internal half-plane in B. For a boundary (L) let’s determine the boundary integral 
value (D): 
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)(cos∫= φ  (2.1-1). 

 
 

 
 

Figure 2.1-1 
 
 
Definition 2.1-2. A boundary of a reconstructed surface is considered as the 

boundary of a hole, if for this boundary 0>D  or the boundary of an island 
otherwise. 

 
Definition 2.1-3. Let’s call the average plane of all the points of the 

boundary of a hole the own plane of the hole (the boundary). 
 
Definition 2.1-4. If the boundary of a hole has unambiguous projection onto 

its own plane, then the hole is considered as a simple hole or as a complex hole 
otherwise. 

 
Definition 2.1-4. A result of an unsuccessful surface reconstruction can be 

related to one of the next classes: 
CS1: a coherent surface with simple holes inside; 
CS2: a coherent surface with simple and complex holes inside; 
CS3: the aggregate of several isolated islands with possible holes inside the 

islands. 
 
 

2.2 Formalization of properties of point clouds and algorithms 
 
 
Generally, the quality of a point cloud is a complex concept; it can’t be 

expressed by a single scalar value or a low-dimensional set of such values. In 
addition, the quality of a point cloud makes sense only concerning a given 
surface reconstruction algorithm. At the present time many such algorithms 
having different properties and possibilities are designed. 
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Definition 2.2-1. An input point cloud contains information about the 

corresponding original surface as the coordinates of some subset of the surface 
points. Let’s suppose that there is an algorithm that makes surface 
reconstruction only on the base of analysis of distances between points of the 
cloud. During surface reconstruction this algorithm don’t make any assumptions 
concerning the original surface behavior and don’t make any analyses of 
surface behavior in already reconstructed regions. Let’s call such hypothetical 
algorithm distance-analyzing algorithm (DAA). 

 
Let’s appraise the quality of an input point cloud from the point of view of 

surface reconstruction by DAA. We need to estimate the next two things: 
•  possibility of a successful surface reconstruction in principle; 
•  cost of such reconstruction. 
 
Definition 2.2-2. Later on, the notion of the distance between two points (A 

and B) of the surface of an object along this surface will be used. Let’s define 
this distance as the length of a trajectory between the points on the surface. 
The trajectory is defined as intersection the surface and a plane containing the 
given points. The plane should minimize the integral:  

∫
L

dll
0

2))((φ  (2.2-1), 

where 
L is the length of a trajectory between A and B; 
φ is the angle between external surface normal in a point on the trajectory 
and the plane. 

Let’s denote the distance between two points A and B along theirs original 
surface {A,B}. 

For the beginning, let’s consider the task of formalization of the quality of a 
point cloud in a neighborhood of a given point (A) of this cloud. 

Among the factors having influence on the cost of surface reconstruction, 
the uniformity of sampled points is the most important. For A let’s determine a 
set ({B}) of neighbors of 1-st order. Let {B} consists of n elements. The elements 
of {B} are n the closest (along the original surface) neighbors of A with 
condition, that the angle between any two vectors from A to these neighbors 
isn’t smaller than α. As n we choose the closest integer number to the averaged 
number of point’s neighbors in triangular meshes - 6. As α we choose a typical 
restriction for the minimal angle in a triangulation – 30°. 

  
Definition 2.2-3. Irregularity of points in a neighborhood of a given point A 

can be evaluated by the local irregularity factor (u) defined by the formula: 

|,|
|,|

min

max

BA
BA

u = , 

where maxB , minB  – are the most remote and the closest points of {B} of A. 
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Let’s define for each point of {B} (B) a 2-nd order neighbor of A. We define 
this point as the closest neighbor of B that does not belong to {B}. The set of all 
the 2-nd order neighbors of A we denote {C}. 

 
Definition 2.2-4. Let’s name a given point (A) of a point cloud a critical point, 

if for some point (B) of {B} of A and the corresponding point (C) of {C} of A the 
next inequalities are valid: 

},{},{ CABA < , 
|,||,| CABA > . 

 
If a given point is a critical point, then a DAA can’t reconstruct the original 

surface correctly in a neighborhood of the point. Thus, presence of critical 
points is a criterion of possibility of surface reconstruction by a DAA in principle.  

In the further consideration we will consider, that a point cloud hasn’t any 
critical points. We estimate the quality of such cloud from the point of view of 
the cost of surface reconstruction by a DAA. A DAA we estimate by its 
possibility of successful surface reconstruction from a point cloud with a given 
quality. This method of estimation is enough universal and informative because: 

1) a DAA-component is the basic for the majority of existing surface 
reconstruction algorithms; 

2) practically used point clouds mainly have only a little share of 
critical points or haven’t them.  

 
Definition 2.2-5. With due regard for mentioned above, the quality of a point 

cloud is estimated by the two factors of irregularity - Um and Ua. They are the 
maximum and the average value of u in the point cloud correspondingly.  

 
Definition 2.2-6. A given triangulation algorithm is estimated by two factors. 

They are the robustness (R) and the speed (S). R is the upper limit of Um of the 
point clouds, which can be successfully processed by the algorithm. S can be 
expressed by the formula: TNS /= , where N is the number of points of a point 
cloud; T is the time of surface reconstruction. S usually depends on Ua. The 
cost (C) of an algorithm is defined as the inverse value of S: SC /1= . 

 
As a whole, we have the next correlation between C and R for practically 

used surface reconstruction algorithms (for constUa = ): 
γkRC ~  (2.2-2), 

where k is a constant factor, γ has a value from the diapason 1.5 – 2.5. 
 
 
2.3 Classification of point clouds and strategy S1 
 
 

Let’s consider the distribution of u inside a given point cloud. A typical 
distribution of this parameter for a little model scanned in a laboratory is shown 
in figure 2.3-1. For such case Ua is insignificant, and Um does not differ 
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considerable from Ua. Let’s name clouds with such property clouds of class 
CP1. Surface reconstruction from a point cloud of the given class can be made 
by an algorithm having the appropriate mUR =  with the next cost: 

NkUNkRC γγ ==  (2.3-1). 
 
 

 
 

Figure 2.3-1 
 
 
In figure 2.3-2 a typical distribution of u for another kind of point clouds is 

shown. Such clouds are obtained by physical scanning architectural objects and 
objects explored from distance. For these point clouds Ua is still a relative little, 
but Um is essentially greater than Ua. It is a typical situation for the case of a 
good or average sampled surface with defects of the sampling. Such defects 
can be caused by physical defects of the surface, shielding, and so on. Let’s 
name clouds having such property clouds of class CP2. In this case a surface 
reconstruction by a single algorithm is extremely costly due to power 
dependence in formula 2.3-1. 

 
Definition 2.3-1. Let’s pick out all the point clouds, which can be correctly 

processed by an algorithm having typical values of R and C. For the present we 
choose as such algorithm the algorithm described in [MV01]. These clouds we 
refer to class CS1. Let’s pick out all the remaining point clouds, from which the 
typical algorithm can reconstruct at least 50% of the area of the corresponding 
sampled surfaces. These clouds we refer to class CS2. The remaining point 
clouds we consider practically unusable. 
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Figure 2.3-2 
 
 
For a point cloud of class CP2 let’s consider consecutive application of q 

algorithms having increasing values of robustness iR ; qi ,1= ; 1+< ii RR ; 

mq UR = . In figure 2.3-2 a situation for 4=q  is shown. For the beginning the 
fastest (and having the least robustness) algorithm is applied. Let’s call it 
beginning algorithm. This algorithm has deal with all the input points. After 
application of the beginning algorithm a stage of filtering is applied. At this stage 
we determine the set of points of correctly triangulated regions and the set of 
free points. Then the next (more robust and slow) algorithm is applied. This 
algorithm has deal with the current set of free points and boundaries of the 
correctly triangulated regions. And so on. The cost of surface reconstruction in 
the given case can be expressed by the formula: 

∫∑
−

=

+=
Rq

R

q
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i

i

duunFkRC
1

)()(
1

λ  (2.3-2), 

where 
0.10 =R ; 

the integral expresses the number of input points for i-th algorithm; 
n(u) is a function of points distribution concerning u; 
F is the cost of the filtering stage per one point. 
 
An algorithm of the described above strategy (let’s call it strategy S1) is 

shown in figure 2.3-3.  
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Figure 2.3-3 
 
 

2.4 Strategy S2 
 
 
Let’s consider an advanced strategy, which can reduce the total cost of 

surface reconstruction even more. This strategy consists of three main stages.  
The first stage (A) is carried out according the strategy S1. As a result of this 

stage we obtain a partially reconstructed surface (let’s call it A-surface), which 
can be referred to one of the classes defined in (2.1-4).  

 
Definition 2.4-1. Regions of an input point cloud correctly reconstructed at 

stage A we name sufficiently sampled regions (SSR).  
 
After stage A the second stage (B) begins. The goal of this stage is 

reduction of the obtained A-surface from class CS3 to class CS2 and then to 
class CS1. Naturally, if the A-surface has class CS2 or CS1, then the first sub-
stage of stage B or whole the stage is skipped. The basic idea of stage B is that 
for reduction of an A-surface to class CS1 it is enough to make a surface 
reconstruction only in several selected little regions. Therefore, in spite of the 
fact that for this reconstruction it is necessary to use a robust (and costly) 
algorithm, the total cost of this stage can be made a relative small. 

After reduction the reconstructed surface to class CS1 the third stage (C) 
begins. At this stage surface reconstruction in remaining non-reconstructed 
regions is made. The total area of such regions is not considerable smaller than 
the total area of non-reconstruction regions obtained after application stage A. 
However, now these regions are represented by a set of simple holes, and for 
surface reconstruction inside them we don’t need to use costly algorithms. 
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So, during surface reconstruction in accordance of the described above 

strategy (let’s call it strategy S2) the majority of input points are processed at 
stages A and C by enough simple and fast algorithms. 

 
 

3. STAGE A 
 
 
Within the framework of the given stage a beginning algorithm and an 

algorithm of the filtering stage were designed. The current implementation of the 
stage consists of subsequent application of these algorithms. In case of need 
the stage can be easily supplemented by subsequent application of a more 
robust algorithm(s), for example, [MV01].  

 
 

3.1 A beginning algorithm 
 
 
Generally, this algorithm uses the ideas of greedy triangulation (GT) and 

belongs to the group of interpolating methods. The GT of a point set in the 
plane is the triangulation obtained by starting with the empty set and at each 
step adding the shortest compatible edge between two of the points [BE95]. In 
2D a compatible edge is defined to be an edge that crosses none of the 
previously added edges. This algorithm is an extension of 2D GT-strategy for 
3D. It makes this algorithm to be very close to DAA. 

For using GT-strategy in 3D a special very simple and fast test was 
designed. This test analyzes a topology of a created mesh at the place of 
prospective inclusion of an edge, and can be formulated as follows: if insertion 
of the current tested edge leads to an appearance of the edges having more 
than two adjacent triangles or leads to appearance of a tetrahedron, the edge is 
considered as incompatible and compatible otherwise. The given test does not 
use any floating-point operations, and is passed fast.  
 
 

 
 

Figure 3.1-1 
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This test can’t prevent appearance of edges having less than 2 adjacent 
triangles (edge AB in figure 3.1-1). Therefore, at the end of the algorithm we 
eliminate all such edges. Naturally, process based on such simple test can’t 
provide 100% reliability for triangulation, but it is not necessary for a beginning 
algorithm. Typically we have about 95% correctly connected points in regions 
having 6≤mU .  
 
 
3.2 Filtering 

 
 
The sub-stage of filtering is intended to control of a result of application of a 

surface reconstruction algorithm applied before. On the input of this sub-stage 
there is some set of edges and triangles. On the output we have some set of 
correctly reconstructed regions and some set of free points. Free points haven’t 
edges.  

Generally, the sub-stage detects and marks points of the correctly 
triangulated regions. Simultaneously the sub-stage removes the edges and 
triangles, which don’t create a correctly triangulation. The sub-stage can 
improve some errors of the applied before surface reconstruction algorithm, 
which are caused by generation of redundant edges and triangles. The sub-
stage doesn’t make generation of new edges and triangles.  

 
Condition 3.2-1. On an input set of edges is imposed the next condition: 

each edge can have only one or two adjacent triangles. 
 
For this sub-stage we use a variant of the well-known “umbrella” filtering 

[AGJ02]. Each point on the input can have one or several chains of adjacent 
triangles. These chains can be closed or open. Because of condition 3.2-1 such 
chains can’t have any intersections (shared edges). Possible cases are shown 
in figure 3.2-1. 

 
 

  
Figure 3.2-1a Figure 3.2-1b 



 

Page  34

  
Figure 3.2-1c Figure 3.2-1d 

 
 
Lemma 3.2-1. Can be easily proved, that a point of a correctly triangulated 

region can have only one chain of triangles. This chain is closed for an internal 
point (let’s denote such point ICP), and is open for a boundary point (let’s 
denote such point BCP).  

 
The condition of lemma 3.2-1 is necessary, but is sufficient only if a given 

triangulated region is enough extensive. For example, vertices of a single 
isolated wrong triangle satisfy to this condition.  

 
Definition 3.2-1. Let we have a triangulated region consist of points, which 

satisfy to the condition of lemma 3.2-1. We consider such region correctly 
triangulated, if each boundary point is connected at least with one internal point.  

 
During the filtering each point can have one of the listed below statuses: 

The general beginning status:  
NT – the point is not tested. 

The statuses after the umbrella-test application: 
IC – the point has only one closed chain of triangles (figure 3.2-1a); 
BC – the point has only one open chain of triangles (figure 3.2-1b); 
MC – the point has more than one chain of triangles (figure 3.2-1c, d); 
FR – the point hasn’t any edges and triangles. 

The status for more effective organization of the filtering process: 
CF – the point belongs to a current front of corrected points.  
 
In addition, if a triangle has at least one IC or BC point as a vertex, then this 

triangle is marked as an OK-triangle. If a triangle chain has at least one OK-
triangle, then the chain is marked as an OK-chain. 

 
The filtering sub-stage consists of two main stages, a stage of intermediate 

testing, and a post-processing stage. 
 
Stage 1. At this stage determination of correctly triangulated regions is 

made. Each region is determined by movement of a front from a beginning 
point. As the beginning point an IC-point is chosen. Before processing the stage 
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all the input points are marked as NT. For supporting movement of the front the 
next two lists of points are created: BaseFront and ActiveFront. The stage 
consists of the following steps: 

1. At this step we search a beginning point for subsequent determination of 
the corresponding correctly triangulated island. For it we apply the 
umbrella-test sequentially for all the points having NT-status. According a 
result of this test a tested point gets one of the next statuses: FR, IC, BC, 
MC. If the point is determined as IC-point, then this point is accepted as 
a beginning point, and the testing of remaining NT-points is stopped. If a 
beginning point is not found, then this stage is aborted, and a jump to the 
stage of intermediate testing is made. 

2. BaseFront and ActiveFront are initialized as empty lists. In BaseFront the 
found beginning point is added. 

3. At this step we analyse all the points having connections with points of 
BaseFront. For each such point the following operations are made:  
3.1 If the point has IC-status, then consideration of this point is skipped, 

because it means, that the point was already passed by the front.  
3.2 If the point has status NT, then for this point the umbrella test is 

applied, and on the grounds of a result of the test the point gets one 
of the next statuses: FR, IC, BC, MC.  

3.3 If the point has IC-status, then the point is added in ActiveFront.  
3.4 If the point has MC-status, then the point’s status is changed to CF. 

4. If ActiveFront is empty, it means, that determination of the current island 
is done. In this case the next doings are made:  
4.1 If the determined island hasn’t the external boundary (we obtain a 

local closed surface), then all the edges and triangles of the island 
are deleted, and all the island’s points get status FR.  

4.2 A jump to step (1) to choice a new beginning point.  
5. If ActiveFront is not empty, then we copy ActiveFront to BaseFront, and 

then we make ActiveFront empty.  
6. A jump to step (3) to make next iteration of movement of the front. 
 
The stage of intermediate testing. At this stage a testing results of stage 1 is 

made. If no one IC-point is found, then the filtering is aborted with an error code. 
If no one CF-point is found, then the filtering is ended with a code of success. 

 
Stage 2. At this stage we try to normalize the points, which were detected at 

stage 1 as MC-points. For such points we detect and remove redundant 
triangles. Normalization is made by movement of a front too, and lists 
BaseFront and ActiveFront are used at this stage also. At description of the 
given stage the term “releasing of a point” is used. This term means, that all the 
triangles of a given point are removed and the point is marked as a FR-point. If 
as a result of elimination of a triangle we obtain a point without triangles, then 
this point is marked as a FR-point too. Movement of the front is realized as an 
iterative process, each iteration consist of the following steps: 

1. A set of the points to test at the given iteration is determined. If it is the 
first iteration, then this set is made of all the points, which were marked 
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as CF-points at stage 1. For all subsequent iterations this set is made of 
all the points, which have status MC and have connections with points of 
BaseFront. 

2. For each point of the determined set the next operations are made:  
2.1 All the OK-chains of triangles are determined.  
2.2 If there is only one OK-chain, then all other chains are removed.  
2.3 If there are several OK-chains, then the point is released, and its 

processing is ended.  
2.4 The point is marked as an IC-point (if the OK-chain is closed) or as a 

BC-point (if the OK-chain is open).  
2.5 If the point is determined as IC, then this point is added in 

ActiveFront. 
3. If ActiveFront is empty, then the stage is ended.  
4. ActiveFront is copied to BaseFront, then ActiveFront is made empty.  
5. A jump to step (1) is made. 
 
The stage of post-processing consists of the next steps:  
1. All the remaining MC-points are realized. Thus, we obtain the set of 

points of correctly triangulated regions and the set of free points.  
2. Boundaries of the correctly triangulated regions are determined. 
3. For each boundary we determine if the boundary is the boundary of a 

hole or the boundary of an island. This determination is made on the 
basis of definition 2.1-2. 

 
 

4. BASIC ISSUES OF STAGE B 
 
 

4.1 Determination and construction of a TS 
 
 

4.11 Formalization of a TS 
 
 
The basic operation of stage B is creation of a triangle strip (TS) in the non-

reconstructed area. A TS connects two points (let’s call them the supporting 
points of a TS) of a boundary (boundaries) of an island (islands). Reduction of a 
surface of class CS3 to a surface of class CS2 is made by creation of TSs, 
which make connections between islands (let’s call such TSs bridges). 
Reduction a surface of class CS2 to a surface of class CS1 is also made by 
TSs, which are used for decomposition of complex holes.  

As the basis a TS has a curve segment (let’s call it forming curve segment, 
FCS) connecting the supporting points of the TS. The FCS is the segment 
(between the supporting points) of the curve formed by intersection of the 
original object surface and a plane (let’s call this plane secant plane, SP) that 
passes through the supporting points. The surface of a TS is a strip of triangles 
approximating the original surface and having the FCS in the center.  
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4.12 Construction of a TS 
 
 
With due regard for mentioned above, at stage B surface reconstruction is 

reduced to determination FCSs for the corresponding TSs. In non-reconstructed 
regions of a given A-surface the density of free points is essentially lesser then 
in SSRs. In addition, this density usually is very irregular. With due regard for 
these properties let’s consider a method for determination of a FCS, that is 
based on analisys of the tension of a field. Let’s suppose, that free points in a 
given neighborhood of a given SP are souses of a field (let’s denote this field 
G), that has the following properties: 

•  The tension of the field is a scalar value. The field created by each point 
is spherically symmetrical. The tension of this field on a distance R from 
the point can be obtained by the formula:  

2R
kG =  (4.12-1), 

where k – is a constant factor.  
•  In a given space point the result tension of the field is scalar sum of the 

tensions, which are created by each source of the field in the given point.  
•  This field can be shielded. If any shield exists, then the field of a given 

source effects in a given space point only if the source is visible from the 
given point. 

 
 

 
 

Figure 4.12-1 
 
 

Let’s consider the distribution of the tension of the field on a given SP (figure 
4.12-1) created by a given set of free points. The projection of a given free point 
can be a local maximum of the tension (let’s call such point on the plane pole, 
such projections are marked by black points) if this point is enough close to the 
SP. A remote free point (projections of these points are marked by gray points) 
usually has only influence on behavior of equipotential lines (marked by black 
lines).  
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Let's consider lines outgoing a given pole, such, the tangent line to which in 
each point is the perpendicular to the appropriate equipotential line. By analogy 
to the description of physical fields, let’s name these lines force lines of the field 
(marked by gray lines).  

Force lines outgoing a given pole, it is possible to divide into the next two 
categories: 

1) finite force lines binding poles with each other (marked by thick lines); 
2) infinite force lines (marked by thin lines). 

 
 

 
 

Figure 4.12-2 
 
 
Let’s consider a circle with a small radius ε circumscribed around a given 

pole (figure 4.12-2). Let’s consider distribution of the tension of the field on this 
circle (for convenience, at this consideration we don’t consider the tension 
created by the pole). It is obvious, that there is a local maximum of the tension 
in the point of intersection of the circle and a force line of type (1).  

As the FCS corresponding to a given pair of supporting points and a SP let’s 
consider a line, that is formed by force lines of type (1) linking poles and the 
force lines of type (2) linking the supporting points with the nearest poles. A 
FCS can be determined by sequentially tracking of these force lines.  

Let's name a force line on which we came in a given pole, an incoming force 
line. Similarly, let’s name a line on which we leave a pole, an outgoing force 
line. 

If topology of free points is complicated, a given pole can have more than 
one possible outgoing line. In this case we take as the outgoing force line the 
line having the maximum tension in the point of intersection with a given ε-
circle, with condition that the angle (in figure 4.12-2 such angle is denoted as ϕ) 
between the tangent lines to the incoming and outgoing force lines in the pole is 
no smaller than a given threshold value.  

 
Lemma 4.12-1. It is obvious, that the force lines form acceptable 

approximation of the FCS if for any two free points (X and Y) in a neighborhood 
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of the FCS the following condition is satisfied: if }'{}'{ YYXX <  then yx < , 
where 'X , 'Y  are the points on the FCS, which are the closest (along the 
surface) to X and Y correspondingly; x and y are the distances from 
correspondingly X and Y to the SP. Can be proved, that we have the most 
probability of observance of this condition when a given choice of the SP 
minimizes integral (2.2-1), where the supporting points as points A and B are 
taken, and the SP as the plane is taken.   

 
In practice, at construction of a TS we use two auxiliary planes, which are 

parallel to a given SP. These planes are on the both sides from the SP, on 
some small identical distance (d) from it. For each of these planes we determine 
a broken line approximating the curve of intersection of the plane and the 
original surface by the described above algorithm for determination of a FCS. 
Then we connect vertices of the both broken lines to obtain triangles. 

 
 

4.13 Conditions for successfully construction of a TS 
 
 
Determination of the FCS of a TS is made on the basis of the method 

described in  (4.12).  Hence, the SP and the supporting points of the TS should 
be chosen taking into account the following conditions: 

 
Condition 4.13-1. In accordance with lemma 4.12-1, integral (2.2-1) should 

be minimized.  
 
Condition 4.13-2. The determined FCS should not pass through correctly 

reconstructed regions. 
    
A SP can be defined by the two vectors: 
•  a direction vector (D ); this vector connects the supporting points of a 

given TS (let’s denote them P1 and P2);  
•  an orientation vector (O ), it is some vector, that is not parallel toD . 
 
Let’s consider, how we can satisfy condition 4.13-1. At determination of the 

SP only the surface normals in the supporting points (let’s denote them n1 and 
n2 correspondingly) are known. Naturally, we need to minimize at least the sum 
of the angles between these normals and the SP. Let’s replace the condition of 
the sum minimization by an equivalent condition of minimization of one angle. 
Let’s define this angle (let’s denote it ϕ) as the angle between the plane defined 
by vectors D , n1 and vector n2. From the meant property of surface smoothness 
follows, that with reduction of the distance between P1 and P2 probability of 
observance of condition (4.13-1) increases. 

Thus, a SP can be defined only by supporting points. As O  the average 
vector of the external surface normals in these points is taken. 
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Also, let’s note, that if D  connects the boundaries of the two closest (in a 
given neighborhood) islands then condition 4.13-2 is satisfied. 
 

 
4.2 Topological issues of connection of islands 

 
 
Definition 4.2-1. Let we have an elastic weightless membrane that is a 

topological analog of a closed sphere circumscribed around an input point 
cloud. Let we have an A-surface of class CS3 (a set of islands) obtained from 
this point cloud. Let’s consider the surface of the minimum of potential energy of 
this membrane with condition that the membrane fits closely to the surface of all 
the islands. Let’s name such surface islands-based surface (IS).  

 
Definition 4.2-2. Since each island is a part of a reconstructed surface of an 

object, then we can determine the external and the internal sides of an island. 
Let’s name an island with determined sides oriented island. A method of 
determination of the orientation of an island will be described in (4.5). Let’s 
define for an island the positive direction of movement along its external 
boundary the counter-clockwise direction, if we look to the external side. For the 
boundary of a hole inside an island the positive direction is reverse. 

 
As it is described in (4.11), reduction of a surface of class СS3 to a surface 

of class СS2 is made by building connections (bridges) between islands with 
subsequent extraction of holes, which are made by the external boundaries of 
the islands and the built bridges. For consideration of topological issues of 
connection between islands, in the given paragraph let’s consider a bridge only 
as the segment connecting the supporting points of the bridge.   
 
 

 
 

Figure 4.2-1 
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From a given topology of bridges (figure 4.2-1) we extract holes by the 
following algorithm: 

1. A supporting point of a bridge as the beginning point (P0) is chosen. The 
same point is accepted as the current point (P1). 

2. From P1 we move along the corresponding bridge to its other supporting 
point.  

3. From this supporting point we move along the boundary of the 
corresponding island in the positive direction until the first supporting 
point (P2) of any bridge will be met.  

4. If P2 coincides with P0, then the passed closed contour is considered as 
the found boundary of a hole, otherwise we accept P2 as P1 and return to 
step (2).  

 
Definition 4.2-3. Let’s name the number of bridges in the contour of a given 

hole the rank of the hole. 
 
It is obvious, that a hole with a lesser rank has greater probability to be 

simple, than a hole with a greater rank.  
Thus, a topology of connections between islands should satisfy to the 

following conditions: 
 
Condition 4.2-1. The bridges should approximate the IS of the islands as 

precisely, as it is possible. 
 
Condition 4.2-2. For avoiding a topological ambiguity, the supporting points 

of any two bridges should not coincide with each other. 
 
Condition 4.2-3. The rank of the resulting holes should be minimized. 
 
Condition 4.2-4. The number of the bridges should be minimized. 
 
Condition 4.2-4 takes into account that a bridge is made by the enough 

costly method described in (4.12). Also, probability of generation of a wrong 
bridge increases with increasing the total number of generated bridges. But, this 
condition contradicts with condition 4.2-3. As a compromise between these 
conditions, let’s minimize the total number of generated bridges to the limit that 
is necessary for existence of holes with rank 3 or greater. Can be easily proved 
the next lemma: 

 
Lemma 4.2-1. In a given topology of bridges there are only holes with rank 3 

or greater, if each island has no more than one connection with any other 
island. Besides, if each island is connected with all its nearest neighbors (along 
the original surface), then we have only holes with rank 3.   
 
 



 

Page  42

 
 

Figure 4.2-2 
 
 
The described above method of reduction of a surface of class CS3 to a 

surface of class CS2 is sensitive to appearing wrong redundant bridges. As it is 
shown in figure 4.2-2, appearance of one wrong bridge leads to appearance of 
a contour having a complex topology. Such contour can’t be interpreted as the 
boundary of a hole in a reconstructed surface.  

 
Lemma 4.2-2. Let we have a topology created only by correct bridges. Thus, 

we have the set of correct contours of this topology. Let we add to the topology 
several wrong bridges with condition, that in each correct contour no more than 
one wrong bridge appears. Then, a closed contour containing a wrong bridge 
passes this bridge two times. Besides, if two correct contours connected by a 
wrong bridge have shared correct bridges, than these bridges are passed two 
times also. 

Proof. Let’s consider a wrong bridge, which connects two correct contours A 
and B (figure 4.2-2). The given wrong bridge takes away the trajectory of a 
round of contour A to contour B. It is obvious, that the trajectory can return to 
contour A only by the same wrong bridge. Also, for returning from contour B the 
trajectory should return to the supporting point of the wrong bridge on contour 
B. The trajectory can make it only if it makes round around all contour B. 
Similarly arguing, we make a conclusion, that for junction of the trajectory in the 
beginning point (according the condition of the hole extraction algorithm 
described above) the trajectory should make round around all contour A. Thus, 
if contours A and B have shared bridges, then these bridges are passed two 
times also.                

 
Thus, if two correct contours haven’t shared bridges, then we can simple 

detect a wrong bridge as a bridge passed two times. If these contours have 
shared bridges, the situation is more difficult, because we can’t distinguish 
wrong and shared bridges. Taking into account that appearance of a wrong 
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bridge is inadmissible, we consider that all the bridges passed two times should 
be removed.  

 
An algorithm for holes extraction is described below. This algorithm has 

stability concerning appearance of wrong bridges, if such bridges don’t break 
the condition of lemma 4.2-2. During holes extraction each segment of the 
boundary of an island made by supporting points of bridges can have two states 
– “free” and “used”. Initially all the segments are marked as “free”. If the contour 
of a hole is extracted successfully, then the segments of the contour are marked 
as “used”. The algorithm consists of the following steps: 

1. A beginning point for extraction of the contour of a new hole is chosen. 
Initially we choose a “free” segment, then the most “positive” endpoint of 
the segment is chosen (from the point of view of the positive direction for 
this segment) as the beginning point. If free segments are absent, the 
algorithm is ended. 

2. Extraction of the contour of a hole from the determined beginning point is 
made. For extraction the described above algorithm is used. If during 
extraction any bridges passed two times are found then these bridges 
are deleted and a jump to step (1) is made. 

3. The segments belonging to the found contour are marked as “used” and 
a jump to step (1) is made.    

 
 
4.3 Determination of the placement of TSs at sub-stage CS3->CS2 

 
 
4.31 Formulation of a sufficient condition 

 
 
We need to choose pairs of the supporting points of TSs taking into account 

the conditions for a topology of connections between islands (4.2-1, 4.2-2, 4.2-
3, 4.2-4) and the conditions for successful construction of a TS (4.13-1, 4.13-2). 

Let’s formulate a lemma that defines a sufficient condition for observance of 
conditions (4.13-1, 4.13-2), with assumption that the external boundaries of 
islands are smooth. 
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Figure 4.31-1 
 
 
Lemma 4.31-1. Let we have the boundaries (X and Y) of two islands, and 

there are two supporting points (Px and Py correspondingly) on these 
boundaries. Let these points are the closest to each other points of boundaries 
X and Y. Let’s denote the surface normals in Px and Py as nx and ny, and the 
tangent lines to the boundaries in the given points as tx and ty correspondingly. 
So, if tx and ty are parallel, then vectors yxPP , nx, ny lie in the same plane.  

Proof. In a given point of a boundary the tangent line lie in the plane 
approximating the reconstructed surface in the given point. Thus this tangent 
line is perpendicular to the surface normal in the given point. The tangent line is 
an approximation of the boundary in some close neighborhood of the given 
point. As is known, the shortest distance between two parallel straight lines is a 
perpendicular to them. Thus, we have the three vectors yxPP , nx, ny, which are 
perpendicular to the same straight line (one of the tangent lines). Therefore, 
these vectors lie in the same plane. 

 
 

4.32 Definition of field H 
 
 
Let along the boundary (boundaries) of each island, in the positive direction, 

a current of some nature flows. For each boundary the current has the same 
intensity. Let interaction between two elementary currents 1I  and 2I  placed in 
points X1 and X2 correspondingly is defined by the formula: 

2
2112

12
)(
rA
SinIIdkF

+
−= αδ  (4.32-1), 

where  
12F  is the force having effect on the current 1I ; 
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δ = 0, if 1I  and 2I  belong to a boundary (boundaries) of the same island, 
and δ = 1 otherwise; let’s add also the next condition of shielding: δ = 1, if 1I  
and 2I  are visible for each other, and δ = 0 otherwise; 
k  is a constant factor;  

12d  is the unit vector directed from X1 to X2; 
α is the angle between vectors - 12d  and 2I ; 
r is the distance between X1 and X2; 
A is a small constant used for prevention of appearance of very large 
interaction forces when 0→r ; 
the minus in the beginning means, that opposite directed currents attracts. 
 
 

 
 

Figure 4.32-1 
 
 
Such interaction can be provided by a field (let’s denote it H) created by 

each elementary current. Let we have in a given space point (O) an elementary 
current ( 0I ). Let the tension of the field created by 0I  in other space point (X) is 
defined by the two following vectors (figure 4.32-1): 

d  is the unit vector directed from X to O; this vector defines the direction of 
the force having effect on a current in X; 
a  is the vector, that is responsible for the volume and the sign of the 
interaction force; this vector has the same direction that 0I  and is defined by 
the next formula:  

2
0

rA
SinI

ka
+

−=
α

 (4.32-2), 

where α  is the angle between vectors 0I  and - d . 
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In this case the force having effect on a current ( I ) placed in X is defined by 
the next equation: 

)( aIdF δ=  (4.32-3) 
The field defined by this way has the next important property: the straight 

line of the vector of a force having effect on an elementary current does not 
depend on the direction of the current and is defined only by vector d  of the 
tension of the field in the point of location of the current. As a force line of the 
field we consider a curve, in each point of which the tangent line is the line of a 
force vector in the same point. 

Let’s assume, that the interaction defined by formula 4.32-1 has the 
superposition property. For realization of this property we need to define an 
operation of summation for the tension of the field H, with the condition that for 
any current I  the next equations would be true: 

11 HIF =  

22 HIF =  
)( 2121 HHIFFF +=+=  

1221 HHHH +=+  
)()( 321321 HHHHHH ++=++  

Because the tension of the field H created by an elementary current in a 
given space point is defined by the two independent vectors, the field H with the 
defined operation of summation of the tensions is a tensor field. The tension of 
this field created by an elementary current in a given space point can be 
represented by the next matrix:  

















=

zzyzxz

zyyyxy

zxyxxx
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H (4.32-4), 

where dx,y,z, ax,y,z are components of the corresponding vectors d  and a . 
In this case formula 4.32-3 can be written as: 

HIF δ= (4.32-5) 
 
 

4.33 A method of determination of the supporting points of a TS  
 
 
From the properties of the interaction defined by formula 4.32-1 follows, that 

the value of the attraction force along the boundary of an island increases with 
completeness of accomplishment of the condition of lemma 4.31-1 and 
reduction of the distance up to the external boundaries of neighbor islands. Let 
suppose that there is a local maximum of the force in a point P1 of a given 
segment of the boundary of an island. Let we track the force line of the field that 
is outgoing from P1 in the direction of the force vector. Let’s denote the found 
second endpoint of this force line as P2. P1 and P2 can be considered as the 
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supporting points of a possible bridge between the corresponding islands. The 
superposition property of the field H provides, that the behavior of force lines of 
the field satisfies to condition 4.13-2. Because of the same property the 
boundaries of interacted islands are presented to each other as smooth lines 
according to the condition of lemma 4.31-1.  
 
 

 
 

Figure 4.33-1 
 
 
Thus, let we have the set of all the point pairs (let’s denote this set {S}) 

formed by the described above method. Then, for stage CS3->CS2 the set of 
pairs of the supporting points of a TS is the subset of {S} constructed with 
observance of conditions 4.2-1, 4.2-2, 4.2-3, 4.2-4. 

 
 

4.4 Determination of placement of a TS at sub-stage CS2->CS1 
 
 
Decomposition of a complex hole is made by recursive subdivision of the 

hole. The subdivision is made by creation of a TS inside the hole contour. The 
supporting points of this TS is chosen generally by the same way that for stage 
CS3->CS2. But for this stage there are the following differences: 

•  Each hole is considered separately, and only the current flowing along 
the hole’s boundary is taken into consideration. Hence, the direction of 
the current can be chosen at will.  

•  In formula 4.32-1 term δ is equal to 0 if the points of placement of 
elementary currents 1I  and 2I  is connected by the shortest segment of 
the boundary, that is shorter than NL / ; where L  is the length of the 
boundary, 2≥N . This condition is applied to avoid appearance of local 
maximums of the attraction force in sharp corners of the boundary. The 
shielding condition for δ is the same. 

 
Taking into account the described above modifications, the created TS splits 

the hole in the narrowest place, where corresponding segments of the boundary 
lie approximately in the same plane, with condition, that the smallest child hole 
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has the length of the contour not lesser than dNL +/ , where d is the length of 
the FCS of the TS. 

 
 

4.5 Determination of the orientation of islands 
 
 
As was mentioned in (4.2, 4.3), one of the key things of stage CS3->CS2 is 

determination of the orientation of an island.  
 
 

 
 

Figure 4.5-1 
 
 
One of possible methods is described below.  
Around an input set of points let’s circumscribe the minimal sphere, let’s 

denote the center of the sphere O (figure 4.5-1). Let A is a point of the surface 
of an island and B is the point of intersection of the sphere and half-line OA. 
The direction of the normal in A making a positive dot product with vector OA  
we consider as external if the following conditions are observed: 

1) Segment AB don’t intersect the surface of any other island; 
2) There are no free points on a distance lesser than r from segment AB; 

kdr = , where d is the typical distance between free points in a given 
region, k is a constant factor. 

 
If such point A is found for an island, then its orientation can be determined 

by this way. However, this method (or other simple method) is suitable not for 
every case. For example, in figure 4.5-1 the method is working for island X and 
is not working for islands Y and Z.  
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Let we have such “difficult” island in an encirclement of correctly oriented 
islands (let’s call them standard islands). For determination of the orientation of 
this island let’s use the fact, that attraction predominates between correctly 
oriented neighbor islands at using field H.   
 
 

 
 

Figure 4.5-2 
 
 
For the island, for the both possible variants of its orientation, let’s calculate 

the integral: 
dlmF

L
∫ (4.5-1), 

where  
L is the contour of the external boundary of the island;   
F  is the force vector in a point (X) of the boundary of the island; 
m  is the unit vector (figure 4.5-2) in the same boundary point, which is: 1) 
perpendicular to the normal (n) of the island surface in the point; 2) 
perpendicular to the tangent line (p) of the boundary in the point; 3) directed 
to the non-reconstructed area. 
 
For the correct orientation of the island we have the greatest value of 

integral 4.5-1.  
 
 

4.6 Additional issues of modeling of the fields 
 
 
Using each of the defined above fields (G and H) we can obtain more 

adequate space distribution of the field tension, if we use shielding. In 
accordance with the defined properties of the fields, the shielding can be 
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modeled by using existing technologies for visualization. It is obvious, that 
regions of the reconstructed surface should shield the both fields. 

Also, several effective optimizing conditions for the modeling are described 
below: 

 
Condition 4.6-1. Let’s consider a point (X) on the boundary of an island 

(see figure 4.5-2 and the description of formula 4.5-1). The plane defined by n 
and p divides the space into two subspaces. Let’s consider that field H created 
by an elementary current I  placed in X exists only in the subspace that 
contains the endpoint of m . 

 
Condition 4.6-2. At construction of a TS we consider only free points inside 

the parallelepiped formed by: 
•  two planes, which are parallel to the SP of the TS and are on the both 

sides from the SP, on the same distance (l) from it; 
•  two planes, which are perpendicular to the SP and parallel to D ; one 

plane is placed on an established distance (h) “above”D , and other 
plane is placed on an established distance (d) “below” D ; the “top” 
direction is defined by a vector, that is perpendicular to D  and has 
positive dot products with the vectors of external normals in the 
supporting points of the TS.     

The values l, h, d usually depend on || D .  
 
 
4.7 A method of detection of a simple hole 

 
 
At the beginning let’s define a projection plane of a given hole. As this plane 

we take the own plane of the hole. Then for each vertex of the boundary (the 
boundary is considered as a broken-line) we define a corresponding auxiliary 
point (let’s call it external contour point, ECP) in the following way: 

1) we calculate vector m  introduced in formula 4.5-1; 
2) we calculate vector p  by the formula: mp ε−= , where ε  is a small 

positive value;    
3) the endpoint of p  is considered as the ECP of the given vertex. 
 
Thus, if the line of hole’s boundary projection don't cross itself, and all the 

projections of ECPs lie outside the region, restricted by this line, we consider, 
that the hole has unambiguous projection. In figure 4.7-1 a case of ambiguous 
projection of a hole is shown, when several projections of ECPs (featured by 
circles) are inside the area of the projection of the hole. 
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Figure 4.7-1 
 
 

5. ALGORITHMS OF IMPLEMENTATION OF STAGE B 
 
 

5.1 Sub-stage CS3->CS2 
 
 
The described below algorithm has five stages. 
 
Stage 1. At this stage we determine the orientation of all the islands by the 

method described in (4.6). 
 
Stage 2. At this stage a list of pairs of the supporting points of possible 

bridges between the islands is created (let’s denote them BridgePointsList). But 
generally, this list is not completely done at this stage. 

1. The list of all the points of the boundaries of all the islands having a local 
maximum of the attraction force (let’s denote this list 
MaxAttractionPointsList) is made.  

2. MaxAttractionPointsList is sorted in decreasing order values of the 
attraction force in the points.   

3. If MaxAttractionPointsList has less than two elements, then this stage is 
ended. 

4. The first point of MaxAttractionPointsList (let’s denote this point P1) is 
chosen. 

5. The force line outgoing from P1 in the direction of the force vector is 
tracked and the other endpoint of this force line (let’s denote it P2) is 
determined.  

6. If P2 is not an element of MaxAttractionPointsList, then P1 is removed 
from the list and a jump to step (3) is made. 
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7. If there is no pair of points representing the same islands that pair (P1,P2) 
in  BridgePointsList, then pair (P1,P2) is added to the list.  

8. Points P1 and P2 are removed from MaxAttractionPointsList and a jump 
to step (3) is made. 

 
Stage 3. At this stage we determine missing elements of BridgePointsList for 

islands having less than 3 possible bridges.  
1. The list of the islands having less than 3 possible bridges (let’s denote it 

UnsuffLinkedIslandsList) is made; 
2. If UnsuffLinkedIslandsList is not empty, then the first element of the list is 

chosen (let’s denote this island I), else the stage is ended. 
3. The list of all the boundary points of I with exception of points assisting in 

BridgePointsList (let’s denote this list IslandBoundaryPointsList) is made, 
then this list is sorted in decreasing order values of the attraction force. 

4. The list of the boundary points of I in decreasing order values of the 
attraction force in the points (let’s denote it CandidateBridgePointsList) is 
made. We sequentially consider elements of IslandBoundaryPointsList 
and add in CandidateBridgePointsList only points, which satisfy to the 
next condition: the length of the shortest boundary segment between a 
given considered point and any point from CandidateBridgePointsList or 
BridgePointsList is greater than some threshold value.  

5. If CandidateBridgePointsList is empty, then I is removed from 
UnsuffLinkedIslandsList and a jump to step (2) is made.  

6. The first element in CandidateBridgePointsList (let’s denote this point P1) 
is chosen. 

7. The force line outgoing from P1 in the direction of the force vector is 
tracked and the other endpoint of this force line (let’s denote it P2) is 
determined.  

8. If P2 assists in BridgePointsList, then a jump to step (10) is made. 
9. Pair of points (P1,P2) is added in BridgePointsList. 
10. If pair (P1,P2) describes a 3-rd possible bridge for any island(s) from 

UnsuffLinkedIslandsList, then this island(s) is removed from the list. If I is 
one of such islands, then a jump to step (2) is made. 

11. P1 is removed from CandidateBridgePointsList, and a jump to step (4) is 
made. 

 
Stage 4. At this stage, on the base of created BridgePointsList extraction of 

holes and detection of wrong bridges is made by the methods described in 
(4.2). If an element of BridgePointsList describes a wrong bridge, then this 
element is removed from the list. 

 
Stage 5. For each pair of the supporting points of BridgePointsList the 

corresponding TS is made by the method described in (4.12). 
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5.2 Sub-stage СS2->СS1 
 
 
Definition 5.2-1. Let's name a given simple hole a simple flat hole, if the 

distance between any point of its boundary and its own plane does not exceed 
a threshold limit h; kDh = , where D is the length of the longest chord of the 
boundary of the hole, k is a constant factor.   

 
Condition 5.2-1. For more effective work of subsequent stage C, let’s 

demand that all holes on the output of this sub-stage should be simple flat 
holes. 

 
Generally, this sub-stage is carried out by separate processing each hole 

obtained at sub-stage CS3->CS2. Each input hole is processed by recursive 
application of the described below algorithm: 

1. If the given hole is a simple flat hole, then its processing is ended.  
2. We consider a current flowing along the boundary of the hole and 

determine distribution of the interaction force on the boundary. 
3. The point having the maximum of the force (let’s denote this point P1) is 

found on the boundary.  
4. The force line outgoing from P1 in the direction of the force vector is 

tracked and the other endpoint of this force line (let’s denote this point 
P2) is determined.  

5. A TS is made with using P1 and P2 as its supporting points. 
 
 

6. STAGE С 
 
 
At this stage surface reconstruction inside holes obtained at stage B is 

made. Because we have deal only with simple flat holes, surface reconstruction 
can be made by a simple and fast method. For each hole we reduce the task of 
surface reconstruction inside it to the task of 2D triangulation inside the area 
that is made by projection of the boundary of the hole onto the own plane of the 
hole. For this triangulation a variant of the classical GT-algorithm [BE95] is 
applied, but as the length of the edge between a given pair of 2D-points the 
distance between the corresponding 3D-points is used. 

 
Stage C consists of two sub-stages. 
 
Sub-stage 1. At this sub-stage the input parameters for the 2D-triangulation 

algorithm are determined for each hole. Initially, for each hole the own plane 
and the line of projection the boundary onto this plane (let’s call this line 2D-
contour) are determined. Then, for each hole the corresponding set of free 
points considered for surface reconstruction inside the hole is determined (let’s 
denote this set {P}). A free point belongs to {P} of a given hole, if its projection 
onto the own plane of the hole is inside the 2D-contour. If a free point can be 
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referred to such sets of several holes simultaneously, then the point is referred 
to the set of the hole that has closest own plane to the given point. 

 
Sub-stage 2. At this sub-stage surface reconstruction is carried out 

separately for each hole. For a hole the algorithm of 2D-triangulation is applied 
with using the input data obtained at the previous sub-stage. 

 
 

7. SOME RESULTS 
 
 
At present there is an implementation of strategy S2, in this implementation 

stages A and C are implemented by prototypes of the described above 
corresponding algorithms. Stage B is implemented by the simplified algorithms 
described in [ES02]. Several experiments with using the given implementation 
were made. The results for several samples are shown in Table 7-1. All the 
timing measurements were made on a PC with 1500 MHz Athlon and 1GB main 
memory.  

“Bunny” (figure 7-1) and “Bone” (figure 7-2) are widely used for testing 
models. Also we use two artificially damaged variants of "Bunny" to test. In 
several regions points were removed and in several regions points density was 
decreased 10 times. Model “Bunny1” is a little damaged, and model “Bunny'2” – 
heavy. In figures 7-3a, 7-4a correspondingly the intermediate A-surfaces 
obtained for these models are shown. In figures 7-3b, 7-4b the same models 
are shown after completion of surface reconstruction. The “Face” is a fragment 
of a distance scanned big sculpture. In figure 7-5a the input point cloud and in 
figure 7-5b the reconstructed and lighted surface are shown. 

“Bunny”, “Bone” belong to class CP1, and “Bunny1”, “Bunny2”, “Face” 
belong to class CP2. The obtained results can be grouped in the next free 
groups: 

1. Results for point clouds of class CP1, which have a good sampling 
quality (“Bunny”). An obtained A-surface belongs to class CS1 and has a 
relative little number of holes. In comparison with [ACD00, DG01] we 
have sufficiently better speed. 

2. Results for point clouds of class CP1, which have an average sampling 
quality (“Bone”) and clouds of class CP2, which have a little share of 
defects (“Bunny1”). An obtained A-surface also belongs to class CS1, but 
the total area of holes is essentially greater than for group (1). We have 
speed that is comparable with [DG01]. 

3. Results for point clouds of class CP2, which have serious defects. An 
obtained A-surface belongs to class CS2 (“Bunny2”) or to class CS3 
(“Face”).  We can reconstruct a closed surface from such clouds, when 
available algorithms show unsatisfactory results ("Bunny2") or can't be 
applied ("Face"). However, in especially difficult cases (in figure 7-4b 
marked by a circle) we still can’t make surface reconstruction correctly.  
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Figure 7-1 

 
Figure 7-2 

 
Figure 7-3a 

 
Figure 7-3b 

 
Figure 7-4a 

 
Figure 7-4b 

 
 

Figure 7-5a 
 

 
Figure 7-5b 
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Table 7-1 
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