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Abstract 
Multidimensional volumetric data are often used for storing information in various 

fields of science such as physics, astronomy etc. because they best match the character of the 
underlying phenomena. The information contained in such data is, however, usually very dense 
and thus difficult to understand without subsidiary tools. Proper visualization is definitely one 
of the most effective and crucial ones. 

Multidimensional data can be sorted according to various criteria. First, it is the domain, 
over which the data are defined, and which is usually two or three dimensional. Second, it is the 
dimension of the data values themselves, which is theoretically unlimited and depends on the 
application. Two or three dimensional vector fields can be encountered most frequently, but 
fields of quadratic tensors are also quite common. It is, however, necessary to realize, that the 
character of the data must be taken into account as well. Three dimensional vectors need to be 
treated in a different way than a set of three scalar values. The third important criterion is, 
whether the data vary in time. If so, they are usually called time dependent. Otherwise, we 
speak of time independent data. 

Such a variety of kinds of data implies even larger variety of visualization techniques. 
These may be again divided into categories according to various criteria. Obviously, the type of 
data to apply the particular technique to is the primary one. Among the secondary criteria e.g. 
the following aspects may belong; whether the approach focuses on the whole data set or just 
certain region, whether it visualizes the actual data or some derived quantities (e.g. velocity 
magnitudes, gradients and other), whether it aims to be “photo-realistic” or not et cetera. 

This report aims to bring a summary of existing approaches that deal with 
multidimensional data visualization and to describe selected methods in detail. It should also 
introduce our previous work, which focused especially on isosurface extraction and gradient 
estimation, and present the goals of our future research. 
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1 INTRODUCTION 

Numerous scientific and industrial branches need to work with multidimensional data in 
general. Among these, one can find physics, astronomy, medical science, engineering, 
aerodynamics, archeology, seismology, metallurgy, meteorology, food industry etc. 
Conversely, one can hardly think of a scientific field, where such need is odd. The term 
multidimensional covers several types of data, the most frequently used being vector 
fields, tensor fields and multi-scalar datasets. Moreover, data from these subgroups may 
combine together in one dataset, which is sometimes the case in scientific simulations. 

Multidimensional data can be sorted according to various criteria. As the first 
criterion, one may see the domain, over which the data are defined, and which is usually 
two or three dimensional. As the second one, we may regard the dimension of the data 
values themselves, which is theoretically unlimited and depends on the particular 
application. Two or three dimensional vector fields can be encountered most frequently, 
but fields of quadratic tensors also appear quite commonly. It is, however, necessary to 
realize, that the character of the data must be taken into account as well. Three 
dimensional vectors need to be treated in a different way than a set of three scalar 
values. The third important criterion is, whether the data vary in time. If so, they are 
usually called time dependent. Otherwise, we speak of time independent data. A more 
detailed taxonomy of multidimensional data will be described later in chapter 2. 

Such a variety of kinds of data implies even larger variety of visualization 
techniques. These may be again divided into categories according to various criteria. 
Since multidimensional datasets usually contain fairly big amount of information, which 
could hardly be mentally integrated and analyzed without proper visualization, the 
primary criterion for evaluating individual methods should probably be the quality of 
the visualization in terms of simplicity, accuracy, speed of response et cetera. Each user, 
however, compares the outcomes of these methods from a different point of view, 
prefers different features and accentuates different details. A method, which may be of 
no use to some users, may be crucial for others. Thus, less subjective classification must 
be adopted. 

Obviously, the type of data, to which a particular technique applies, may 
represent the primary criterion. Among the secondary ones, the following aspects 
belong: whether the approach focuses on the whole data set or just certain region, 
whether it visualizes the actual data or some derived quantities (e.g. velocity 
magnitudes, gradients and other), whether it aims to be “photo-realistic” or not, et 
cetera. A brief overviews of selected multidimensional data visualization techniques can 
be found for example in [52] and [64]. More detailed studies, usually devoted to one 
specific type of visualization methods, can be found in [38] as well as in [45], for 
instance. 

This work intends to bring an overview of the major approaches and directions 
in multidimensional data visualization. The main problems and techniques should be 
discussed in more detail. On the other hand, the description of all the types of 
multidimensional data and the corresponding visualization methods exceeds the scope 
of this work, if possible at all. 

An introduction to isosurface extraction, on which we have worked, will also be 
described here. Although, extracting isosurfaces is known as related rather to scalar 
fields, in combination with the dimension contraction, isosurfaces are an important tool 
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for depicting multidimensional data. Work with isosurfaces has also led us to studying 
and comparing techniques for computing normal vectors in the vertices of triangle 
meshes, which are usually used for representing isosurfaces (and surfaces in general). 
Furthermore, we have moved to gradient estimation, where we concentrated especially 
on accuracy. 

The document structure is as follows. In Chapter 2 we present a classification of 
the kinds of multidimensional data. Chapters 3, 4 and 5 discuss the major approaches to 
visualization of vector or flow fields, tensor fields and multi-scalar data respectively. 
Chapter 6 summarizes our previous work related to this topic and in chapter 7 our future 
goals are stated. 
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2 TYPES OF MULTIDIMENSIONAL DATA 

As mentioned above, there are numerous types of multidimensional data and even more 
methods for their visualization. Although we will only discuss the selected ones in this 
work, we will briefly introduce all the types in a classification based on the 
dimensionality of the domain, over which they are defined, as well as on the 
dimensionality of the data values themselves. This classification is borrowed from [5] 
and it will be divided into two sections. The first being devoted to multi-scalar data and 
the second to vector and tensor data. In the following text, the term tensor will stand for 
tensors of second and higher order, although scalars and vectors are tensors (of zeroth 
and first order respectively) as well. In the tables, the cells with the data types to be 
discussed later in this work will have links to the corresponding chapters. 

2.1 Multi-Scalar Data 
The first part of the classification, which describes various kinds of multi-scalar data, is 
shown in Table 1, where Entities defined over d-dimensional domain containing (n-) 
Scalar data are denoted by Ed

(n)S . Furthermore, if the entity state evolves in time, lower 
index t is added. 

Label Application 
  

E1
S math 
  

E2
S meteorology 

aerodynamics 
physics and astronomy 

  
E2

nS geography 
physics and astronomy 
medical science 

see chapter 5 

  
E3

S physics and astronomy 
remote scanning 
chemistry 

  

E3
nS 

physics 
physical chemistry and biochemistry 
medical science 
archeology 

see chapter 5 

  
E2;t

nS astrophysics 
meteorology 
CFD 

see chapter 5 
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E3;t
nS astrophysics 

meteorology 
CFD 
oceanography 

see chapter 5 

  
Em

nS physics - dynamical systems 
computer science – algorithm 
illustration 

see chapter 5 

Table 1: Classification of multi-scalar data 

2.2 Vector and Tensor Data 
Table 2 is organized the same way as Table 1 with the difference that it lists vector and 
tensor data instead. The entities thus contain (n-) Vector or (i, j, k...-) Tensor data. 
Thus, the notation is either Ed

V
n or Ed

T
i;j;k;.... Index t has the same meaning as in the 

previous case. 

Label Application 
  

E2
V

2 
E2;t

V
2 

physics 
oceanography 
CFD 

see chapter 3 

  
E2

V
3 

E2;t
V

3  
physics 
meteorology 

see chapter 3 

  
E3

V
3 

E3;t
V

3  
physics 
meteorology 
aerodynamics 
CFD 

see chapter 3 

  
E3

T
3;3 

E3;t
T

3;3 
fluid dynamics 
material science (stress etc.) 

see chapter 4 

  
E3

T
n;n  

E3;t
T

n;n   
material science (stress etc.) see chapter 4 

Table 2: Classification of vector and tensor data 

The visualization methods are, however, not limited by using either scalar or vector 
data. On the contrary, they can be combined. 
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3 VECTOR FIELD VISUALIZATION 

Vector field allow the scientists to describe a wide range of phenomena. Therefore, this 
kind of data is often used to store information obtained via scientific simulations, 
measurements etc. Easy to understand visualization of vector fields thus belongs among 
important tasks of computer graphics. In general, vector fields characterize the dynamic 
evolution of arbitrary systems as, for instance, electromagnetic field or some other 
quantity. Most often, however, vector fields are used to represent fluid flow data. This is 
also probably the most intuitive notion one can think of, when trying to imagine a 
vector field. For this reason, the terms vector field and flow field are sometimes 
interchanged. In the following paragraphs, the term flow field is also sometimes used, 
yet meaning vector field in general. 

3.1 General Concepts 
Easily understandable and yet informatively rich visualization of flow fields is required 
in a vast variety of application fields as the aerodynamics, turbomachinery, astronomy, 
automotive industry, design, weather simulation and meteorology, climate modeling, 
ground water flow, etc. Among the users from all these scientific and industrial fields 
the demands on the output images as well as on the aspects of the visualization process 
like accuracy, speed of response or storage requirements, differ significantly. 
Consequently, the spectrum of flow visualization approaches is very rich and covers 
various features, e.g., 2D vs. 3D solutions, techniques for steady and time-dependent 
data et cetera. 

Since the visual outcomes must be as easily understandable and interpretable for 
human eyes as possible, many of the computer graphics flow visualization techniques 
build upon simulating real world experiments. Visualization of, for instance, path lines, 
which will be explained later in this text, simulates inserting a light-emitting particle 
into the flow and recording its movement on a photographic plate. Streak lines, on the 
other hand, resemble continuous injection of dye into the flow from a constant place, 
thus leaving a colorful trace in the liquid. Finally, time lines correspond to emitting a set 
of e.g. hydrogen bubbles to the flow at one instant of time but from different locations, 
usually from a line perpendicular to the flow [39]. 

3.1.1 Dimensionality – Spatial and Temporal 
In flow visualization, available solutions significantly differ with respect to the 
dimensionality of the given flow data. Techniques, which are intuitive and useful for 2D 
data, like color coding or arrow plots, sometimes lack similar advantages in 3D. 

In addition to the spatial dimensions addressed above, also dimensionality with 
respect to time is of great importance in flow visualization. First of all, flow data itself 
incorporates a notion of time – flows are often interpreted as differential data with 
respect to time, i.e., when integrating the data, paths of moving entities are obtained. 
Additionally, the flow itself can change over time (like in turbulent flows, for example), 
resulting in time-dependent or unsteady data. In this case, two dimensions of time are 
present and the visualization must carefully distinguish between both in order to prevent 
the user from being confused. This is especially true, when animation should be used 
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for flow visualization. Then, even a third temporal dimension can show up in 
visualization, requiring special care to avoid confusion along with interpretation of the 
animations. 

3.1.2 Flow Data Definition 
An inherent characteristic of flow data is that derivative information is given with 
respect to time, which is provided across an n-dimensional domain Ω  ⊂ Rn, for 
example, for representing 3D fluid flow (n = 3). In the case of multidimensional flow 
data (n> 1), temporal derivatives v of nD locations p within the flow domain Ω  are n-
dimensional vectors: 

 RtRRdtd nn ∈∈⊆∈= ,,      ,/)( vOpppv  (1) 

In analytic models (like dynamical systems – see [30]), vectors v are often described as 
functions of the respective spatial locations p, say like v = Ap for steady linear flow 
data if A is a constant n×n-matrix. A general formulation of (possibly unsteady, i.e., 
time-dependent) flow data v would be 

 RtRRt nn ⊂∈⊂∈→× ?Op?Opv ,     ,:),(  (2) 

where p represents the location of the flow and t represents the system time. If t is 
considered to be constant, i.e., for steady flow data, the more simple case of 
v(p) : Ω → Rn is given. 

3.1.3 Discrete vs. Analytical 
In cases of results from flow simulation, like in automotive applications or airplane 
design, vector data v are usually not given in analytic form, but need to be reconstructed 
from the (discrete) simulation output. As usually, numerical methods are used to 
actually do the flow simulation such as finite element methods, mostly producing a 
large-sized grid of many sample vectors vi;t, which discretely represent the solution of 
the simulation process at time steps ti. The terms p ∈ Ω and t ∈ Π in (2) should be 
replaced by p ∈ [p1,...,pn], where n is the number of grid vertices, and t ∈ [t1,...,tn], 
where this time n is the number of time steps, respectively. For further procedure, it is 
assumed that the flow simulation was based on an at least locally continuous model of 
the flow, thus allowing for continuous reconstruction of the flow data v during 
visualization. One option for doing such reconstruction would be to apply a 
reconstruction filter RRh n →:  to compute ),()(),( tht ii

i
pvpppv ⋅−= ∑ . Filter h usually 

has only local extent, efficient procedures for finding those flow samples vi;t, which are 
nearest to the query point p, are needed to do proper reconstruction (refer to the Cell 
search section in chapter 3.3.1). It is necessary to realize that the reconstruction includes 
both, spatial as well as temporal, characters (see sections Spatial velocity interpolation 
and Temporal velocity interpolation in subchapter 3.3.1). 
 

3.1.4 Grids 
As already mentioned, applications producing vector data usually present them as a 
field of vector quantities aligned to grid vertices. There are of course many types of 
grids with different properties. Among the most frequently exploited types, one can find 
regular Cartesian and curvilinear grids, regular or irregular tetrahedral grids, multi-
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zoned, moving or complex unstructured grids etc. Grid type is an important property of 
each vector field data set as it significantly influences the effectiveness of some 
algorithms. An example would be the cell search or point location algorithm (described 
in  3.3.1), which heavily depends on the type of the used grid. Cell search is trivial and 
very fast in Cartesian grids, more complicated and less effective in curvilinear grids and 
quite ineffective in unstructured grids. Another example could be the algorithm for 
vector field reconstruction, which is used for approximating vector quantities in 
locations other than the grid vertices and in temporal instants between two consecutive 
time steps. The theory of grids is, however, too broad to discuss it here in detail. 

The approach of attaching the data values to fixed locations is sometimes called 
Eulerian [39]. The opposite is Lagrangian approach, which links the physical quantities 
to small particles moving through the area with the flow and given as a function of 
starting position and time. This attitude is, however, less frequently exploited. 

3.1.5 Main Approaches 
The large spectrum of users’ needs has led to a development of numerous approaches 
for vector field visualization, which can be sorted into four main categories, the first 
being direct flow visualization. Methods from this category use an as direct as possible 
translation of the flow data into visualization cues, such as by drawing arrows. Flow 
visualization solutions of this kind allow immediate investigation of the vector data, 
without a lot of mental translation effort. For a better illustration of the long-term 
behavior induced by flow dynamics, integration based approaches first integrate the 
flow data and use the resulting integral objects as a basis for visualization. Displaying 
streamlines is a good example of integration based techniques. Another approach for 
visualizing flow data is the feature based approach, in which an abstraction step is 
performed first. From the original data set, interesting objects are extracted, such as 
important phenomena or topological information of the flow. These flow features 
represent an abstraction of the data, and can be visualized efficiently and without the 
presence of the original data, thus achieving a huge data reduction, which makes this 
approach very suitable for large (time-dependent) data sets, originating from 
computational fluid dynamics simulations. These data sets are simply too large to 
visualize directly, and therefore, a lot of time is required in preprocessing, for 
computing the features (feature extraction). But once this preprocessing has been 
performed, visualization can be done very quickly. The general idea behind the fourth, 
and in our classification the last, group of methods consists in deriving scalar quantities 
from the vector data first and then visualizing them via approaches like isosurface 
extraction or direct volume visualization. Each of the four categories will be described 
in a separate section bellow. 

Now that we have outlined one of the possible classifications, which sorts the 
flow data visualization techniques into four main categories, it is desirable to briefly 
note that in practical applications, hybrid methods combining techniques from different 
categories are usually implemented. As mentioned above, the main task of vector data 
visualization is to communicate as large amount of information as possible to the user, 
yet keeping it intuitively and easily understandable. Combining various visualization 
techniques is obviously a good tool to fulfill such task. Thus, one can come across color 
coded line integral convolution applied on an isosurface. That is, a hybrid of the direct, 
integration-based and derived value visualization. 
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3.2 Direct Visualization 
Direct, or global, flow visualization techniques attempt to present the complete data set, 
or a large subset of it, at a low level of abstraction. The mapping of the data to a visual 
representation is direct, without complex conversion or extraction steps. These 
techniques are perhaps the most intuitive visualization strategies as they present the data 
in a straight way. They can be best utilized for 2D vector fields. 

Dealing with 3D flow data naturally brings additional challenges such as 3D 
rendering. A transition step between 2D flow visualization and the visualization of truly 
3D flow data is the restriction to sub dimensional parts of the 3D domain, e.g., sectional 
slices or boundary surfaces. Thereby, techniques known from 2D flow visualization 
usually are applicable without major changes. When working with sectional slices, the 
treatment of flow components orthogonal to slices requires some special care. 

For real 3D vector field visualization, rendering becomes the most critical issue. 
Occlusion and complexity make it difficult to get an immediate overview of an entire 
flow data set. 

3.2.1 Color coding 
A common direct flow visualization technique is to map flow attributes such as 
velocity, pressure, or temperature to color resulting in very intuitive depictions. Of 
course, the color scale, which is used for mapping, must be chosen carefully with 
respect to perceptual differentiation. Color coding for 2D flow fields extends to time-
dependent data very well, resulting in moving color plots according to changes of the 
flow properties over time. 

Color coding is very effective for visualizing boundary flows or sectional 
subsets of 3D flow data. In [48] color coding of scalars on 2D slices in 3D automotive 
simulation data was used and an interactive slicing probe was introduced, which maps 
the vector field data to hue. The use of scalar clipping, i.e., the transparent rendering of 
slice regions where the corresponding data value does not lie within a specific data 
range, allows to use multiple (colored) slices with reduced problems due to occlusion. 

For color coding in 3D, volume rendering is necessary to deal with occlusion. 
This topic is, however, too broad. Therefore, we refer the user to the volume rendering 
status quo report [12]. In this paragraph, we will only outline some additional issues of 
volume rendering of vector fields when compared to the well-known volume rendering 
applied on medical volumetric data. These challenges are briefly addressed here [38]: 
(1) flow data sets are often significantly smoother than medical data – an absence of 
sharp and clear “object” boundaries (like organ boundaries) makes mapping to opacities 
more difficult and less intuitive. (2) flow data are often given on non-Cartesian grids, 
e.g., on curvilinear grids – the complexity of volume rendering gets significantly more 
tricky on those kinds of grids, starting with nontrivial solutions required for visibility 
sorting and blending. (3) flow data are also time-dependent in many cases, imposing 
additional loads on the rendering process. 
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3.2.2 Arrow plots 
A natural vector visualization technique is to map a line, arrow, or glyph to each sample 
point in the field, oriented according to the flow field. Usually a regular placement of 
arrows is used in 2D, for example, on an evenly spaced Cartesian grid. Two basic 
variants of commonly used arrow plots are: 

• normalized arrows of unit length visualizing only vector directions as 
illustrated by Figure 1 

• arrows of varying length proportional to the vector magnitudes 

This technique is sometimes called hedgehog visualization. In combination with color 
coding, arrow plots can depict some additional value at the same time. 2D hedgehog 
plots can be extended to time-dependent data, although bigger time steps might result in 
jumping arrows, decreasing the quality of such visualization. 

 
Figure 1: Normalized arrow plot (taken from [30]) 

Using 2D arrows on slices from 3D flow data may also be telling. When interpreting 
results of such visualization, however, one must keep in mind that the vector 
components orthogonal to the slice are usually not depicted. On the other hand, the use 
of arrows is quite suitable for visualizing flows over boundary surfaces, as can be seen 
in [56]. The problem with orthogonal vector components is suppressed as cross-
boundary flows rarely appear. 

Arrow plots in 3D suffer from at least two problems: 

• the 2D screen projection can distort vectors‘ positions and orientation thus 
making the image possibly misleading – using 3D representations of arrows 
(like a cylinder plus a cone) decreases these problems (see Figure 2) [39]. 

• glyphs occluding one another – careful seeding is required 

 
Figure 2: Ambiguity of projecting arrows on a 2D screen on the left; a 3D arrow glyph on the right 
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To avoid the later, arrow plots are usually based on selective seeding. For instance, one 
out of a few slices of the 3D field is chosen to form a region from which all the arrows 
start. Another approach is to highlight those parts of a 3D arrow plot, which point 
roughly in a user-defined direction as proposed in [2]. Dovey [11] describes a technique 
of seeding arrows or glyphs in curvilinear and unstructured grids. In order to achieve a 
uniform density on nonuniformly spaced grids, the paper presents two methods of 
resampling the data. While the physical space resampling assures the sample points to 
be well-distributed, an element-based resampling or parameter space resampling can be 
used to visualize vector fields at arbitrary surfaces within 3D. 

3.3 Integration Based Visualization 
Unlike the direct visualization methods, techniques to be described now require some 
sort of computation or extraction prior to the visualization itself. The final image then 
does not aim to display directly the vector field, it rather shows objects obtained via 
some computation relying on certain assumptions about the character of the vector field. 

As the meaning of the vectors can usually be interpreted as a derivative with 
respect to some parameter (e.g. derivative of position with respect to time in case of 
velocity fields), integrating the data over this parameter provides an intuitive notion of 
how the information contained by the vector field evolves. The following visualization 
techniques, therefore, fall into the category of integration based methods. We will 
further divide them into geometric techniques and texture based techniques according to 
the approach to visualization. Both these groups utilize particle tracing to obtain integral 
objects and both the groups are closely interconnected. 

While particle tracing (see section 3.3.1) concerns the process of integrating 
through the vector field and gives a recipe to obtain the integral objects, the geometric 
(3.3.2) and texture-based (3.3.3) methods exploit these objects within the visualization 
process. They only differ in the way, how they do it. In the former case, individual 
objects are displayed as they are, while in the later one, the integral lines are convolved 
with certain texture. When stated like this, both the attitudes might seem to be 
diametrically different. But on the other hand, from the conceptual point of view, the 
path leading from one approach to the other is relatively straight. Moving form 
geometric to texture-based visualization, we just need to apply a dense seeding strategy. 
In other words, densely seeded geometric objects result in an image similar to that 
obtained by dense, texture-based techniques. Likewise, moving from texture-based 
visualization to visualization using geometric objects can be obtained via applying a 
sparse texture for the convolution. 

3.3.1 Particle Tracing – General Issues 
As the title implies, these methods simulate real world experiments, when a particle is 
injected into a flow and its trace within the region is observed. Inserting a set of such 
imaginary particles into a vector field will result in a set of integral curves, which will 
more or less characterize the underlying data. Using appropriate temporal and spatial 
combinations of injecting the particles (i.e. all at once from different locations or just 
one at the time but from a constant location) will lead to various alternatives of these 
integral curves, as discussed in the paragraphs bellow. First, however, some general 
problems, which can be encountered when tracing an imaginary particle through a 
vector field, must be clarified. We will do so using time dependent vector fields. Steady 
flow can be considered as a special case for t constant. 
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Vector Field Integration 
The integration through a vector field is a computational challenge, and since it is 
crucial for all the methods in this chapter, it should be explained at the beginning. The 
explanation will be carried out on a flow data – an important, intuitive and probably the 
most frequent case of a vector field. 

Integrating flow brings the respective path p(s) of an imaginary particle traveling 
through the field. This path would analytically be defined by 

 ∫
=

++=
s

t

dtttts
0

00 )),(()( pvpp  (3) 

 
where p0 represents the seed location of the particle and t0 equals to the time when the 
particle was seeded. Such a particle trace through a vector field is called pathline. There 
are also other types of integral curves such as streamlines, streaklines, timelines etc., 
which will be described bellow. The dependency of vector v on time t in equation (3) 
implies that in this as well as in the upcoming cases we consider an unsteady flow, 
where the vector field changes in time. 

In addition to the theoretical specification of integral curves, it is important to 
note, that respective integral equations like equation (3) usually cannot be resolved for 
the curve function analytically, and thereby numerical integration methods need to be 
employed. The most simple approach is to use a first-order Euler method to compute an 
approximation pE – one iteration of the curve integration is specified as  

 )),(()()( ttttttE pvpp ∆+=∆+  (4) 

where ∆t usually is a very small step in time and p(t) denotes the location to start this 
Euler step from. A more accurate but also more costly technique is the second order 
Runge-Kutta method, which uses the Euler approximation pE as a hint to compute a 
better approximation pRK2 of the integral curve: 

 2/))),(()),((()()(2 ttttttttt ERK ∆++⋅∆+=∆+ pvpvpp  (5) 

Higher-order methods like the often used fourth-order Runge-Kutta integrator utilize 
even more such steps to better approximate the local behavior of the integral curve: 
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 (6) 

 
Obviously, the choice of the step size ∆t is an issue. Too large step will lead to loss of 
accuracy, small steps will, on the other hand, increase the time required for the 
computation. This topic will be discussed a little later in this chapter, because other 
problems must first be resolved to maintain consistency. As [26] and [39] suggest, 
problems to deal with include especially domain transformations, point location or cell 
search, step size selection and velocity interpolation. 
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Domain Transformations  
The process of numerical simulation and visualization of fluid flow is typically 
performed in three different domains, sometimes also referred to as spaces [26]. These 
are [39]: 

• physical domain P, where the equations of motion are defined. The domain 
is discretized, often into a curvilinear, boundary-conforming grid fitting the 
surface of objects; the flow variables (velocity, density, pressure, etc.) are 
computed in the grid points of P. 

• computational domain C, to which the equations of motion are 
transformed. It is descretized to suit the needs of numerical computation, 
often into a uniform rectangular grid, and thus deformed with respect to P. 

• graphical domain G, which is also often discretized to suit the needs of 
graphics processing. There is no generally accepted representation of G. As 
visualization often directly refers to physical reality, the shape of objects in 
G is usually the same as in P. Often a regular or hierarchical, rectangular 
discretization is used. G is populated with geometric primitives and 
attributes, such as shapes and colors, which must be ultimately expressed in 
pixels. 

Transitions between these domains [39] must be performed as depicted in Figure 3. 
Although the grids can be of several types (structured or unstructured, rectilinear or 
curvilinear etc.), we will focus on structured grids with regular hexahedral topology. 
Their geometry can be curvilinear, in which case cells resemble warped bricks, or 
orthogonal, resulting in cubical or rectangular brick shaped cells. 

 
Figure 3: Transformation between the physical and the computational domain (taken from [39]) 

The discretization in P for a flow simulation often lads to a structured curvilinear grid, 
in each cell of which the grid point nearest to the origin has coordinates (i, j, k), where 

zyx nknjni ,1 ,,1 ,,1 ∈∈∈ . A general point of P is denoted as xp(x, y, z). Velocity 

vectors vp(i, j, k) = (u, v, w) are computed at each grid point. 
Computational space C is usually discretized as a regular orthogonal Cartesian 

grid with the same cell indices (i, j, k) and points xc(ξ, η, ζ), where again 

zyx nknjni ,1 ,,1 ,,1 ∈∈∈ . Velocities at the grid points of C are 

vc(i, j, k) = (u′, v′, w′). Generally, a single global transformation between P and C is not 
known, but for each neighborhood of a grid point (i, j, k) in P a local transformation L 
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can be determined. Transformations for other points in P must then be derived by 
interpolation between grid values. 

Matrix L specifies the local transformation of a grid point (i, j, k) from C to P  as 
)( cp xLx = ; similarly, L-1 is used to transform a point from P  to C (refer to Figure 3). 

The Jacobian matrix J of L, defined analytically as cxLJ ∂∂= / , can be used to 
transform a vector quantity from C to P. For instance, cp vJv ⋅= . Again, the inverse J-1 
is used to transform vector from P to C. 

In general, the mappings are only known at discrete points. As a consequence, 
the Jacobian must be approximated by finite differences. For a grid point (i, j, k) of C, 
the columns of J may, for example, be approximated by: 
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where xi,j,k are the coordinates of grid point (i, j, k) in C and ei the unit vector in the 
direction of xi. Another possibility would be to use central differences: 

2/)( ,,1,,11 kjikji −+ −= xxJe ; other types of differences can also be used. 
As visualization often directly refers to physical reality, G must be undeformed 

with respect to P. Also, a new discretization is desirable in G, to support the operations 
in the rendering stage. The transition to another grid usually involves a resampling of 
the data field and this has several disadvantages. Especially the transition from a 
boundary-conforming, locally refined curvilinear grid in P to a uniform orthogonal grid 
in G may lead to a severe waste of storage space or to loss of information, depending on 
the resolution of the regular grid. In areas where the resolution of the P grid is higher 
than the G grid, data may be lost, while in low resolution areas of P, oversampling will 
lead to many identical data points in G. A partial solution is the use in G of a 
hierarchical grid type of which the resolution can vary locally. 

Often, the boundary conformance will be lost, so that object geometry must be 
represented separately in G. Another important point is the degradation of accuracy as a 
result of interpolation. Use of higher order interpolation techniques can reduce this 
problem. 

Cell search 
During particle integration, it is necessary to determine the grid cell that a particle 
current ly lies in. This requires cell search (also referred to as point location). In 
computational space, the grid is uniform and the cell in which the particle currently lies 
can be determined easily. For example, suppose the computational coordinates of the 
particle’s position are (ξ, η, ζ), then the particle lies in grid cell (int(ξ), int(η), int(ζ)). 
Although cell search is fast and simple in computational space, there are some 
disadvantages for tracing in C. Firstly, the velocity needs to be converted from P into C. 
This requires additional calculation time for the velocity transformation. Secondly, the 
transforming Jacobian matrices are usually approximations. Therefore, accuracy may be 
lost during the transformation due to the transformation scheme used. Lastly, if 
irregularities exist in the grid, then the transformed velocity may be infinite [26]. For 
these reasons, algorithms for particle tracing performed in physical space were 
developed as well [21]. 
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As mentioned above, the main reason for tracing in physical space is accuracy. 
The disadvantage is that cell search is more time consuming in physical space than in 
computational space. Kenwright and Lane found the time spent in cell search could 
require more than 25% of the particle tracing time, as it is required whenever the 
particle moves to a new position. For multi-stage integration methods, such as the fourth 
order Runge-Kutta described earlier, cell search is required at the intermediate stages of 
the integration. For example, cell search is needed for p(t) + a/2, p(t) + b/2, and p(t) + c 
in equation (6). If the step size ∆t is relatively small, then the particle is likely to move 
within the current cell or jump no more than one cell. Hence, a local cell search can be 
performed to find the new position. If the grid is multi-zoned, then a global cell search 
is required when the particle moves to a new block (referred to as grid jumping). 
Because global cell search is more computationally expensive than local cell search, 
grid jumping can increase the particle tracing time considerably. Kenwright and Lane 
[21] managed to improve the speed of particle tracing in physical space by several 
factors. By decomposing the grid cell into tetrahedra, cell search time was reduced. 
Furthermore, particle integration, velocity interpolation, and step size control were 
performed in physical space. 

Computational domain cell search 
The problem of cell search may be stated the following way. Given p in the physical 
domain, the task is to find the corresponding point c in the computational domain. The 
first step is to find the grid cell that p lies in. An intuitive method would be to search for 
the closest point in the grid using all points. However, this could be expensive if the grid 
consists of millions of points. Therefore, an algorithm was suggested in [6], which 
searches along edges of the grid cells to find the closest grid point, and then uses a 
“stencil walk” approach to find the exact offset of the particle inside the grid cell. The 
stencil walk approach, which is based on the Newton-Raphson approach, is summarized 
below [26]: 

1. Select the center of the grid cell (i, j, k) as the initial guess of c, where (i, j, k) is 
the closest grid point to p. Thus, let c = (ξ, η, ζ), where ξ = i + 0.5, η = j + 0.5 and ζ  = 
k + 0.5. 

2. Convert (ξ, η, ζ) to its corresponding physical point p(ξ, η, ζ) using trilinear 
interpolation (Figure 4): 
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where α = ξ - i, β  = η - j and γ = ζ - k. 
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Figure 4: Trilinear interpolation as in [39] 

3. Evaluate the difference vector ∆p, where ),,( ζηξppp −=∆ . This vector indicates, 
how close p(ξ, η, ζ) is to p in physical domain. 

4. Convert ∆p to ∆c, where ∆c is the difference vector mapped into computational 
domain. Let ),,( zyx ∆∆∆=∆p  and ),,( γβα ∆∆∆=∆c .Then 
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The terms in J-1 are: 
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where D is the determinant of the Jacobian matrix J and 

 ξηζζξηηζξξζηηξζζηξ zyxzyxzyxzyxzyxzyxD −−−++= . (11) 

The partial derivatives in the Jacobian matrix J are the partial derivatives of (8), where 
),,( zyx ppp=p . For example, ξξ ∂∂= /xpx , ξξ ∂∂= /ypy , ξξ ∂∂= /zpz , etc. 

5. Let ααα ∆+= , βββ ∆+=  and γγγ ∆+= . If 1,0,, ∉γβα , then p is outside the 
current cell. Increase i by 1 if α > 1 or decrease i by 1 if α < 0. Update j and k according 
to β  and γ respectively, then go to step 1. 

6. Let αξξ ∆+= , βηη ∆+=  and γζζ ∆+= . If ε<∆c , where ε is the chosen 
tolerance, then p(ξ, η, ζ) is close enough to p and its corresponding point c(ξ, η, ζ) in 
computational space has been found. Otherwise, go to step 2. 

 
The above procedure suits the steady case, for time dependent vector fields, some 
modifications may need to take place, as the grid may move in time. Particle tracing in 
moving grids requires additional interpolations. In cell search, to find the current grid 
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cell containing p at time t, an interpolated grid cell is generated. The grid cell is simply 
a linear interpolation of the grid cells at tl and tl+1 if tl ≤ t ≤ tl+1. It is not necessary to 
interpolate the entire grid, only the current grid cell that p lies in. Thus, at each 
intermediate stage of the RK4 integration, an interpolated grid cell is computed for 
velocity interpolation and cell search. 
To transform the velocity from physical space to computational space in unsteady flows 
with moving grids, equations (9) and (20) (see bellow) need to be modified to consider t 
and the grid velocity (xr, yr, zr). Let 
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Time changes constantly and independently of position and thus the partial derivatives 
0=== ζηξ ttt  and ll ttt −= +1τ  and 

 ),,(),,(),,( 1 ζηξζηξτττ
ll ttzyx pp −= + , (13) 

where ),,( ζηξltp  and ),,(1 ζηξ+ltp  are ),,( ζηξp  at time tl and tl+1 respectively. The nine 
metric terms in the upper left corner of J-1 are the same as in (10), and the remaining 
terms are 
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where the determinant D is given in (11). 

Physical domain cell search 
As mentioned above, Kenwright and Lane developed an algorithm for cell search in 
physical space [21]. They employ tetrahedral decomposition for this purpose. This 
decomposition allows them to quickly find the cell a given point p lies in and also its 
natural coordinates. The natural coordinates, also called barycentric, are local non-
dimensional coordinates for a cell. 

The trilinear interpolation function (equation (8)) provides the opposite mapping 
to that required for point location, that is, it determines the coordinates of p from a 
given natural coordinate (ξ, η, ζ). Unfortunately, it cannot be inverted easily because of 
the non- linear products, so it is usually solved numerically using the Newton-Raphson 
method as described above. Tetrahedral elements, on the other hand allow to use a 
linear interpolation function to map from natural to physical coordinates: 

 ζηξζηξ )-(  )-(  )-(),,( 1413121 xxxxxxxx +++=  (15) 

Note that x1, x2, x3 and x4 are the physical coordinates at the vertices of the tetrahedron. 
The natural coordinates (ξ, η, ζ) vary from 0 to 1 in the non-dimensional cell. 
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Figure 5: Relation between the natural (left) and physical (right) coordinates 

Equation (15) can be inverted analytically because it does not have any non-linear terms 
thus allowing the natural coordinates to be evaluated directly from the physical 
coordinates. The solution at a given physical point (xp, yp, zp) is given by: 
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The constants in the 3x3 matrix are: 
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and the determinant V (actually 6 times the volume of the tetrahedron) is given by: 
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The natural coordinates (ξ, η, ζ) can be evaluated by implementing the equations above. 
The common terms can be precomputed before evaluating the matrix coefficients and 
determinant. 

The large size of the time-dependent flow data sets makes it impractical to 
decompose the whole grid. On the contrary, the decomposition is applied on the fly. 
When a particle enters a hexahedral cell, it is divided into five tetrahedra, which is the 
minimal possible number. This decomposition is not unique because the diagonal edges 
alternate across a cell (see Figure 6). Since the faces of a hexahedron are usually non-
planar, it is important to ensure that adjoining cell’s diagonals match to prevent gaps. 
This is achieved by alternating between an odd and even decomposition. In a curvilinear 
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grid, the correct configuration is selected by simply summing up the integer indices 
(i, j, k) of a specific node (e.g. the node with the lowest indices). Choosing the odd 
configuration when the sum is odd and the even configuration when the sum is even 
guarantees continuity between cells. 

 
Figure 6: Two ways to decompose a cubic cell into five tetrahedra 

Having computed the natural coordinates (ξ, η, ζ) in equation (16), there are 
four conditions, whose validity shows, whether the point p(xp, yp, zp) lies within the 
tetrahedron or not. These are: 

 01     ; 0     ; 0     ; 0 ≥−−−≥≥≥ ?????ξ  (19) 

If any one of these is invalid then the point is outside the tetrahedron. In particle tracing 
algorithms, this happens when particles cross cell boundaries. The problem then arises 
of which tetrahedron to advance to next. The solution is quite simple since the natural 
coordinates tell you which direction to move. For example, if ξ < 0, the particle would 
have crossed the ξ = 0 face. Similarly, if η  <  0 or ζ  <  0, the particle would have 
crossed the η = 0 or ζ  =  0 face respectively. If the fourth condition is violated, i.e. (1 -
 ξ - η - ζ) < 0, then the particle would have crossed the diagonal face. The cell-search 
proceeds by advancing across the respective face into the adjoining tetrahedron, which 
can be found quickly using look-up tables. 

Occasionally, two or more of these conditions may be violated if a particle 
crosses near the corner of a cell or if it traverses several cells at once. In such cases, the 
worst violator of the four conditions is used to predict the next tetrahedron. Even if the 
bounding tetrahedron is not the immediate neighbor, by always moving in the direction 
of the worst violator the search will rapidly converge upon the correct tetrahedron. 

It is necessary to point out that this approach should only be used when the 
sought cell lies in close neighborhood of the current one. This condition is hardly ever 
violated since particles usually do not cross more than one cell at a time. An exception 
is the very start of tracing a particle and also, in case of multizoned grids, when a 
particle jumps from one block to another. In such situations global search using a 
different method should be applied. 

The authors of this method claim that the performance of the particle tracing is 
not degraded on larger data sets, because particle advection only requires local cell 
searches and interpolations. Multi-zone grids, on the other hand, cause some 
performance penalty because global searches are required when particles move into new 
grids. 
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Step size selection 
We will now return to the problem of step size selection, which was mentioned in the 
chapter  devoted to vector field integration, and the explanation of which we postponed 
for this chapter. 

The distance that a particle traverses at each integration step is based on the step 
size ∆t (in equations (4), (5) and (6) or other, depending on the integration scheme 
employed) and the velocity at p. The larger ∆t is, the further p traverses. If ∆t is too 
large, then the resulting particle trace can be inaccurate because the particle may miss 
important flow features. This is especially true if the flow changes direction rapidly. 
Likewise, if ∆t is too small, then particles may unnecessarily take too many steps to 
traverse the grid, which would increase the computation time. A good rule for selecting 
∆t is based on the velocity at the current grid cell: if the velocity is large, then ∆t should 
be small. Buning [6] suggested letting ),,max(/ WVUct =∆ where (U, V, W ) represent 
the computational velocity at p and 
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Matrix J-1 is given in (9). The computational velocity is used so that the number of steps 
in each cell is consistent. For example, if c = 0.2, then the particle will traverse no more 
than one-fifth of a computational cell at each step. Small c yields small steps. A 
common scheme for adaptively setting ∆t is step doubling, which successively reduces 
∆t until some desired accuracy is obtained. As this approach is computationally too 
expensive [21], Kenwright and Lane suggest another scheme for determining ∆t, which 
is based on the curvature of the particle trace. If the curvature is high, then ∆t should be 
small. 

Spatial velocity interpolation 
In particle tracing, the velocity at the current position of the particle is required to 
advance it further. Velocity interpolation is performed at each stage of the RK4 
integration. The velocity at p can be interpolated using the velocities at the corners of 
the grid cell that contains p. A fast and simple scheme is trilinear interpolation. If p is in 
grid cell (i, j, k) and p has the fractional offsets (α, β , χ) from the grid point at (i, j, k), 
then 
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where vi,j,k is the velocity at grid point (i, j, k). The trilinear interpolant assumes that the 
velocity varies linearly across the edges of the cell. Though trilinear interpolation is 
simple, accuracy may be lost if the grid cell is deformed. Higher order interpolation 
would help to reduce this disadvantage, however, at the expense of higher number of 
velocity vectors needed and higher demands on computational resources. 
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The computation is even simpler in the case of tetrahedral decomposition 
described in the previous section. Using the numbering convention in Figure 5, the 
linear basis function for spatial velocity interpolation is: 

 ζηξζηξ )-(  )-(  )-(),,( 1413121 vvvvvvvv +++=  (22) 

where ξ, η and ζ are the natural coordinates computed in equation (16) and v1, v2, v3 
and v4 are the velocity vectors at the vertices. 

Temporal velocity interpolation 
Steady flows do not change in time and we can assume that the number of time steps is 
infinite. Thus, the velocity function is defined for any t. However, unsteady flows vary 
in time and the velocity function is only known at time steps tl, ..., tn. At time t, if t ≠ tl 
for l = 1, ...,n, then a temporal interpolation of velocity is performed prior to the spatial 
interpolation given in (21). If tl ≤ t ≤ tl+1, then let 
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where lt
kji ,,v  and 1

,,
+lt

kjiv  are the velocities at grid point (i, j, k) at time tl and  tl+1, 
respectively. After the above temporal interpolation of velocity, equation (21) can be 
evaluated by letting )(,,,, δkjikji vv = . The above interpola tion assumes that the flow 
varies linearly between the time steps and it is only second order accurate in time over a 
complete RK4 integration. 

Overall Particle Tracing Scheme   
At this point, we can outline the essential steps in a (time-dependent) particle tracing 
algorithm as described in [21]. The scheme is general, disregarding the computational 
versus physical domain problem: 

1. Specify the injection point for a particle in physical space (x, y, z, t). 
2. Perform a point location to locate the cell that contains the point. 
3. Evaluate the cell’s velocities and coordinates at time t by interpolating 

between simulation time steps. 
4. Interpolate the velocity field to determine the velocity vector at the current 

position (x, y, z). 
5. Integrate the local velocity field using selected integration scheme (e.g. 

RK4 described by equation (6)) to determine the particle’s new location at 
time t + ∆t. 

6. Estimate the integration error. Reduce the step size and repeat the 
integration if the error is too large. 

7. Repeat from step 2 unt il particle leaves flow field or until t exceeds the last 
simulation time step. 

It is important to note that step 5 may involve repeated applications of steps 2, 3 and 4 
depending on which numerical integration scheme is used. The 4th order Runge-Kutta 
scheme used in this study actually requires three repetitions to advance from time t to 
t + ∆t. 
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Basic integral objects 
Having explained the problems arising from the need to integrate through a vector field 
and having presented the overall particle tracing scheme, we will now look at the 
individual types of integral curves, which can be computed and displayed. The basic 
integral objects available in 2D as well as 3D include: 

• path line or particle trace – a trajectory, along which a particle travels 
through the vector field 

• stream line – a line that is everywhere tangent to the vector field 
• streak line – arises when a set of particles is being continuously injected 

into the vector field from a constant location over certain period of time. In 
[28], some implementation details are given and a comparison to 
streamlines can be found. 

• time line – joins the positions of particles released at the same instant in 
time from different insertion points. These points are usually located on a 
line perpendicular to the vector field. Once released to the flow, these lines 
are moved and transformed by the vector field, thus showing the evolution. 
By calculating the distance between neighboring timelines, one can 
determine the velocity of the particles in the flow [28]. 

While stream lines, streak lines and path lines coincide in steady flows, in the case of 
time varying fields these curves show different trajectories. As Kenwright and Lane 
[21] claim, streak lines, also called filament lines, are the most popular visualization 
technique and also the simplest to generate. Stream lines are not generally used to 
visualize unsteady flows because they do not show the actual motion of particles in the 
fluid but rather the theoretical trajectories of particles with infinite velocity. 

3.3.2 Geometric Visualization of Integral Objects 
The previous sections have brought a recipe for obtaining the integral objects from a 
vector field, outlined problems associated with the computation and presented their 
known solutions. However, having computed the integral objects, there are also various 
approaches how to visualize them. These approaches may be sorted into two main 
categories. Firstly, it is the visualization of integral objects as geometric bodies, which 
will be examined in this section. Secondly, we talk about texture-based methods whose 
description will be given in section 3.3.3. 

In section 3.3.1, some basic integral objects have already been mentioned. 
Displaying these objects by the geometric methods will be discussed here in detail and 
some more advanced geometric objects, commonly used for vector field visualization, 
will also be added. When using these methods, inconvenient spatial distribution of 
geometric objects  will result in chaotic, cluttered views. Especially in 3D, appropriate 
seeding strategy constitutes a crucial condition for comprehensive output. As mentioned 
in the heading paragraphs of the Integration Based Visualization chapter, even the 
relation between the geometric and texture-based visualization may be expressed in 
terms of choosing an appropriate seeding strategy. For this reason, seeding strategies 
will be introduced together with the integral objects being described. 

Particle Rendering 
Quite a straight forward way is to consider particles, traced by the above methods, to be 
a kind of geometrical primitive [39]. If a set of such particles is rendered 
simultaneously, the visualization process is called particle system. The most frequent 
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use of particle systems consists in depicting fuzzy entities with irregular, complex or 
blur geometry, like grass, tree, fire or smoke. Besides its motion dynamics attributes 
(like position, speed and motion direction), each particle communicates information by 
other means as well (shape, size, color, reflectivity and transparency). Individual 
particles also have their life cycle. They are born, have certain lifetime and die. 

The particles’ attributes determine the rendering technique. They can be 
rendered like light emitting particles, which means that during rendering, intensities of 
particles falling into a single pixel are integrated to obtain its value. If they are, 
however, rendered as light reflecting objects, shading computations must be performed. 
For large datasets, the deterministic approach is exchanged for probabilistic attitude, 
where the particle’s position and orientation only act as parameters for computing the 
probability that the particle is lit directly and the ambient, diffuse and specular 
components are assigned according to this probability [39]. 

Streamlets 
Streamlets are generated by integrating the flow vectors for a very short time. Even 
though short, streamlets already communicate temporal evolution along the flow. Figure 
7 illustrates an example of inspecting 2D flow field by several streamlets. This 
technique is easily extendable to 3D, although perceptual problems may arise due to 
distortions resulting from the rendering projection. Thus, seeding becomes more 
important in 3D. 

 
Figure 7: The field from Figure 1 visualized by streamlets (also taken from [30]) 

Löffelmann and Gröller [31] use a thread of streamlets along characteristic structures of 
3D flow to gain selective, but importance-based seeding. They employ a probability 
distribution function assuring the streamlets to be distributed uniformly around a 
selected base trajectory. The function is designed so that with increasing distance from 
this trajectory, the distribution of streamlets fades out. As the authors claim, the shape 
of the field of streamlets will then directly depict flow properties like local 
convergence / divergence or rotational behavior with respect to the base trajectory. 
Moreover, the streamlet length represents a perfect mean to intuitively visualize flow 
velocity. 

Streamlines 
Performing longer integration, in comparison to streamlets, results in obtaining 
streamlines. These offer an intuitive semantics, because users naturally understand that 
flows evolve along such integral objects. This statement, however, holds in the case of 
stable vector fields only. For time-varying data, streak line visualization works better 
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(see section Streak Lines and their Seeding bellow for details). Concerning the 
extension to 3D, the same condition stands for streamlines as well as for streamlets – 
careful seeding is necessary. Otherwise, visual clutter can easily become a problem and 
the results might be difficult to interpret. The streamline seeding strategies are discussed 
in a separate section bellow. 

To avoid visual chaos and improve perception of various fieldlines in 3D, 
Zöckler et al. present illuminated streamlines [63][54]. It is necessary to note that this 
technique could be applied on streaklines and timelines as well. Proper illumination 
greatly improves spatial perception of complex scenes. However, approximating 
streamlines (or any other field lines) by cylindrical tubes, which can be illuminated in a 
straight- forward way using graphics libraries like OpenGL, introduces too many 
triangles into the scene, thus decreasing the maximum number of streamlines, which 
can be displayed interactively. 

The authors, therefore, present a way of applying Phong-like local illumination 
model directly to one-dimensional lines, although such an approach is not directly 
supported in OpenGL. They implement the effect via texture-mapping, utilizing 
hardware acceleration. For every vertex of a line segment the line's tangent vector is 
specified as a three-component texture coordinate. Texture coordinates are transformed 
by a texture transformation matrix before the actual texture lookup is performed. Thus, 
by initializing this matrix with the current light and view vectors the inner products 
required for proper illumination can be computed on the fly. By making the streamlines 
partially transparent, the authors also address the problem of occlusion. Concerning the 
seeding strategy, they recommend an interactive probe, which can be moved by users 
according to their immediate needs. Distributing the lines near potential objects of 
interest was also shown. 

Streamline Seeding Strategies 
The streamline seeding strategies are of high importance for the informative as well as 
aesthetic quality of the outcoming image, thus being a subject to an investigation. This 
topic is, in our opinion, worth a separate section. In the following paragraphs, therefore, 
these approaches will be categorized and discussed. 

First of all, however, the goals that an ideal seeding strategy attempts to reach 
will be specified together with their priorities. 

Goals for Seeding 
The aims to achieve in development of the streamline seeding strategy might be put as 
follows [59]: 

• Coverage: The streamlines should not miss any interesting regions in the 
vector field. The interesting regions are those that we would like 
to study in the vector field, e.g. critical points, separation, and re-
attachment lines. In addition, streamlines should cover the entire 
region of the field. Hence, even if the field is more or less 
uniform in certain region, some streamlines should indicate the 
uniform nature of the flow in such area. This goal is considered to 
be of greatest priority because from a scientific point of view the 
information content of any visualization is the most important 
aspect. It is also easier to achieve than the other goals because 
one can always generate a lot of streamlines such that nothing 
important is missed. However, simply populating the field with 
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more streamlines is not acceptable because some areas in the flow 
field, such as convergent regions, will force streamlines to cluster 
together, making it difficult to distinguish among individual 
streamlines. Moreover, it suppresses the characteristic of 
uniformity as described next. 

• Uniformity: The streamlines should be more or less uniformly distributed over 
the field. This is a more challenging goal to achieve because 
while we can control where to place the seeds, we do not know 
how the resulting streamlines will behave. Uniformity is directly 
related to the density of streamlines crossing a unit area of the 
flow field. Hence, density of streamlines is an important 
parameter. This goal of a uniform spatial distribution of 
streamlines is important only to the extent that it does not 
interfere with the most important goal of achieving a good 
coverage. 

• Continuity: It is desirable from the point of view of aesthetics that the 
streamlines show continuity in the flow. Hence, one would prefer 
fewer long streamlines over many short streamlines. The latter 
tend to give the impression of “choppiness” while the former tend 
to give an impression of smooth continuous flow. In general, 
given an arbitrary flow field, the longer the streamlines, the 
higher the likelihood that they will tend to crowd together in 
some areas and disperse in other areas, thereby making it difficult 
to meet both the uniformity and continuity criteria 
simultaneously. Therefore, this parameter needs to be balanced 
against the uniformity criterion. Although the aim to achieve an 
aesthetically pleasing visualization has its merits, it should not 
compromise the other two goals (coverage and uniformity), hence 
it is lowest on our priority scale. 

Grid Aligned Streamline Seeding 
Since most flow fields are defined over a grid, a popular seeding strategy is to seed at 
the grid points. With such approach, no important features are missed but, on the other 
hand, too many streamlines must be traced. Furthermore, the streamlines tend to clutter 
unpredictably. Even if the grid is sub-sampled to reduce the density of streamlines, 
cluttering is still difficult to avoid. Finally, in case of regular grids, such seeding may 
produce visual artifacts that are not present in the flow field, because the underlying 
regular structure can be perceived in the output image (Figure 8 left). It is also 
necessary to point out that regular streamline seeding does not imply regular streamline 
distribution (Figure 8 right), which also discourages form applying methods focusing on 
uniform seeding, which have been developed for placing arrow plots and glyphs (e.g. 
[11] briefly reviewed in section 3.2.2). Depending on the flow field, plain seeding on a 
regular grid often brings cluttered images, where the individual streamlines can be 
difficult to distinguish in important regions, for instance, around critical points. The 
above described requirements of coverage and uniformity may be violated by this 
approach. 
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Figure 8: Regular seeding may introduce disturbing artifacts to the picture (left) or lead to 

unbalanced streamline distribution (right) [59] 

Density Guided  and Image Guided Streamline Seeding 
The density driven seeding strategies as well as the image guided techniques focus on 
the problem of cluttering and address the aesthetic aspects of a flow visualization using 
streamlines. These methods also enforce a uniform spatial distribution of streamlines.  

In [33] Max et al. present, beside other, a way to cover a 3D surface (not 
necessarily tangential to the field) with a set of streamlines. Once a seed point has been 
selected in the field, they make a streamline growing beyond that point back-ward and 
forward. The growing process is stopped when the streamline reaches an edge of the 
surface, a singularity in the field (source or sink) or becomes too close to another 
streamline. The streamline is then divided into a set of small segments of contrasting 
color and projected onto the surface. Although this method was intended to visualize a 
flow on a 3D surface, it can be generalized to all kinds of steady 2D fields. 

In [57] the placement of streamlines at a specified density is reached via 
minimization of an energy function. The method uses a low-pass filtered version of the 
current image to measure the difference between this image and the desired density 
value. The energy is reduced iteratively by changing the positions and lengths of 
streamlines, merging streamlines, and creating new ones. The resulting placement has a 
hand-placed appearance and the streamlines appear to be neither too sparse nor too 
crowded. Computation time for their method is significant. 

Jobard and Lefer [19] extend the Max’s approach [33] showing how the 
algorithm can be controlled by the user to produce a wide range of flow fields images, 
ranging from hand-drawing to LIC-like style. They aim to produce long and evenly 
spaced streamlines. An important feature of the algorithm is that, unlike Turk’s 
progressive refinement approach, it works in a single pass. To compute an image, a 
number of streamlines are calculated until a user-fixed density level has been obtained. 
When computing a new streamline, a new seed point is chosen at a minimal distance 
apart from all existing streamlines. Then a new streamline is integrated beyond the seed 
point backward and forward until it gets too close to some other streamline or it leaves 
the 2D domain in which the computation takes place. The algorithm ends when no more 
valid seed points can be found. The quality of this method’s outputs is comparable to 
that of [57]. The demands on computational time, however, are significantly lower. 

All these methods manage to avoid clutter, present easy to understand pictures 
and also dispose of disturbing artifacts that might lead to a misinterpretation of the flow 
field. However, from the scientific point of view, the most important property of a 
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visualization technique consists in its ability to display all the important features of the 
underlying phenomena. Methods in this group do not assure such behavior and in some 
cases, they may fail to satisfy the coverage criterion. 

Flow Guided Streamline Seeding 
As already mentioned above, the major drawback of the methods above is that they do 
not take guidance from the important features of the flow. None of the methods 
guarantees that the resulting streamlines will capture all the essential features of the 
flow field. Therefore, flow-guided streamline placement strategy was developed [59], 
which takes the advantage of the knowledge of important features contained by the 
flow. 

The main idea consists in seeding around flow field’s critical points (consult 
section Critical or Fixed Points in subchapter 3.4.1 for explanation) using seed 
templates, which correspond to individual types of these points. The procedure is 
straight- forward and consists of four essential steps: 

1. Compute critical point locations and determine their type.  
2. Segment the flow field into regions, each containing a single critical point, 

by constructing a Voronoi partitioning over the set of all these critical 
points.  

3. Perform seeding at the vicinity of the critical points by applying the 
appropriate templates conforming to the individual types of critical points. 

4. Randomly insert additional seed points in the field using a Poisson disk 
distribution to minimize closely spaced seed points. 

Definition and classification of critical points will be given in the Feature 
Extraction chapter together with an overview of methods focusing on extracting these 
critical points from vector fields. Since the flow-guided seeding strategy exploits critical 
points to a large extent, its description requires the knowledge of this term as well as the 
knowledge of individual kinds of critical points. Briefly, we can say that critical points 
are locations in a vector field where the vectors are null. Critical points are then 
classified according to the behavior of the flow in their vicinity, thus forming centers, 
saddles, attracting and repelling foci (i.e. sources and sinks) and attracting and repelling 
spirals are recognized. (see Figure 9 for illustration). 
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Figure 9: Critical point classification in 2D (from [38]) 

The authors of [59] have found out that in close surrounding of a critical point, 
the flow field usually resembles an ideal flow pattern for that type of critical point. The 
further we move from the critical point, the higher is the influence of the other critical 
points, which makes the flow behave less ideally in these areas. To be able to decide, 
which critical point influences a given position in a vector field the most, Voronoi 
segmentation is used to divide the flow field. Each Voronoi region then contains one 
critical point and the size of such Voronoi region is an approximation of the extent of 
this point’s influence. 

Deciding about the size and shape of the seed templates depends on the type of 
the critical point and was suggested as follows: 

• center, spiral: For center and spiral type of critical points, the algorithm finds 
the line segment that joins the critical point to the closest point on 
the Voronoi boundary and seeds along this line segment. 
Although other line segments might also be used, the authors 
claim, that the ideal flow pattern of the critical points fades rather 
quickly, and thus other possibilities mostly result in too many 
streamlines and hence clutter. 

• source, sink : For source and sink types of critical points, the algorithm seeds 
along a circle’s perimeter. This circle has its center at the critical 
point and it is the largest circle that would fit completely inside 
the critical point’s Voronoi region. Hence, the radius of this circle 
is equal to the distance between the critical point and the closest 
point on the Voronoi boundary. In contrast to centers and spirals, 
the ideal flow pattern of sources and sinks seem to extend further 
out. 

• saddle: For saddles, seeds are placed along two lines. These lines are the 
bisectors of the principal eigenvector directions. The extent of 
these lines is decided by their intersection with the Voronoi 
boundary. The saddles are the trickiest to seed because if the seed 
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closest to the saddle’s location along the bisectors is not close 
enough then the saddles are not captured properly. For this 
reason, it is wise to seed two special streamlines very close to the 
saddle. The seeds for these two streamlines are chosen to lie on 
the same bisector but on the opposite sides of the saddle’s center. 
The distance of these special seeds from the center is chosen to be 
equal to one half the cell size of the grid. 

In practice, the size of the templates can in fact be halved. Sufficient radius of the circle 
for seeding around source and sink critical points is then equal to half the distance of the 
critical point to the closest point on the Vorono i boundary. 

 
Figure 10: Critical point seeding templates 

Seeding only in a surrounding of critical points, however, leaves large blank areas in the 
image. These regions do not contain any additional important features, hence the 
seeding strategy can be less careful here. Verma et al. fill these regions by random 
seeding driven by a Poisson disk distribution. Instead of searching for the blank areas, 
the authors first determine the, so called, regions of influence of the critical points (i.e. 
circles around the critical points with recommended, experimentally found, radius equal 
to 0.8 times the template radius) and then perform the random seeding outside these 
regions. Tracing from these random points introduces a few very short streamlines to 
the output picture. These streamlines can be omitted from the visualization. Their 
exclusion improves the aesthetic aspect and does not reduce the informative qualities of 
the image. 

There are two important consequences of seeding with the seed template before 
the random seeds. By giving priority to seed templates, the coverage of flow patterns 
near critical points is assured. Furthermore, the algorithm terminates a streamline when 
it comes close to an existing streamline, thus earlier streamlines will tend to be longer 
than later streamlines. Hence, streamlines traced from the seed templates are longer than 
those traced using seeds placed randomly to fill in blank spaces. Such a strategy ensures 
that the regions in the flow field close to critical points are given more importance than 
other regions. 

The authors compared this technique to the one of Turk and Banks presented in 
[57] and briefly described above. Although the uniformity goal seems to be better 
satisfied by the image-guided approach making the flow-guided method generated 
pictures look slightly worse from the aesthetic point of view, the coverage criterion, 
which was claimed to be the primary visualization goal, is definitely better met by the 
flow-guided technique. 

Moreover, it is necessary to realize that with the increasing number of traced 
streamlines, the iterative nature of the image-guided algorithm causes a significant 
growth of computational time. Potential further savings of computational time with the 
flow-based technique arises from the fact that it is view-independent, unlike the image-
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guided approach. This will show when users need to inspect the flow field from 
different view-points. 

Stream Ribbons, Polygons, Tubes, Balls, Surfaces, Arrows et cetera 
Many extensions of streamlines have been developed because of various demands on 
the visualization. We will only mention them briefly here, together with a short 
description and a reference to the sources, where the methods were presented. 

Stream ribbons [58] are in fact stream lines with a winglike strip, whose 
orientation shows the rotational character of the flow. 

Stream polygons [47] were developed to visualize tensor information in a vector 
field. The stream polygon is a regular n-sided polygon oriented normal to a local 3D 
vector in a given point and is deformed by either the whole deformation tensor, just a 
component of it, or an additional derived tensor (e.g. the vorticity tensor for a velocity 
field). Polygon’s shape, radius, number of sides and rotation reflect the vector field 
quantities. 

Stream tube [58] is constructed by computing a streampolygon in every point of 
a streamline. 

Stream balls [4] serve for visualization of divergence and convergence as well as 
acceleration and slow down via splitting and merging. 
Stream surfaces [17] are surfaces, which are tangent to the flow. Stream surfaces can be 
approximated by connecting a set of streamlines along timelines. 

Stream arrows [31][32] visualize flow direction, convergence or divergence and 
other flow properties by cutting arrow-shaped pieces out from the stream surfaces, thus 
leaving transparent arrow-shaped holes in these surfaces. Not only that the holes reflect 
some flow features, they also allow the user to see through the surface in the front and 
discover surfaces, which would normally be hidden behind it. 

Streak Lines and their Seeding 
As already mentioned, streak lines are integral curves, produced by simulating 
continuous injection of particles into the flow field from constant location over certain 
period of time. Displaying streak lines serves, at the first place, for unsteady flow data 
visualization, for, in case of steady flows, streaklines coincide with streamlines and 
pathlines. Visualizing unsteady vector data requires proper choice of the method to use. 
Streamlines, for instance, bring certain amount of information about the underlying field 
too, however, the results might be misleading in a way. Streamline computation always 
exploits vector information from just a single instant of time. A trace obtained this way, 
therefore, describes the trajectory of an imaginary massless particle moving through the 
flow field at infinite speed, which diverges from what users would usually expect. Such 
technique is called instantaneous. Streak lines, on the other hand, belong among time-
correlated methods, which progressively include information from consecutive 
temporal instants letting the integral curve develop in time. 

The nature of the instantaneous methods causes problems when used for 
visualizing time-varying data via animations. Since they only exploit information from 
one temporal level for creating a frame of the animation, they suffer from a lack of 
coherence between individual images. A comparison of instantaneous and time-
correlated methods can also be found in [27] and [28], where some implementation 
details about computing streaklines and timelines are mentioned. 

The disturbing problem with lack of temporal coherence appears for example if 
LIC (Line Integral Convolution) images are computed for each time step separately and 
then put together, one after another, to make up an animation. An improvement has 
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been reached by Forssell and Cohen [13], who replaced streamlines with pathlines. 
Their method produces better visualization of time-varying vector fields, yet it lacks 
temporal coherence, where the flow is fairly unsteady. With time correlated methods, 
this is not the case. The first approach of this sort is probably UFLIC (Unsteady-Flow 
LIC), which employs certain kind of temporal convolution. Both, LIC and UFLIC will 
be explained later, because they fall into the category of texture base methods. We have 
mentioned them here to stay consistent, since the following methods draw on their 
findings. 

Sanna et al. [43] propose a geometric approach, which builds upon the 
experience of the methods above and overcomes the temporal coherency problem. Their 
algorithm follows streaklines in order to produce an image for each time step of an 
animation. They also came up with an important finding that streak lines, as they 
develop in time, overlap easier then streamlines and their orientation is less evident, if 
just a single frame is inspected. Thus, the results might confuse the user. 

To fix this flaw, another improvement was reached in [44] by designing more 
adequate seeding strategy. The density of traced streaklines differs according to the 
local vorticity of the vector field (refer to section Vorticity, Rotation or Curl in 3.4.1). In 
the areas where higher velocity gradients appear, a larger number of traces is displayed, 
while in the regions with smoother flow, a smaller number of streaklines is traced. 
Moreover, each particle of a streakline is denoted by a color depending on the character 
of the local vorticity in the area around such particle. 

A set of insertion points, from which the particles are released, will correspond 
to a set of pixels on the output texture. The insertion points are kept constant for the 
whole animation. At each time step a new particle is released from each location and the 
positions of the previously emitted particles are updated. In this way, each frame of the 
animation maintains the coherence with the previous ones and the resulting sequence 
can effectively show the evolution of the field in time. 

Similarly as in the flow-guided streamline seeding strategy (see above), it is 
necessary to avoid too sparse or even blank areas in the final image. Therefore, in order 
to guarantee a minimum level of details all over the resulting image, the streaklines 
starting from a subset of insertion points are traced independently of the vorticity 
values. On the other hand, the particles released from the other insertion points will 
affect the output frame only if they are placed in field zones where the vorticity is 
greater than a user predefined threshold. In this way, the user can tune the magnitude of 
the flow field details to be displayed. 

Finally, the maximum length of the streak lines (L) can be set by the user before 
the visualization starts. After releasing new particles in certain time step, the positions 
of the previously emitted particles must be updated according to their locations inside 
the vector field. Should the streak line exceed the length limit that is should it consist of 
at least L+1 particles, the oldest one is dropped. 

Time Surfaces 
Time surfaces are the 3D equivalents of timelines in 2D. Time surface is produced by 
inserting a set of particles from a 2D patch into the flow in one instant of time. The 
evolution of the time surface’s shape reflects the character of the vector field. 

3.3.3 Texture Based Methods 
As well as the geometric visualization techniques, texture based algorithms utilize 
integral curves, the computation of which was discussed in 3.3.1. Instead of displaying 
them as individual geometric entities, a convolution with some kind of input texture is 
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performed. The type of the input texture as well as the integral curve used then makes 
the difference between individual techniques. Apparently, texture base techniques need 
two input structures, these being the vector field and the texture to convolve it with. An 
overview of texture based vector field visualization methods can be found in [45]. 

Spot noise 
Spot noise [61] is considered to be the first texture based vector field visualization 
technique. The name is derived form the texture type used for the convolution. It 
contains small, spots resembling, intensity functions distributed over the data domain. 
Each of these spots then becomes a little dispersed by the influence of the vector field 
and also moved on a path ],[   ),( 21 tttti ∈x . Therefore, the image of a single particle can 
be obtained as: 
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where A is a particle spread function. Image hi is the, so called, spot (or streak) of a 
single particle. The sum of all spots characterizes the whole texture: 
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where x is a random starting point for each spot, and ai is a random scaling factor with a 
zero mean. The shape of the intensity function hi is deformed according to the vector 
field, which stretches the spots elliptically in the direction of the local field. The 
algorithm was ineffective when visualizing regions with high velocity gradients. 

Line Integral Convolution (LIC) 
Line integral convolution (LIC) first presented in [8] and latter reviewed in [7] stands 
for probably the best known texture based integral method for visualizing vector fields. 
On the input, it takes the vector field to be visualized and a texture – usually some kind 
of random image like for example white noise of the same resolution as the vector field 
grid. These are then convolved together producing an image resembling surface oil 
patterns, which can be seen in real world experiments. In other words, the white noise 
texture is smeared along the direction of the streamlines. The convolution, LIC 
performs, is thus one dimensional, which effectively correlates pixels located along 
stream lines and leaves pixels in the transverse direction uncorrelated. A low pass filter 
is used to restrict the convolution only to streamline segments of selected length. 

To be precise, equation (3) defined for unstable flows must first be rewritten to 
define an integral curve1 in a time independent vector field: 
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Having expressed a streamline p(s), LIC computes the pixel intensity at x0 = p(s0) as 

                                                 
1 In the following text, this integral curve will be reffered to as a streamline. As mentioned above, 
streamlines, streaklines and pathlines coincide in time independent vector fields. 
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where T denotes an input texture. The filter kernel k is assumed to be normalized to 
unity. In [53], the filter length L equal to 1/10th of the image width is recommended. 
Animating and coloring LIC images (for instance according to the velocity magnitude) 
can further extend the informative value of the results. 

As a powerful method, LIC draws researchers’ attention. Thus, a method for 
comparative analysis of this algorithm and visualizing streamlines by using non white 
noise texture was suggested in [60] and is called PLIC (Pseudo-LIC). Shen et al. [51] on 
the other hand developed a visualization software based upon line integral convolution 
called GLIC (Graphical Line Integral Convolution). LIC has also been extended to 3D 
surfaces in [1]. Besides these,  LIC was upgraded to successfully visualize time 
dependent vector fields in [50]. This is an important modification, which will be 
described bellow in a separate section. First, however, some improvements to the LIC 
technique itself will be described. 

Despite the unquestionable effectiveness of the basic LIC algorithm, Stalling and 
Hege [53] brought significant advances to this technique. They focused especially on 
the speed up, smooth animations and detail enlargement. 

Speeding up LIC 
In traditional LIC a separate stream line segment and a separate convolution integral are 
computed for each pixel in the output image. Since a single stream line usually covers 
lots of image pixels, it redundant to always recompute large parts of a stream line. 
Furthermore, for a constant filter kernel k very similar convolution integrals occur for 
pixels covered by the same stream line. In [53], exploiting these observations is 
proposed. 

Consider two points located on the same stream line, x1 = p(s1) and x2 = p(s2) 
separated by a small distance ∆s = s2 - s1. For constant k then obviously: 
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The intensities differ by only two small correction terms that are rapidly computed by a 
numerical integrator. By calculating long stream line segments that cover many pixels 
and by restricting to a constant filter kernel, both the redundancies can be avoided. 

Animating Stable Flows 
Changing the shape and location of the filter kernel k over time causes the LIC images 
to be animated, thus reflecting not only the tangential but also the directional 
information. The above restriction to constant filter, however, requires a different 
approach. This can be achieved by rotating the box filter, which however introduces 
disturbing artifacts, when the boxes reenter the interval. To see this, consider two points 
p1 and p2 on a single stream line that are half a filter length apart. The corresponding 
pixel intensities initially have a 50% correlation because half of the texture cells being 
convolved are covered by both filter boxes. When the filter boxes reenter the interval, 
correlation suddenly drops to zero, as demonstrated in Figure 11. 
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Figure 11: Correlation drop off with the box filter kernel shifting [53] 

Since changing the filter kernel, which would solve this problem, is not possible with 
the fast version of LIC, the authors suggest using frame blending. In this technique, a 
sequence of images Bn, n = 0, 1,..., N-1, is computed, with the box filter running just 
once along a streamline segment. Such sequence is not periodic any more, but exhibits a 
constant intensity correlation. A periodic sequence A of length N/2 may be obtained by 
smoothly blending between two phase-shifted B- frames: 

 NnNnn BnwBnwA mod)2/1(2mod1 )()( ++= . (29) 

Weights w1 and w2 are chosen as: 

 
Figure 12: Weights for frame blending [53] 

Then, pictures near the critical positions will have small weights and the transition from 
one cycle to another will be smooth. 

A great advantage can be seen in the fact, that this technique (unlike the standard 
filter cycling approach) can also be applied when it is necessary to animate pictures 
with variable velocities for individual pixels. Thus, vector magnitude |v| can be 
recorded as well. 

Level of Detail 
The traditional LIC requires the output image to be of the same size as the input 

texture. Fast LIC on the other hand allows to choose the output picture size 
independently of the input image and the vector field resolution. Therefore, it is easy to 
zoom in and out to the vector field in case of necessity. Since the fast LIC algorithm 
utilizes the fourth order Runge-Kutta integration scheme described by equation (6), only 
the time step size ∆t needs to be adjusted adequately when changing resolution. 
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Unsteady Flow Line Integral Convolution (UFLIC) 
As mentioned in the section devoted to LIC, it is possible to animate the output images 
to create a notion of a real flow. Referring to section 3.1.1, however, we recall that such 
visualization only illustrates one temporal dimension, resulting from the differential 
character of vector data. Yet, the data themselves are invariant in time. Another 
temporal dimension is encountered, when dealing with time-dependent data, where the 
vector field itself changes in time. We have already encountered this situation in section 
Streak Lines and their Seeding in subchapter 3.3.2, where we have explained the tricky 
physical meaning of streamlines in time-dependent data, defined the instantaneous and 
time-correlated methods and drawn the distinction between them. In the same section, 
we have also mentioned, why it is necessary to base time dependent data visualization 
on streaklines, rather than streamlines. The LIC derived method tackling this problem is 
called UFLIC and will now be briefly outlined. 

This algorithm extends the LIC method by devising a new convolution algorithm 
that simulates the advection of flow traces globally in unsteady flow fields. The input 
texture (white noise as for LIC) is advected over time to create directional patterns of 
the flow at every time step. The advection is performed by using a new convolution 
method, called time-accurate value scattering scheme. In the time-accurate value 
scattering scheme, the image value at every pixel is scattered following the flow‘s 
pathline trace, which can be computed using numerical integration methods. At every 
integration step of the pathline, the image value from the source pixel is coupled with a 
timestamp corresponding to a physical time and then deposited to the pixel on the path. 
Once every pixel completes its scattering, the convolution value for every pixel is 
computed by collecting the deposits that have timestamps matching the time 
corresponding to the current animation frame. To track the flow patterns over time and 
to maintain the coherence between animation frames, a process is devised, called 
successive feed-forward, which drives the convolutions over time. In the process, the 
time-accurate value scattering is repeated at every time stamp. Instead of using the 
white noise image as the texture input every time, the algorithm takes the resulting 
texture from the previous convolution step, performs high-pass filtering and then uses it 
as the texture input to compute the new convolution. 

3.4 Feature Extraction 
This chapter might also be called Topological Representation of Vector Fields. Methods 
described here are based on extracting some topologically important features from the 
vector field and their subsequent visualization. The advantages are apparent. Displaying 
only the important features will significantly reduce the amount of visualized data. 
Since the original datasets are usually rather huge, such reduction is necessary from at 
least two reasons. Visualizing all the data values would, on the first place, be too slow. 
Secondly, occlus ion and clutter caused by the quanta of more or less uninteresting data 
might prevail and dominate the final views. 

A disadvantage is that if some of the important features, which are present in the 
original dataset, remained unrecognized by the extraction algorithm, it might lead to 
misinterpreting the character and content of the information the vector field contains. 

3.4.1 Feature Extraction Dictionary 
The task of this section is to introduce basic concepts and some important and 
frequently used terms from the feature extraction field. In the first place, the relation 
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between vector fields and general dynamical systems will be drawn along with the 
recipe, how to represent a vector field so that the dynamical system analysis tools can 
be applied to investigate it. 

Vector Fields as Dynamical Systems  
As already mentioned in sections 3.1.2 and 3.1.3, vectors in linear fields can be 
expressed in the form v = Ap, where vectors v are functions of the spatial locations p, 
with A being a constant n×n-matrix (in case of time independent fields). Such a 
description classifies the vector field as a dynamical system, but it is only available in 
case of analytical models. In practice, one usually works with a set of discrete samples 
of the data. Numerical methods must thus be employed to obtain an approximation of 
matrix A, whose analysis plays a crucial role for investigating the vector field via the 
feature extraction methods. Before describing this process, the terminology will be 
clarified using [32] and [30]. 

Gradient and Jacobian 
Gradient and Jacobian are denoted by operator ∇, which produces a vector of partial 
derivatives of its operand as shown in equation (30), where ∇ f(x) is called gradient for 
scalar operand f(x) and ∇v(x) Jacobian matrix for vector function v(x). 

 )  ...,  ,  ,(
21 nxxx ∂

∂
∂
∂

∂
∂=∇ , grad f(x) = ∇ f(x), J = ∇ v(x) = ∂v / ∂x, (30) 

Divergence 
Divergence div v(x) of a flow is a frequently used scalar quantity, which can be 
described as ∇⋅ v(x) or as the trace Tr of the Jacobian ∇ v(x). Symbolically: 

 ∑ ∂∂=∇=⋅∇=
i

iiTr ,)/()()()( div xvvxvxv . (31) 

Divergence determines the local amounts of incoming and outgoing flow and equals to 
zero if these amounts are the same. 

Vorticity, Rotation or Curl 
Vorticity, rotation and curl all denote a vector ω = rot v(x), which points in the direction 
of the axis of the flow’s rotation and its length equals to twice the angular velocity [44]: 

 )()( curl)(rot xvxvxv? ×∇=== . (32) 

Stream Vorticity 
The cosine of the angle enclosed by the vorticity vector rot v(x) and the flow vector v(x) 
defines the scalar term stream vorticity Ω. Stream vorticity equal to 1 thus implies a 
flow rotating around the flow vector v(x), while Ω equal to zero identifies a location, 
where either the flow rotates in the plane containing the v(x) vector or where there is no 
rotation at all. Symbolically: 
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Helicity or Helicity Density 
Helicity and helicity density again denote the same quantity Hd, which defines the same 
as no stream vorticity if equal to zero. Helicity 

 )( vv?v?v ×∇⋅=⋅=⋅⋅Ω=dH , (34) 

however, increases proportionally to the length of ω and v. 

Circulation 
Circulation Γc equal to zero for any closed curve C indicates that a potential function f 
exists, for which grad f(x) = v(x), and this function can then be used for analysis instead 
of v. If Γc = 0 for ∀C, then there is no rotation in the field at all. Mathematically: 

 ∫∫ ==Γ
Sc
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with S being the surface of an arbitrary volume containing closed curve C. 

Critical or Fixed Points 
Critical points, sometimes also called fixed points, are locations within the vector field, 
where vector v vanishes to zero. These points are important topological places and their 
location provides a basis for many visualizing methods. 

3.4.2 Analyzing the Transformation Matrix 
At the beginning of the previous section, vectors v were expressed as a function of 
positions p, where the relation was described by matrix A as v = Ap. Hence, A can be 
regarded as a transformation matrix between the spaces of p and v. Analyzing this 
matrix will therefore bring valuable information about the flow, sufficient to investigate 
it. First, however, it is necessary to describe, how to extract such matrix from the 
discrete samples if the analytical model of the system is unknown. 

Approximation in the Discrete Case 
If the analytical model is unknown, the Taylor series expansion must be utilized locally 
to find the relation between v and p, supposing the flow v to be sufficiently smooth and 
differentiable. In such case, the expansion of v about point x0 is [14]: 
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Omitting the remainder term, equation (36) can be rewritten using the matrix notation as 
[20]: 
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where (δx, δy, δz) is the Cartesian coordinate vector assuming x0 to be the origin. Vector 
v0 is the velocity vector in the origin and J = ∇v the Jacobian matrix. The coefficients of 
v0 and those in the Jacobian matrix are constants. If the discrete mesh decomposes into 
tetrahedral elements, these constants have an analytic solution as a tetrahedron has four 
vertices, precisely the right number of datum points to evaluate the 12 coefficients of a 
3D linear interpolation function. For linear vector fields, like that described by equation 
(37), the flow’s general shape can be determined. Matrix J only has local validity (i.e. it 
is different for each tetrahedron) and it is most often examined in critical points, where 
v0 equals to a zero by definition and J is thus identical to matrix A in the definition for 
the analytical models. The advantage of investigating J near critical points is that in 
these locations, non-linear fields can also be studied, because the higher order terms in 
the Taylor series expansion tend to vanish near the critical points, thus the linearization 
of the non- linear field by disregarding these terms does not cause significant 
inaccuracies (see [32] for details). The information encoded in the Jacobian matrix J 
will be revealed in the following paragraphs. 

Eigenvalue/Eigenvector method 
One way to examine the behavio r of a vector field is to compute the eigenvalues λi 
(from det(J - λi ⋅ I) = 0) and corresponding eigenvectors ei  (from J ⋅ ei = λi ⋅  ei) of J in 
the critical points. When interpreting the Jacobian matrix as a transformation, its 
eigenvectors will point in the directions, which are invariant to this transformation. The 
way such a line itself is transformed is given by the corresponding eigenvalue λi. 

The constellation of the eigenvalues and eigenvectors gives rise to critical point 
classification, for the 2D case already mentioned in the Flow Guided Streamline 
Seeding section in subchapter 3.3.2. In 3D, the situation is analogical, as depicted in  
Figure 13. Although more combinations are possible, the principle is the same. 

 
Figure 13: Vortex classification in 3D 

When a critical point is located, its type must be determined. This is done by examining 
the three eigenvalues of J, which can be either three real numbers or one real and two 
complex conjugate numbers. The two eigenvectors derived from the complex conjugate 
eigenvalues define a plane, which contains the swirl of the flow. The third one is the 
axis of the swirl and if subtracted from the vector field a purely rotational flow will be 
obtained. 
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As already mentioned, critical points stand for a topologically important feature 
and they are often used as the starting location for integrating streamlines, thus 
describing the field comprehensively. 

Jacobian Matrix Decomposition 
Another possibility to extract the information from the Jacobian matrix J, is to 
decompose it into a symmetric matrix J+ and an antisymmetric matrix J- [32], where: 

 2/)(        ,2/)( TT JJJJJJ −=+= −+ . (38) 

The elements of these two matrices then have the following meaning: 
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with the elements • represent the shear strain, 
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J in Local Coordinate System 
If the flow’s Jacobian J is studied at some point of a trajectory of the flow, it can also be 
transformed to conform the local coordinate system determined by the Frenet-Frame (J 
→ Jloc), whose elements are given in 

 















=

dtdc
tddc

ssa
loc

,
,J , (41) 

where elements a, s and c describe changes of the flow parallel to v(x). More precisely, 
a gives the acceleration, s the shear strain and c the curvature. Elements d and d, t, on 
the other hand, specify changes in the direction perpendicular to v(x). Splitting this 
2 × 2 part of the matrix into a symmetric and an antisymmetric parts, elements d would 
denote divergence and t the torsion of the flow. 

3.4.3 Extraction of Features 
Using the above described knowledge of the vector field, various physical 
characteristics can be searched within the data. These characteristics are called features. 
The choice of features to look for within a data set depends heavily on the application, 
taking into account the character of the vector data and the purpose of visualization. 
Probably the most frequently used examples from the field of flow visualization are 
vortex cores, shock waves, separation and attachment lines etc. Numerous methods 
exist to locate and extract these features within a vector fields and for tracking these 
features over time in case of time-dependent data. For an overview of the main 
approaches, refer to [38] and especially to [41]. 
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3.5 Derived (Scalar) Value Visualization 
Another approach of visualizing vector fields is based upon the fact that in some 
situations it is possible or even necessary to represent the vector data by some scalar 
values. A very intuitive example is searching for a region in a flow field, where velocity 
magnitude reaches certain user specified limit. Similarly as in the methods discussed in 
the previous chapter, where some objects (integral or topological) were first extracted 
from the vector field and then visualized, here scalar values are derived from the vector 
data first and these values are then processed and visualized. The most common 
operation with the scalar values being isosurface extraction. The whole process is 
sometimes also called dimension contraction. In multidimensional data visualization, 
reducing dimension is a generally popular concept, as we will see later in the chapter 
devoted to tensor field visualization. 

3.5.1 Types of Derived Values 
 
In this section we outline a few examples of scalar values, which may be derived from 
vector data and which may be requested for visualization by the user. These examples 
come from [39]: 

• The magnitudes of all velocity vectors v  define a scalar field. 

• The kinetic energy density is 2

2
1

v⋅⋅ ρ . 

• The scalar product of two vectors is a measure of the angle φ between 
them: 

 φcos⋅⋅=⋅ vuvu  (42) 

This can be used to find the components of all velocity vectors in a given 
direction, or to find the changes in direction at two neighboring points. 

• The magnitude of the vorticity ω may be used to find vortices. Using ω, 
helicity density is computed as: ?v ⋅=dH . 

• The scalar fshock is defined for compressible media as: 
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in which c is the speed of sound. The isosurface for fshock = 1 shows shock 
waves. 

3.5.2 Visualizing Derived Values 
Once computed, these scalar values may be depicted and investigated using common 
methods for scalar volumetric data visualization. The term “Once computed”, however, 
does not mean that the whole scalar field needs to be computed first in preprocessing 
and only then visualized. In fact, with regard to the increasing size of data sets, these 
scalar values must often be derived from the vector data on the fly. On the other hand, 
should the user need to, for instance, extract multiple isosurfaces, it is wise to consider 
precomputing the whole scalar field in advance and storing it together with the vector 
field if possible. Simply, the ubiquitous trade-off between size and speed must be 
considered before choosing the right attitude for implementation. 
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We will not describe all the numerous techniques devoted to scalar field 
visualization (iconic visualization, direct volume rendering etc.), because it falls behind 
the scope of this work. On the other hand, we will briefly touch probably the most 
popular approach, isosurface extraction and visualization (chapter 6), since it is one of 
the topics we have dealt with. 
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4 TENSOR FIELD VISUALIZATION 

Similarly as vector fields, tensor datasets also represent a crucial form of storing 
information in numerous engineering and physics disciplines. To be precise, vector (or 
scalar) field is nothing else but a field of first (or zero) order tensors. This chapter, 
however, only deals with second and higher order tensors. In this respect, the most 
frequently used tensor datasets are fields of second order tensors, on which we will 
focus primarily. Yet higher order tensors can also be encountered and therefore we will 
give them some attention as well. An example of higher order tensor would be 
describing the piezoelectric properties of a crystal by 27 = 33 quantities, thus using a 
third order tensor. Elasticity of anisotropic body requires 81 = 34 numbers, which means 
a fourth order tensor [35]. 

As one might have expected, multiple approaches for visualizing tensor fields 
have appeared. The information encoded in tensors is, however, very complex and, as 
compared to vectors, much less intuitive for humans. Lucidity is very hard to reach in 
this field of visualization and thus the methods need to be rather smart, not to have the 
user misinterpret the results and gone astray. 

4.1 Theoretical Background 
To prove that the motivation for visualizing tensor fields is not artificial, a list of some 
commonly used physics tensor quantities, which deserve visualizing, will be presented 
first. Afterwards, some basic tensor theory will be shortly explained. A comprehensive 
description with examples can be found in [35] (in Czech). Illustrative images and 
explanatory videos concerning concrete results of advanced techniques for tensor data 
visualization can be found at [62]. 

4.1.1 Physical Tensor Quantities 
In [10] some physics tensor quantities from the fluid flow area are listed. We will also 
use them for illustration (see Table 3). 
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,  Velocity gradient (u) 

ikkiik vv ,, +=ε  Rate-of-strain tensor (s) 
**

ikik ηεσ =′  Viscous-stress tensor (s) 

ikikik p σδσ ′+−=  Stress tensor (s) 

kiikik vvp ρδ +=Π ′  Reversible momentum flux density tensor (s) 

ikikik σ ′−Π′=Π  Momentum flux density tensor (s) 

* In non-Cartesian coordinate system, covariant derivatives must be used instead 
** In compressible flows, there is an additional term involving the divergence of the 
velocity field. 
 
p = pressure 
ρ = mass density 
νi and νk = velocity components 
η = viscosity 

δ ik = Kronecker symbol 
(u) = unsymmetrical 
(s) = symmetric 

Table 3: Tensor fields in fluid flows  

4.1.2 Tensor Fundamentals 
More definitions of tensor exist depending on which feature should be emphasized. The 
most common way is to define tensor as an object, which obeys a specific 
transformation rules under a change of coordinate system. But it can also be defined as 
a multi- linear map between vector spaces [3]. For the purposes of the following 
paragraphs, the second definition suits better. A second order tensor quantity is defined 
to be a bilinear map νω ⊗  such that: 

 1),(),(),()( =⋅=⋅⊗ baba νωνω  (44) 

Here ω and ν are co-vectors, i.e. linear maps (dot products) on the a and b vectors such 
that ω ⋅ a = 1 and ν ⋅ b = 1. 

In more familiar matrix notation for a 3-dimensional space, equation (44) can be 
expressed as: 
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Thus a second order tensor takes the form of a square matrix and associates state with 
two directions in space. Provided we have a tensor T = ω ⊗ ν and the vectors a and b, 
the original co-vectors may be computed form the following expression: 
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and 
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Indeed, the inner product of T and any linear combination of a and b produces 
the appropriate linear combination of ω and ν. Thus the tensor is a specific map 
between the vector space spanned by a and b and the vector space spanned by ω and ν. 

For example, the stress tensor at a point is a set of components containing stress 
state information for any arbitrarily oriented plane passing through the point. 
Multiplication of a unit vector representing a plane normal by the stress tensor gives one 
of the two stress vectors (also known as a traction vectors) representing the stress on 
that plane (Multiplication by the negative normal would yield the second stress vector 
acting on this plane): 
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In this case, we are mapping between the set of 3D plane normals and the set of 3D 
stress vectors acting on those planes. 

Tensor Decomposition 
General second order tensors contain nine independent scalar quantities. It is desirable 
to reduce this dimensionality in a meaningful way as an aid in understanding the 
physical state represented by a tensor. To do so, some visualization techniques exploit 
Symmetric-Antisymmetric decomposition. Another possibility is a Polar Decomposition. 
Sometimes it is also desirable to filter out a background isotropic contribution, which, if 
dominant, may suppress interesting features. Decomposition to isotropic and deviator 
tensors is used for that purpose. These three operations are described in the following 
paragraphs. 

Symmetric-Antisymmetric Decomposition 
Any second order tensor may be decomposed into the sum of a symmetric tensor S and 
an antisymmetric tensor A [35]. Symbolically written: 
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The antisymmetric tensor A is also called axial. 
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Polar Decomposition 
Any second order tensor may be expressed as a product of a stretch tensor V and an 
isometric transformation tensor Q. There are two equivalent ways to do so (Figure 14). 
Symbolically written: 

 QVQVT 21 == . (51) 

Here, Q is an orthogonal tensor and both V1 and V2 are symmetric positive definite 
tensors (i.e. symmetric tensors with real and positive eigenvalues). Regions, where Q 
reduces to a plus or minus identity matrix, the field is symmetric. It is also necessary to 
note that where det(T) ?  0, there is a unique correspondence between matrix T and the 
set of matrices {Q, V1, V2}. If the determinant equals zero, Q can not be computed, so 
visualization methods would have to bypass such a region by e.g. interpolation [10]. 

V 1

V 2

Q QT

 
Figure 14: Polar decomposition – two equivalent ways are possible 

Deviator-Isotropic Decomposition 
Any second order tensor may be decomposed into the sum of a deviator tensor D and an 
isotropic tensor U. Symbolically written: 

 UDT +=  (52) 

Where, 

 























=























−

−

−

=

q

q

q

qttt

tqtt

ttqt

3
1

00

0
3
1

0

00
3
1

          and          

3
1

3
1

3
1

332313

232212

131211

UD . (53) 

Here, ∑
=

=
3

1i
iiq T  is the trace of T. 

The deviator- isotropic decomposition can be applied to tensors in general, or to 
the symmetric part of a symmetric-antisymmetric decomposition. The deviator has no 
meaning in the context of the antisymmetric portion of a tensor since the diagonal 
elements are null. 
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Fluid Flow Example 
Some of the tensor visualization methods make use especially of the symmetric-
antisymmetric decomposition, the deviator- isotropic tensor decomposition or their 
combination. This will be demonstrated on the example of velocity gradient, which 
must sometimes be investigated when dealing with fluid flows. From this physical 
quantity, represented by a second order tensor, many other useful quantities can be 
derived (see Table 3). 

The velocity gradient can be obtained using the first order Taylor’s series 
expansion of the velocity at a point: 
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where 
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Applying the symmetric-antisymmetric decomposition yields the following tensors: 

 

























∂
∂

∂
∂

+
∂

∂

∂
∂

+
∂

∂
∂
∂

+
∂

∂

∂

∂

∂

∂
+

∂
∂

∂
∂

+
∂

∂
∂

∂
+

∂
∂

∂
∂

=

z
v

y
v

z

v

x
v

z
v

y
v

z

v

y

v

x

v

y
v

x
v

z
v

x

v

y
v

x
v

zzyzx

zyyyx

zxyxx

)(
2
1

)(
2
1

)(
2
1

)(
2
1

)(
2
1

)(
2
1

S  (56) 

 

























∂

∂
−

∂
∂

∂
∂

−
∂

∂
∂

∂
−

∂

∂

∂
∂

−
∂

∂
∂
∂

−
∂

∂
∂

∂
−

∂
∂

=

0)(
2
1

)(
2
1

)(
2
1

0)(
2
1

)(
2
1

)(
2
1

0

z

v

y
v

z
v

x
v

y
v

z

v

y
v

x

v
x
v

z
v

x

v

y
v

yzxz

zyxy

zxyx

A . (57) 

The Taylor’s series expansion from (54) can then be also decomposed to 

 rArSvv 0 δδ ⋅+⋅+= . (58) 

From equation (58) we can see that the velocity consists of and can be decomposed into 
local translation (v0) plus local rate of strain (S + δr) plus local rigid body rotation 
(A + δr). The symmetric part (S) has six independent components, three in either the 
upper or lower triangular matrix plus three components on the diagonal. This 
multivariate data may be visualized, for instance, by hyperstreamlines (see section 
Hyperstreamlines in subchapter 4.2). Since the diagonal components of the 
antisymmetric portion (A) are zero, it has only three independent components. This 
corresponds to a rotation vector that can be visualized as hedgehogs or ribbons imposed 
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on visualizations of the symmetric tensor. This technique was described in [10] and will 
be discussed later in the Hyperstreamlines section. 

Before visualization, however, the deviator- isotropic tensor decomposition can 
be performed to filter out the background isotropic component, which is uniform in all 
directions and might suppress the deviator [25]. Here, quantity q in the two equations 
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q zyx , which is the velocity divergence. 

Thus, for the velocity gradient tensor, the deviator corresponds to removing one third of 
the velocity divergence from each of the diagonal elements. 

4.2 Second Order Tensor Visualization 
Visualization methods for second order tensor fields will be discussed in this section. 
As already mentioned, second order tensors are produced by numerous applications in 
physics and engineering such as fluid flow simulations [10], mechanics and material 
science but also in seismology [46], biology [24] etc. In this section, we will describe 
current approaches. 

Coloring Coding 
These methods offer an aid for understanding the tensor data by displaying its scalar 
components in a two or three dimensional form. More precisely, the scalar values are 
mapped to color and then applied on the orthogonal planar slices through the volume. 
These colored slices are usually presented in a 3 x 3 panel layout. Three dimensional 
second order tensors consist of 9 scalars, thus one slice corresponds to one of the 9 
scalar components (Figure 15). The picture demonstrates that although all the scalar 
values are depicted, this method does not provide an intuitive understanding of tensors. 
An inexperienced user will have difficulties to mentally integrate the visual information 
and interpret its meaning. 

 
Figure 15: The color coded slices in a 3x3 panel layout [22] 
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Another way is to apply color coding on the images of the tensor‘s eigenvalues. 
Although the scalar values in these images are rotationally invariant and they 
communicate some geometric information, no directional cue is involved [24]. 
However, the directional information is too valuable to be omitted. From this reason, 
color coding tensors can not be considered effective. 

Tensor Glyphs  
These methods depict selected data via simple local icons representing, for example, 
eigenvalues and eigenvectors at seed positions. Such discrete icons are usually called 
tensor glyphs and their design and placement need to be done wisely. Glyph choice and 
seeding are crucial for the understandability and the informative value of the resulting 
images. Tensor glyphs map tensor information from discrete locations within the field 
onto a geometric object. As mentioned above, mapping the three eigenvectors as 
principal axes of an ellipsoid is a good example (Figure 16). 

 
Figure 16: Examples of glyphs to map various quantities on (taken from [40]) 

Other additional derived information such as shear, convergence/divergence and 
curvature can be also added onto a flow probe depicted in Figure 17. Another technique 
of this kind is using deformed cube, which displays a Frenet coordinate frame to show 
local relative stretch, shear, and rigid body rotation at a point. Glyphs allow the 
possibility of comprehensive displaying all the tensor information at a particular point. 
Their discrete nature, on the other hand, does not allow to show the information 
continuously.  Furthermore, improper seeding may cause glyphs overlapping and thus 
clutter. 
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Figure 17: A tensor probe 

Hyperstreamlines 
Tensor field lines and hyperstreamlines [10] are extensions of vector streamlines into 
tensor fields. For symmetric tensor fields, the three orthogonal eigenvector components 
are sorted into largest, median, and smallest eigenvalues. Tensor field lines and hyper-
streamlines are then generated by integrating along one of these eigenvector fields. 
General hyperstreamlines allow the two other eigenvectors and their corresponding 
eigenvalues to modulate an ellipse along the principal hyperstreamline. 

For non-symmetric tensor fields, where the three eigenvector components are 
not necessarily orthogonal to each other, the tensor field is first decomposed into a 
symmetric tensor field and an accompanying axial vector as shown in equation (50). 
Ribbons along the hyperstreamlines are then added to show the rotational effects of the 
axial vector. 

Visualization based upon the eigenvectors and eigenvalues ensures that all the 
directional and amplitude information will be included in the final result. On the other 
hand, only one of the eigenvector fields is used for integrating the hyperstreamline. 
Therefore, there are two other possible hyperstreamlines that can result from a single 
seed point, so the understanding of the tensor field must be done separately for each 
eigenvector component. The user must integrate and interpret these three different 
views mentally. 

Topological Approach 
This approach aims to provide a global structural representation of the tensor field by 
first identifying degenerate points (trisectors and wedge points), which are locations, 
where at least two of the tensor’s eigenvalues are equal to each other, and connecting 
them with topological skeletons (hyperstreamlines). The result of this approach is a 
display of the important features in the tensor field at the same time showing the 
continuity (and discontinuities) in the field. Topological tensor field visualization is a 
direct extension from topological vector field visualization. Morover, as [16] claim, the 
tensor field topology is often simpler than that of a vector field. While this class of 
methods draws the user’s attention to the special features in the field, the user still has to 
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mentally reconstruct the rest of the field around these degenerate and critical points and 
skeletons. 

Deformation Visualization 
Boring and Pang [3] suggest visualizing symmetric second order tensor fields by letting 
the tensors deform a geometric object, plane for instance. First, the so called resolute 
vector of the tensor, which determines the tensor’s impact on an interrogation object I 
with normal n, is computed at all points defining I using equation (48). Where the 
tensor is unknown, trilinear interpolation is used to approximate it. The resolute vector 
is then applied. The displacement of point I(x) of the interrogation object to a new 
position O(x) follows the following rule: 

 )]()([)()( xnxTxx ⋅+= sIO , (59) 

where x denotes position, s is a scale factor, T(x) tensor at x and n(x) is the user 
selected normal at the position of x. The product T(x) ⋅ n(x) is the resolute vector. The 
deformed object illustrating the impact of the tensor field’s influence is then visualized 
using appropriate visualization techniques. Should we need to separate the normal and 
shear component of the resolute vector r(x) = T(x) ⋅ n(x), equation (59) must be 
modified to 
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for the normal or shear components respectively. 
Instead of really deforming the object, it is also possible to keep its geometry 

untouched but replace its normals with the resolute vectors at the corresponding 
locations. Adjusting the light position and direction, the areas, where the resolute 
vectors are shear or normal, can be recognized quickly. 

This approach can, in fact, be classified as an attitude based on dimension 
contraction. By selecting the normal vector n, the problem is reduced to visualization of 
vector fields. As the field of the resultant vectors is derived from a tensor field and 
depends on the selected normal vector, common vector visualization techniques might 
fail to depict all the information, which is why the object deformation is used. 

4.3 Higher Order Tensors 
For higher order tensor field visualization, contracting the dimension is crucial. A way 
to do so is choosing certain parameters to eliminate the independent variables, for the 
depiction of which there would be no more visualization means left. It is similar as in 
the Deformation Visualization section above, where the user had to choose a specific 
surface normal to transform the second order (deformation) tensor field visualization 
problem to a problem of depicting a field of resolute vectors. An example of higher 
order tensor visualization is given in [23], where a fourth order stiffness tensor studying 
symmetries of the propagation of waves in different anisotropic crystal class symmetries 
is described: 

 0][ 2 =⋅⋅⋅−⋅⋅ kkljiijkl pv??C δρ .  (61) 
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In this equation, vector pk is the vibration direction and the two vectors υ1 and υ2 denote 
the propagation direction of the wave and they are contracted with the fourth order 
stiffness tensor Cijkl, thus reducing the problem by two orders. For illustration, we can 
write: 

 0)( =⋅⋅− kklkl ndß β , (62) 

where 

 2v      and          , ρβ === kkjiijklkl pn??Cß . (63) 

Having performed the contraction, the problem reduces to a second order tensor 
eigenvalue problem. Note, however, that β kl is not just a simple second order tensor but 
it derives its properties from a higher order tensor and hence enjoys a much richer 
surface topology then a simple stress quadric. 

For visualization of βkl, tensor glyph is used (Figure 18). In accordance with the 
statement in the previous paragraph, the depicted glyph is not just a simple quadric like, 
for instance, the ellipsoids mentioned in section Tensor Glyphs in subchapter 4.2. It 
must reflect the properties of the fourth order tensor Cijkl. Indeed, the glyph in Figure 18 
iconically characterizes all of the components of Cijkl via its shape (eigenvalues) and 
color (eigenvectors). 

As Kriz et al. claim in [23], sixth order tensors associated with the strain cubed 
terms of the strain energy density function can also be visualized by modifying equation 
(61) to include the effect of load induced anisotropy. This problem is also an eigenvalue 
problem but now with sixth order tensors. With an applied load, the resulting glyph in 
Figure 18 should deviate from a symmetric shape. This shape change not only 
represents a change in elastic anisotropy but should also show the load direction to the 
viewer. 

 
Figure 18: A glyph for visualizing higher order tensors 
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5 MULTI-SCALAR DATA 

The last type of multi dimensional data, the visualization of which will be discussed in 
this work is multi-scalar information. In other words, the following paragraphs briefly 
describe, how to visualize datasets consisting of several scalar fields put together. An 
example of such data is a field containing pressure, density and temperature at each 
sample point. In the case of multi-scalar data, no explicit relation among the values is 
usually known. Therefore, the visualization methods concentrate particularly on 
producing views, which would reveal the existence and the character of such relations. 

5.1 Parallel Coordinates 
The parallel coordinates technique, presented in [18], differs from all the other 
approaches in its nature, because it uses parallel coordinates for depiction instead of 
orthogonal ones. Although we will not describe it in detail, nor its further extensions, 
yet it has to be mentioned here. 

The underlying idea is mapping an nD space on a 2D surface, where each 
dimension corresponds to one vertical axis, as can be seen in Figure 19. 

 
Figure 19: Depiction using parallel coordinates 

To understand the outcomes of this approach, the user has to cognitively investigate the 
results. Yet, this technique is very helpful in searching for relations in the data. If we 
look at Figure 20 and imagine that the left co-ordinate represents temperature while the 
right one pressure, then the left image depicts three data samples, for which it holds that 
the higher the temperature, the higher is the pressure. The right image would, on the 
hand, mean that in case of the five samples depicted, the temperature and pressure are 
inversely proportional. Moreover, the color coding may imply, whether the values fall 
into certain user defined interval or not. 
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Figure 20: Using the parallel coordinates 

This approach is not intended to observe the data as a unit but rather for revealing 
relations hidden within. The main disadvantage consists in the fact that with increasing 
amount of visualized information, occlusion may appear and the image quality 
decreases. 

5.2 Color Coded Isosurfaces 
Another interesting approach to visualizing multiple scalar fields at the same time and 
searching for relations among the quantities was proposed in [23]. A single scalar field 
is usually depicted by extracting isosurfaces or volume rendering methods. This can be 
done for each value independently, but the results will not show any information about 
potential correlation between them. This approach tries to bypass this limitation. 

The method can be explained using, for example, seven parameters (P1 through 
P7), which can be then cognitively compared in the same visual space where four of the 
seven properties P1, P2, P3 and P4 are chosen as independent variables (not necessarily 
coordinate space and time). Hence this method provides a common basis from which to 
test for the existence of relationships between the remaining properties P5, P6, and P7. 

Figure 21 illustrates the procedure. The first three parameters P1, P2 and P3 are 
independent (orthogonal) variables that are visually defined as perpendicular axes in 
this figure. The fourth property is reserved as another independent variable, e.g. P4 = 
time, that is uniform everywhere, but cannot be drawn as the orthogonal fourth axis. 
The task remains to find relationships, if any, of the remaining properties P5, P6, and P7 
that must all be functions of P1, P2, P3, and P4. For the simplest case this method can be 
reduced to a single function, where P4 is assumed to be constant everywhere. On the 
other hand, this method can also be generalized to more than three functions i.e. for P8, 
P9, ......., Pn, where n is “the viewer’s cognitive limit”. 
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Figure 21: Illustration of the relations between the functions 

The method for searching the relation between P5,  P6 and P7, starts at some 
point, where these quantities reach unique values Figure 21. In the vicinity of this point, 
the values will differ with certain gradient. Although all possible values, normally 
visualized through direct volume rendering, can not be seen in the same region for all 
three functions, a quantitative isosurface can be seen for each function as a separate 
shaded surface. The change of the surfaces’ shapes following a slow change of the 
isovalue would then give a gradient notion as well. 

The mutual relation between the properties is then reached through drawing two 
(e.g. P5 and P6) of the three properties as two unique intersecting isosurfaces as shown 
in Figure 22. If the surfaces do not intersect, there can be no relationship between the 
functions. If they do, further investigation has to be done to find the nature of the 
relation. This investigation, however, is rather experimental. The user has to guess the 
mathematical relation from the visual pattern the functions show. The authors describe a 
case for detecting linear proportionality and inverse proportionality of P5, P6 and P7, i.e. 
searching for the relation corresponding to the expression .765 constPPP =⋅⋅  

 
Figure 22: No relation between P5 and P6 

Such relation is identified, when P7, mapped as color on the two isosurfaces (i.e. 
isosurfaces of P5 and P6), has constant shade around the curve, where P5 and P6 intersect 
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Figure 23. Having found such pattern, the user must still find out, which of the 
following three situations turned up: 

 ..         , .         , . 765765765 PPconstPPconstPPconstPPP ⋅⋅=⋅=⋅=⋅⋅  (64) 

This is done by varying individual isovalues and observing the result. 
The authors claim that with this method it is possible to successfully find many 

more complex functions. In all cases, just as in finding solutions to differential 
equations, the user must guess at possible solutions, as already mentioned. Of course 
only significant functional components will be detected and extracted much like the 
dominant terms in a series solution. Mentally the observer first sees a pattern related to 
the function and can then deduce the function mathematically. Hence the pattern of a 
function occurs first and becomes the cognitive mechanism that allows the investigator 
to confirm the existence of suspected functional relationships. 

 
Figure 23: In this case, the three function are related 

Although far from accurate and reliable, this method may be an interesting tool 
for observing dependencies in multi-scalar data. The advantage is that for seeing the 
relation, functions P5, P6 and P7 do not have to be reconstructed. Also, the user gets a 
notion of the behavior of the whole system. 
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6 ISOSURFACES, NORMALS AND GRADIENTS 

Although isosurface extraction was originally developed for scalar volumetric data 
visualization, as can be seen from the chapters above, this well-known technique can be 
successfully applied on multidimensional data as well, especially in combination with 
dimension contraction. We have shortly studied this field and we have found the 
motivation here to experiment with the issues of accuracy and temporal demands of 
computing normal vectors in the vertices of triangle meshes representing the 
isosurfaces. This has also brought us to examining methods for gradient estimation and 
proposing an improvement. In the following three subchapters, this work will be 
outlined. 

6.1 Isosurface Extraction 
As mentioned above, we have had some experience with isosurface extraction. In this 
chapter, however, we will not present a study about known methods and techniques. 
The focus of our effort was vertex normal computation and gradient estimation, so we 
will only outline a short classification of the isosurface extraction methods, explain our 
motivation for computing normals and gradients  and we will move to these topics. 

Fundamental Algorithms 
Marching cubes and marching tetrahedra stand for the fundamental isosurface 
extraction algorithms. They were designed for regular grids and, although they have 
experienced a lot of modifications over time, the original versions will be briefly 
outlined here. 

Marching Cubes (MC) 
Probably the best known technique for isosurface extraction is marching cubes. It was 
developed for volumetric data organized to a regular Cartesian grid. The algorithm 
marched through all the cubic cells in the grid one after another, compared the values at 
the cell’s vertices with a user selected isovalue and recognized, whether the isosurface 
intersects the cell and how. For this purpose, a table of 256 possible cases of interaction 
between an isosurface and a grid cell was introduced. Exploiting the symmetry of the 
cells, this table was later reduced to 16 items. The drawback of this method were holes, 
which sometimes appeared on the surface due to ambiguous meaning of some of the 
interaction cases. This method has experienced many improvements. 

Marching Tetrahedra (MT) 
One of the attempts to fix the problems with holes was subdividing the cubic cells into 
smaller, tetrahedral ones utilizing a pattern, which ensures that two adjacent tetrahedra 
will share either nothing, a vertex, a whole edge or a whole facet. The situation with two 
tetrahedra sharing only a part of an edge or facet had to be avoided. Having 
decomposed the grid cell, marching tetrahedra was used instead of marching cubes. The 
advantage is that there are only three possibilities, how an isosurface can intersect a 
tetrahedral cell. The disadvantage, on the other hand, was that too many triangles were 
produced. 
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Optimized Isosurface Extraction 
One of the reasons, why the MC and MT algorithms became so famous, might have 
been their simplicity. On the other hand, with increasing sizes of the volumetric 
datasets, some optimized methods had to appear. The broadness of this topic does not 
allow to provide a survey of these methods here. We will therefore only outline the 
basic concepts. 

These optimized methods are mostly based upon the fact that just a fraction of 
the grid cells is usually intersected by the isosurface. Ways, how to identify these cells 
without examining the whole grid, are different for each of these methods. This is 
difficult to do in the common geometric space. Yet, some approaches appeared, which 
fist located one intersected cell, extracted isosurface patch from it and then examined 
the neighboring cells, thus moving along the isosurface. Discovering all the parts of the 
isosurface was, however, not assured by this approach. 

An alternative attitude to the common geometric space is the, so called, value 
space. Techniques utilizing this attitude start with a preprocessing step, during which 
they determine for each cell the minimum and maximum values associated to the cell’s 
vertices. From this point, cells are treated according to the range of values, they cover, 
rather then according to their geometric coordinates, from which the term value space 
arises. A cell, which is intersected by an isosurface must have its maximum value 
higher, than the threshold while the minimum value must be lower. Thus, if the cells are 
sorted according to these extreme values and stored in some convenient data structure, 
they can be identified quickly without the need to investigate the unintersected cells. 

The examples of the value space techniques, which exploit various data 
structures to optimize the search for the intersected cells are Sweeping Simplices [49], 
Interval Tree [9]  and Span Space [29]. 

Isosurface Shading 
Our work in this field was focused in a little different direction than what the above 
paragraphs describe. Obviously, once the isosurface is extracted, it also has to be 
rendered. To be able to employ Gouraud rendering technique, normal vectors in the 
vertices must be known. We have thus focused on how to get these normal vertices as 
precise as possible, so that smooth look of the rendered object can be reached (see 
section 6.2). 

The other goal arises from the fact that [42] the gradient vector 
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values of a scalar field, is perpendicular to the field’s isosurface passing through 
],,[ 000 zyxQ . The gradients might therefore be pre-computed in the preprocessing step 

and then, during the extraction, just interpolated to form the vertex normals of the 
extracted surface. This requires the gradient vectors to be estimated exactly enough 
including their length and not only the direction (see section 6.3). 

6.2 Vertex Normal Computation 
In the following paragraphs, three methods for vertex normal computation will be 
described, tested and compared. In [iii], we studied two more approaches. Unlike the 
techniques described bellow, they were not restricted to triangle meshes. On the other 
hand, however, they could only be applied on surfaces, which can be defined as 
z = f (x, y) and it is not the case here. Although other techniques for surface normal 
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computation exist as well, some of which are briefly described in the appendix of [iii], 
we will restrict to methods focusing precisely on estimating normal vectors in the 
vertices of a general triangle mesh. 

6.2.1 Theoretical Background 
All the three methods for triangle mesh vertex normal computation discussed bellow 
share the basic idea. They all compute the vertex normals by combining normal vectors 
of the triangles adjacent to the vertex being computed. While the basic idea is common 
for all the three methods, the difference consists in how the triangle normals are 
weighted. 

There is one more aspect to be pointed out. The purpose of using these methods 
is to make the surface shaded smoothly and to avoid those edges between adjacent 
polygons that do not occur  on the original object and that are caused by the surface 
approximation by the polygonal mesh. However, the rendered body may also contain 
some real edges. Smoothing out these edges would rather decrease than increase the 
realism of the output image. The real edges therefore should be rendered. If these edges 
are not marked within the input data, the rendering algorithm should attempt to 
recognize them. The method that can help to overcome this drawback is based on 
defining certain “decision angle”. If the angle between two adjacent polygons is less 
sharp than the decision angle, the edge is considered to be an artifact and is smoothed. 
Otherwise, the edge probably represents a real edge on the rendered object and should 
be displayed sharply. 

No Weighting 
This method has been described in [15] by Gouraud, who suggests computing normals 
in the vertices of a triangle mesh as the average of the normal vectors of the facets that 
share the vertex being computed. In his approach, all the facets, which contribute to the 
vertex normal computation, are weighted equally. Mathematically, 
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where N is the normal in the vertex and Ni are the normals of the n triangles that share 
it. 

Weighting by Angle 
Thurmer and Wuthrich [55] aim to improve the accuracy of the vertex normal 
computation method suggested by Gouraud. They claim that the results of the 
Gouraud’s method strongly depend on the topology of the mesh around the vertex being 
processed. In other words, if we start with certain triangle mesh, choose one of its 
vertices and compute the normal vector there, then if we restructure the surrounding of 
this vertex and then we re-compute the vertex normal, the result should ideally be the 
same. By restructuring the vertex surrounding we mean using a different triangulation 
upon the same set of vertices. This can be reached for example by adding new vertices 
on the edges of some of the existing triangles thus dividing these triangles into two or 
more smaller ones while keeping the overall shape of the surface untouched (see Figure 
24). 
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N
N

 
Figure 24: Illustration of the normal’s dependency on the meshing 

The authors of this article try to reach the independency on the mesh structure through 
weighting the contribution of each facet‘s normal by the size of the angle enclosed by 
the facet‘s edges incident to the computed vertex. This can be expressed as 
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where iα  is the angle between the two edges of the facet that lead to the vertex. 

Weighting by Area 
In this method, the normal N is computed as a normalized weighted sum of the unit 
length normal vectors Ni of the facets that belong to the cycle around the vertex being 
processed similarly as in Gouraud’s [15] and Thurmer’s [55] approach. This time, each 
facet’s area iS  is considered as the weighting function for the corresponding normal. 
Thus, the larger facets have higher influence than the smaller ones. Symbolically 
expressed: 

 

∑

∑

=

==
n

i
ii

n

i
ii

NS

NS
N

1

1 , (67) 

The idea of area weighting comes from [64] (p. 149) and it serves for the computation 
of a normal vector of a surface interleaved among points, which generally do not lie in 
one plane. The purpose of including this method was to find out, how accurate it would 
be to consider this normal to be a normal in the vertex, whose direct neighbors are 
interleaved by the surface. 

6.2.2 Implementation 
Besides other, all the above-described methods for vertex normal computation were 
implemented within one application developed under the Borland Delphi environment 
and the tests were run on a system with the Intel Pentium III @ 448MHz CPU and 
1024MB RAM. 
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Testing Data 
The testing data for the vertex normal computation were produced via the MVE2 system 
using the DTLib module. For each of the three kinds of 2D triangle meshes available in 
this module (i.e. regular meshes, irregular meshes with unifo rmly distributed vertices 
and irregular meshes with vertices distributed randomly), input files were generated for 
1,000 / 10,000 / 100,000 / 250,000 / 500,000 / 750,000 and 1.000,000 vertices. 

For the computation of the z coordinate, three different functions were used. 
These being: 

•  22
1 2),( yxyxf −−=  

• )2sin(25.0),( 2
2 yxyxf ⋅⋅⋅+= π  

• )cos(25.0)sin(25.01),(3 yxyxf ⋅⋅+⋅⋅+= ππ  

The examined vertex normal estimating methods can be applied to various triangle 
meshes, which have no common characteristic. Thus there is no principal criterion to be 
used for designing the testing functions for the z coordinate generation. Since 1,0, ∈yx  
for all the vertices of the generated 2D triangle mesh, the only limitation is that the 
function f must be defined for any point p from this region (i.e. 

)(:},1,0,:],[{ 2 ppp fzRzyxRyx =∈∃∈∈∈∀ ). All the three functions listed above fit 
this condition. When choosing the functions, the aim was to test the methods on 
surfaces that are curved just slightly as f1, as well as surfaces, where the curvature 
changes quite a lot f3. Function f2 is something in between. 

For the testing purposes, the boundary vertices of the mesh were not included in 
the statistics. 

6.2.3 Results 

Notation 
In the following text, the three methods described in 6.2.1, which compute vertex 
normals from adjacent triangles’ normal vectors, will be marked as NfT(w=1), 
NfT(w=angle) and NfT(w=area) respectively. 

Accuracy Statistics – Varying the z-Function (Surface Shape) 
One of the important aspects, which influence the accuracy of the estimation of the 
triangle mesh vertex normal, is the shape of the examined surface. As one might 
intuitively expect, it is easier to estimate the normal vector in a vertex of a plane or 
some slightly wavy surface than to estimate such normal for strongly curved meshes. To 
confirm or disconfirm this belief experimentally, the examined methods were tested on 
surfaces constructed from planar 2D meshes by defining the z coordinate via the 
functions listed above. Each of the three graphs displayed below describes the average 
errors produced by individual methods when applied on the three differently curved 
surfaces. As expected, most precise results were obtained on the surfaces produced by 
f1, where the curvature was minimal. For f3, on the other hand, the average measured 
errors were approximately four times as big. The function f2 appeared to be half way 
between f1 and f3. 

                                                 
2 MVE (Modular Visualiztion Environment) was developed by the Centre of Computer Graphics and 
Data Visualization at the Department of Computer Science, University of West Bohemia in Pilsen. 
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Graph 1: The estimation errors for f1 
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Graph 2: The estimation errors for f2 
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Graph 3: The estimation errors for f3 
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Another aspect that plays an important role is the density of the mesh. When the number 
of vertices increases, more information is contained in the mesh, smaller regions are 
used for the estimation and more precise results can be obtained. This fact is also 
illustrated by the three graphs above. 

However, the most important fact these measurements reveal is that, regardless 
of the number of vertices or the function used, the best results were obtained using the 
NfT(w=1) and NfT(w=angle) methods, which scored rather equally. We point out the 
fact that weighting by area performs significantly worse than no weighting at all, which 
implies that using the facet area as a weighting function for computing vertex normals 
decreases rather than increases the resulting precision. 

Accuracy Statistics – Varying Vertex Distribution (Surface Internal Structure) 
In the previous section, the influence of the overall shape and the density of the mesh on 
the accuracy of the vertex normal computation was examined. Here, concern will be put 
on the internal structure of the mesh and its relation to the accuracy of the vertex 
normals computed by individual tested methods. 

For these tests, meshes constructed upon non-uniformly, uniformly or regularly 
distributed vertices were created. The following two graphs show that using meshes 
with randomly distributed vertices, whether uniformly or not, does not make a big 
difference from the point of view of which method performs better. 
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Graph 4: Estimation from meshes with non-uniform vertex distribution. 
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Accuracy (f3) - Uniform Distribution
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Graph 5: Estimation from meshes with uniform vertex distribution. 

Note, however, that the precision was better for all the methods using the non-uniform 
distribution, regardless of the number of vertices the mesh consisted of. 

Furthermore, if we start with a 2D mesh containing regularly distributed vertices 
(see Figure 25), then we can see that weighting by angle brings significantly better 
results than the other two methods. For correctness, it is necessary to point out that after 
the transformation to 3D by applying one of the three functions listed in section 6.2.2, 
the vertex distribution will not be regular any more. Yet, the character of the mesh will 
be preserved, which is sufficient for our purpose. 

Graph 6 describes the average error of vertex normal vector estimation on a 
mesh with such regular vertex distribution. For this purpose, function f3 was used, but as 
other measurements have shown, using the other functions leads to similar results. Thus 
the graph tells us, that for this type of meshes, the method of weighting triangle normals 
by angle brings a significant improvement, as compared to the standard Gouraud 
technique. NfT(w=1) worked with roughly the same quality as NfT(w=area). 
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Graph 6: Estimation from meshes with regular vertex distribution. 

The reason resides in the structure of the original 2D mesh. Figure 25 shows a real 
example of such mesh. Although the vertex distribution is regular, the triangulation of 
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the vertices is not. On the contrary, there are only a few vertices, the nearest 
surrounding of which is triangulated symmetrically. If we recall the principle of 
NfT(w=angle) as described in the Theoretical Background, it is obvious that the 
computation of vertex normal vectors from facet normals without using any weighting 
function, which is the case of NfT(w=1), does not take the constellation of the 
surrounding polygons into account. Although the transformation into 3D deforms the 
mesh partially, it is not surprising that NfT(w=1) produces similar results as 
NfT(w=area) for such mesh, since all the triangles cover roughly the same area. 

  
Figure 25: An example of a 2D mesh with a regular vertex distribution. 

 

Speed Statistics 
The time requirements of individual methods are illustrated by Graph 7. Obviously, all 
the three algorithms performed roughly the same concerning temporal demands, the 
subtle differences were caused by the need to compute the additional information for 
weighting. 
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Graph 7: The time requirements of the tested methods. 
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6.2.4 Conclusion & Recommendations 
In the preceding paragraphs, three methods for computing triangle mesh vertex normal 
vectors from the normals of the adjacent polygons have been described, implemented 
and their results were compared with focus on accuracy. Considering all the information 
gathered about the behavior of the tested methods, using angle weighted normals, 
proposed by Thurmer and Wuthrich, seems to be the best solution. Although in some 
cases, it performs the same as Gouraud, in other (depending partially on the structure of 
the input mesh) it works better, yet without any significant temporal penalty. 

6.3 Gradient Estimation 
Our motivation to deal with gradient estimation has already been described in section 
Isosurface Shading in subchapter 6.1. Here, we will present an extension of the 4D 
linear regression method for the scalar irregularly distributed volumetric data gradient 
estimation. The aim is to reach higher accuracy and the main tool is using quadratic 
regression function. The results will be compared to the original method as well as to 
the approach based on the generalization of the finite differences method presented in 
[34]. The performance of all the three methods will be examined from different points 
of view. 

6.3.1 Theoretical Background 
In the following paragraphs, the principles of 4D linear regression method for gradient 
estimation will be described and the approach utilizing quadratic approximation 
function for the linear regression will be proposed. 

4D Linear Regression using Linear Approximation Function 
This method for gradient estimation from regular as well as irregular volumetric data 
proposed in [37] tries to find a 3D regression hyper plane 

DzCyBxAzyxf +⋅+⋅+⋅≈),,(  with minimal error. The error function is represented as 
the summed squares of the difference between the original values in the interpolated 
vertices and the values that the solution of the hyper plane equation would give in these 
points. Mathematically: 
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where xk,  yk and zk are the coordinates of the vertices involved in the approximation 
(the computed vertex being considered as the origin of the coordinate system) and fk are 
the values in these points. A, B and C make up the vertex gradient that we search for 
and D is the filtered value in the computed vertex. The wk symbol represents the 
weighting function, which should be spherically symmetric and monotonically 
decreasing as the distance from the origin (i.e. from the computed vertex) grows. 

To minimize the error function E, its partial derivatives along A, B, C and D 
must be equal to zero: 
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This system of simultaneous linear equations can be rewritten in a matrix notation the 
following way: 
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Solving the system for A, B, C and D gives the hyper plane normal vector, which is 
considered to be the estimation of the gradient analytically defined as ),,(
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4D Linear Regression using Quadratic Approximation Function 
In order to reach higher accuracy of estimated gradient vectors, it is necessary to apply a 
nonlinear approximation function. In our approach we use a general quadratic function 
of the following form: 
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instead of the original linear function DzCyBxAzyxf +⋅+⋅+⋅≈),,( . For the further 
description, the non-matrix notation will be more illustrative: 
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Now we need to express the error function: 
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and find the partial derivatives according to all the ten unknown parameters A11 through 
A44: 
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These partial derivatives must be equal to zero, thus we get a 10 x 10 matrix describing 
the set of simultaneous equations, which are linear in respect to the A11 through A44 
parameters. 
The gradient of the function can be described by the following formula: 

 )2;2;2(),,(),,( 342313332423122214131211 AyAxAzAAzAxAyAAzAyAxA
z
g

y
g

x
g

zyxg +++⋅+++⋅+++⋅=
∂
∂

∂
∂

∂
∂

=∇ .(71) 

As the active vertex is always shifted to the origin of the coordinate system, the x, y and 
z coordinates are zero. Thus computed the A11 through A44 parameters, the gradient 
vector can be obtained from a simple formula: 

 ).,,()0,0,0( 342414 AAAg =∇  (72) 

6.3.2 Implementation & Testing 
Both the above-described approaches were implemented within one application. 
Moreover, as announced in the Introduction section, the 3D version of the gradient 
estimation method based on the generalization of the finite differences method, 
presented in [34], was implemented for the purpose of comparison. All the 
implementations were done in the Borland Delphi environment and the tests were run 
on a system with the Intel Pentium III @ 448MHz CPU and 1024MB RAM. 

Testing Data 
The application requires the volumetric data to be structured to constitute a tetrahedra 
mesh whether regular or not. The tetrahedra structure only serves to determine each 
vertex’s surrounding, which should be involved in the computation, and is not necessary 
for the approach itself. 

Our tests have been performed on meshes constructed upon the sets of 5000, 
10000, 15000 and 20000 vertices using Delauney approach, maximal number of 
tetrahedra and minimal number of tetrahedra. To show, how the mesh structure 
influences the results, estimations from meshes constructed upon clusters of vertices 
have also been tested. 

To be able to make comparisons and evaluations we need the exact gradient 
vectors. Thus it is necessary to use some known function to generate the scalar field 
values. However, the estimation methods are meant to search for gradients of general 
data with no common characteristic known in advance (e.g. empirically measured data). 
Therefore, there was no definite criterion for choosing the testing function. The strategy 
was chosen to test the methods on some simple function (i.e. f1 – see below), then on 
some simple function (i.e. f2) with higher order then the order of the approximation 
functions used in the estimation method and eventually on a relatively complex function 
(i.e. f3), which would be rather distant to those approximation functions thus at least 
partially substituting the empirically obtained data: 

• 222
1 ),,( zyxzyxf ++= , 

• 333
2 ),,( zyxzyxf ++= , 

• 524
3 16583),,( zexyeyxzyxf yz ⋅+⋅⋅+⋅+⋅⋅⋅= . 

 These functions will be referenced as f1,  f2 and f3. 
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Error Measurement 
For the testing purposes, the boundary vertices of the mesh were filtered out from the 
statistics. The main measure of accuracy was the average error angle computed the 
following way. For each vertex, the angle in degrees between the exact gradient and the 
estimated one was found. Their arithmetic average then determined the average error: 

 ∑
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The secondary measure was the error of the vector length. In this case, the error 
computation consisted of the following steps. First, the difference in the length of both 
the vectors was enumerated for each mesh vertex. The ratio of this distance and the 
length of the exact gradient vector in that vertex was then expressed. Finally, the 
arithmetic average of such ratios was computed: 
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where E is the average error, ui and vi are the estimated and the exact gradient vectors 
respectively and N is the number of evaluated vertices. 

Instead of (73) and (74), it would also be possible to measure the error as the 
length of the error vector (75), which would be the distance between the end points of 
the exact and the computed vector. Symbolically written: 
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where E is again the average error, ui and vi are the estimated and the exact gradient 
vectors respectively and N is the number of evaluated vertices. However, some 
applications are only interested in the error angle and do not require the gradient length 
to be correct. For this reason, we have used the first evaluation procedure applying 
equations (73) and (74). 

The following picture should make the geometrical meaning of individual error 
expressions clear: 

i

iu

iv ii vu −

ii vu −

 
Figure 26: Error measurements illustration 

6.3.3 Results 
In the following paragraphs, where the implemented three approaches will be examined 
from several points of view and their results compared, LR-Lin denotes the method that 
uses linear regression based on linear approximation function, LR-Nonlin stands for 
linear regression based on quadratic approximation function and FDM represents the 
method based on generalization of the finite difference method described in [34]. 
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Accuracy Statistics – Varying Sampling Functions  
A good basic notion of how the methods perform can be acquired just by testing them 
on a mesh of only 1000 vertices using the Delaunay criteria. Table 4 shows that, from 
the accuracy point of view, LR-Nonlin performs best (marked by darker shading). The 
exception was using it for estimating linear function (plane) gradients, where the FDM 
reached the best results. The reason is that LR-Nonlin attempts to approximate sample 
values in the vertices by a quadratic function. Therefore, when applied on a simple 
plane, it performs worse than the linearly oriented methods. In all the other cases, 
however, LR-Nonlin reached the most accurate results while FDM the worst, LR-Lin 
being in the middle. The linear sample function (plane) will not be included in further 
testing as the results balance on the edge of computational numerical precision and are 
not of high importance, for in practice, linear sampling function can hardly be expected. 
 

Error Angle in Degrees LR-Lin  LR-Nonlin  FDM 

x (plane) 1.31E-15  1.29E-12  9.30E-16 
x2 + y2 + z2 (sphere) 2.55  0.45  3.89 
x3 + y3 + z3 4.66  0.92  6.32 
3 x4 y2 ez + 8 y + 5 x ey + 16 z5 3.36  1.54  3.86 

Table 4: Tests on Delaunay tetrahedra mesh with 1000 vertices. 

Accuracy Statistics – Varying Data Dens ity 
The following three graphs (one graph for each of the three sample functions) show 
how the estimation results improve when supplying more information by using a denser 
mesh. Although the graphs look quite similar, it is necessary to note that the scale  on the 
y axis differs to keep the graphs legible. 
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Graph 8: Estimation accuracy for f1, f2 and f3 

Each value in the graphs has been obtained as an average of three measurements, each 
using a different tetrahedra mesh (i.e. Delaunay mesh and meshes with maximal and 
minimal number of tetrahedra). It is obvious from the graphs above that the denser 
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sampling is available the more accurate gradient estimation can be expected. As well, 
the graphs confirm that (except for the linear sample functions) the LR-Nonlin method 
returns best results. On the other hand, comparing these three graphs to each other 
reveals an interesting fact that more complex sampling function does not imply lower 
estimation accuracy. Regardless of the estimation method used, the results of gradient 
computation are more precise for f3 than for f2. In fact, in case of FDM, the results for f3 
are even slightly better than those for f1. These, maybe a little surprising, results are 
promising for practice, where the samples will probably not approximate simple neat 
functions. 

Accuracy Statistics – Varying Vertex Distribution 
In this section the influence of the structure of the input mesh on the accuracy of the 
estimation will be demonstrated. For this purpose, a pair of Delaunay tetrahedra meshes 
was generated upon 5000 and 10000 vertices distributed in clusters Graph 9 shows the 
average estimation error for all three methods on both the uniform as well as the 
clustered vertices, meshed by the Delaunay method. Although the graph was meant 
primarily to illustrate the influence of the mesh structure on the results, we can also 
notice that the LR-Nonlin method performed best again with significant advance to LR-
Lin, let alone FDM. Since the graphs for different sample functions f1, f2 and f3 
resembled each other, only one of them will be presented here. For easier orientation, 
the marks at the ends of the lines are rectangular for the estimation from the mesh with 
uniformly distributed vertices and triangular for the mesh on clusters.  
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Graph 9: The average error of the estimation on meshes with clustered and uniform vertex 

distribution. 

At the first glance it might seem rather surprising, but the graph shows that the gradient 
estimation applied on the tetrahedra mesh generated upon the clusters of vertices gives 
better results than the mesh with the same number of vertices distributed uniformly. 
Closer analysis shows that such results in fact correspond to what was described in the 
previous section. When the vertices are grouped in clusters, some of them are positioned 
at locations, where the clusters are connected to each other. In these locations, big errors 
can be expected as the surrounding of these vertices consists of small tetrahedra in the 
direction of the cluster, on the boundaries of which the vertex resides, and large 
tetrahedra in the other direction, where the cluster is connected to the other clusters. 
This unbalanced distribution of information around these vertices causes the failure of 
all the gradient estimation methods. The estimated gradient vectors are strongly 
inaccurate in such locations. Yet, this situation applies to only a small percent of 
vertices. The majority is located inside the clusters, where their density is higher than in 
case of uniform distribution, which leads to better estimations. The bigger errors are 
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compensated and the overall average error is lower for the clustered data than for the 
uniformly distributed vertices, where some error peaks appear as well, especially in the 
locations close to the surface. 

The distribution of the error within the data is illustrated by Graph 10. To keep 
the graphs understandable, files with only 1000 vertices have been used. The vertices, 
where the error has its peaks, are easily recognizable and the situation in some of these 
“problematic” vertices has been analyzed visually. This analysis was the ground to the 
explanations described above. 
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Error Distribution - Delaunay Mesh 
with Clustered Vertices
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Graph 10: The distribution of the error for uniformly distributed and clustered vertices. 

Accuracy Statistics – Vector Length 
So far, we have only been concerned in measuring the error angle between the exact and 
the estimated gradient vectors. It is however necessary to realize that, unlike for 
example surface normal vector, gradient is determined by its length as well. Therefore 
the methods were also tested from this point of view and the results have been 
summarized in Graph 11. 
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Graph 11: The average error of the estimated gradients’ length in percents of the exact vector 

length. 

Each value in this graph was obtained as the arithmetic average of nine measurements 
combining the usage of three sampling functions on the three types of meshes described 
above. We can see that the LR-nonlin method gives the most precise results being far 
ahead of the other two. The LR-lin estimations were approximately four times less 
accurate and those of FDM more than six times. Using different mesh types did not lead 
to significant differences here. Concerning the sampling function, results for f1 were a 
little better than results for f2, f3. 
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Speed Statistics 
Although we have adopted the accuracy of individual methods as the main criterion 
according to which the methods should be judged, the time requirements of the 
computations are usually much too important to bee ignored. To be consistent, the 
temporal needs of the three approaches were measured on the same data files as in the 
section Accuracy Statistics – Varying Data Density and the results are summarized in 
Graph 12. Each value in the graph has thus been obtained as an average of three 
measurements on different tetrahedra meshes. When compared to each other, the results 
of these three measurements differed just slightly i.e. at most around 10 percent in one 
direction or the other. 
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Graph 12: Comparison of the methods according to their time requirements 

Apparently, the more accurate the method is, the more time it needs to do the 
computation. While producing the best results, the linear regression method utilizing 
quadratic regression function required about four times more time than the method 
using linear approximation function and up to ten times more than the finite difference 
method. Yet, all three methods have linear time complexity O(N), where N is the 
number of vertices. 

Conclusion 
In this chapter, the behavior of the gradient estimation methods has been examined in 
terms of accuracy while varying several aspects as the mesh internal structure, density 
and the sample function defining the scalar field’s values. From this point of view, the 
linear regression method with quadratic approximation function turned out to be the 
best, providing significantly better results than the other two. On the other hand, it was 
the most time demanding one. Although the time complexity is linear for all these 
methods, the growth of the time requirements is steeper for the method using quadratic 
function. Thus, an imaginary ratio accuracy/speed is roughly the same for all the 
methods. 
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7 CONCLUSION 

In this work a study of the multidimensional data visualization approaches has been 
presented. Although the broadness of the topic and the variety of existing techniques did 
not allow to make this survey exhaustive, the main attitudes have been described and 
the most important aspects have been discussed in detail. After overviewing the kinds of 
multidimensional data in chapter 2, focus has been put especially on the approaches and 
techniques for the analysis and depiction of vector fields, tensor fields and also fields of 
multi-scalar values, as these seem to be the most important types for representing 
scientific as well as industrial data. In addition, our work related to this topic was 
outlined in the last chapter. 

Concerning our current work and future goals, at present we are about to finish 
the accuracy and time requirements tests of estimating isosurface vertex normals using 
the standard techniques known for triangle meshes as compared to estimating these 
normals by interpolating scalar field’s gradients, computed prior to the isosurface 
extraction step. We have also been preparing a publication on this subject, which is our 
primary short term aim. 

Although our work has not been focused primarily on multidimensional data 
visualization so far, it has been related and we would like to shift the scope of our future 
efforts to this area, with special concern on vector, and possibly tensor, fields. We see 
our long term goal in searching for improvements of the visualization methods in 
respect to the practical needs of the researches. Rather than trying to speed up existing 
approaches, we will focus on the qualitative aspects. That is, how to visualize more 
information yet avoiding visual clutter. A concrete example of the problems, we would 
like to deal with, is visualization of the transition areas, where a flow of steam 
transforms to a stream of moving liquid droplets. Another problem we find interesting is 
comparative visualization. 
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