

University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitni 8
30614 Pilsen
Czech Republic

Multidimensional Data Visualization
State of the Art and Concept of Doctoral Thesis

Tomáš Jirka

Technical Report No. DCSE/TR-2003-03
March, 2003

Distribution: public

Technical Report No. DCSE/TR-2003-03
March, 2003

Multidimensional Data Visualization

Tomáš Jirka

Abstract
Multidimensional volumetric data are often used for storing information in various

fields of science such as physics, astronomy etc. because they best match the character of the
underlying phenomena. The information contained in such data is, however, usually very dense
and thus difficult to understand without subsidiary tools. Proper visualization is definitely one
of the most effective and crucial ones.

Multidimensional data can be sorted according to various criteria. First, it is the domain,
over which the data are defined, and which is usually two or three dimensional. Second, it is the
dimension of the data values themselves, which is theoretically unlimited and depends on the
application. Two or three dimensional vector fields can be encountered most frequently, but
fields of quadratic tensors are also quite common. It is, however, necessary to realize, that the
character of the data must be taken into account as well. Three dimensional vectors need to be
treated in a different way than a set of three scalar values. The third important criterion is,
whether the data vary in time. If so, they are usually called time dependent. Otherwise, we
speak of time independent data.

Such a variety of kinds of data implies even larger variety of visualization techniques.
These may be again divided into categories according to various criteria. Obviously, the type of
data to apply the particular technique to is the primary one. Among the secondary criteria e.g.
the following aspects may belong; whether the approach focuses on the whole data set or just
certain region, whether it visualizes the actual data or some derived quantities (e.g. velocity
magnitudes, gradients and other), whether it aims to be “photo-realistic” or not et cetera.

This report aims to bring a summary of existing approaches that deal with
multidimensional data visualization and to describe selected methods in detail. It should also
introduce our previous work, which focused especially on isosurface extraction and gradient
estimation, and present the goals of our future research.

This work was supported by identification o f grant or project.

Copies of this report are available on
http://www.kiv.zcu.cz/publications/
or by surface mail on request sent to the following address:

University of West Bohemia in Pilsen
Department of Computer Science and Engineering
Univerzitni 8
30614 Pilsen
Czech Republic

Copyright © 2003 University of West Bohemia in Pilsen, Czech Republic

Table of Contents

1 INTRODUCTION... 1

2 TYPES OF MULTIDIMENSIONAL DATA .. 3

2.1 Multi-Scalar Data ..3

2.2 Vector and Tensor Data..4

3 VECTOR FIELD VISUALIZATION .. 5

3.1 General Concepts ..5
3.1.1 Dimensionality – Spatial and Temporal ..5
3.1.2 Flow Data Definition...6
3.1.3 Discrete vs. Analytical ...6
3.1.4 Grids ...6
3.1.5 Main Approaches ...7

3.2 Direct Visualization..8
3.2.1 Color coding ..8
3.2.2 Arrow plots...9

3.3 Integration Based Visualization ...10
3.3.1 Particle Tracing – General Issues ...10

Vector Field Integration...11
Domain Transformations ...12
Cell search...13
Step size selection ...19
Spatial velocity interpolation ...19
Temporal velocity interpolation ..20
Overall Particle Tracing Scheme ...20
Basic integral objects ...21

3.3.2 Geometric Visualization of Integral Objects ...21
Particle Rendering ..21
Streamlets ...22
Streamlines ...22
Streamline Seeding Strategies...23
Stream Ribbons, Polygons, Tubes, Balls, Surfaces, Arrows et cetera..................29
Streak Lines and their Seeding ..29
Time Surfaces ...30

3.3.3 Texture Based Methods ..30
Spot noise ...31
Line Integral Convolution (LIC) ..31
Unsteady Flow Line Integral Convolution (UFLIC) ...34

3.4 Feature Extraction ...34
3.4.1 Feature Extraction Dictionary...34

Vector Fields as Dynamical Systems..35

Gradient and Jacobian ..35
Divergence ..35
Vorticity, Rotation or Curl ..35
Stream Vorticity ..35
Helicity or Helicity Density...36
Circulation ...36
Critical or Fixed Points...36

3.4.2 Analyzing the Transformation Matrix...36
Approximation in the Discrete Case..36
Eigenvalue/Eigenvector method ..37
Jacobian Matrix Decomposition...38
J in Local Coordinate System...38

3.4.3 Extraction of Features ...38

3.5 Derived (Scalar) Value Visualization...39
3.5.1 Types of Derived Values ...39
3.5.2 Visualizing Derived Values ...39

4 TENSOR FIELD VISUALIZATION ..41

4.1 Theoretical Background...41
4.1.1 Physical Tensor Quantities ...41
4.1.2 Tensor Fundamentals ..42

Tensor Decomposition...43
Fluid Flow Example ..45

4.2 Second Order Tensor Visualization ..46
Coloring Coding ..46
Tensor Glyphs ...47
Hyperstreamlines ...48
Topological Approach..48
Deformation Visualization...49

4.3 Higher Order Tensors ...49

5 MULTI-SCALAR DATA...51

5.1 Parallel Coordinates ..51

5.2 Color Coded Isosurfaces ...52

6 ISOSURFACES, NORMALS AND GRADIENTS..55

6.1 Isosurface Extraction ..55
Fundamental Algorithms ...55
Optimized Isosurface Extraction ..56
Isosurface Shading ..56

6.2 Vertex Normal Computation..56
6.2.1 Theoretical Background ..57

No Weighting ...57
Weighting by Angle ..57
Weighting by Area ..58

6.2.2 Implementation ...58
Testing Data ..59

6.2.3 Results ...59
Notation ...59
Accuracy Statistics – Varying the z-Function (Surface Shape)59
Accuracy Statistics – Varying Vertex Distribution (Surface Internal
Structure) ...61
Speed Statistics..63

6.2.4 Conclusion & Recommendations ...64

6.3 Gradient Estimation...64
6.3.1 Theoretical Background ..64

4D Linear Regression using Linear Approximation Function..................................64
4D Linear Regression using Quadratic Approximation Function............................65

6.3.2 Implementation & Testing ...66
Testing Data ..66
Error Measurement ..67

6.3.3 Results ...67
Accuracy Statistics – Varying Sampling Functions ...68
Accuracy Statistics – Varying Data Density...68
Accuracy Statistics – Varying Vertex Distribution...69
Accuracy Statistics – Vector Length..70
Speed Statistics..71
Conclusion ...71

7 CONCLUSION...72

REFERENCES ..73

PUBLICATIONS.. 1

STAYS AND CONFERENCES... 2

1

1 INTRODUCTION

Numerous scientific and industrial branches need to work with multidimensional data in
general. Among these, one can find physics, astronomy, medical science, engineering,
aerodynamics, archeology, seismology, metallurgy, meteorology, food industry etc.
Conversely, one can hardly think of a scientific field, where such need is odd. The term
multidimensional covers several types of data, the most frequently used being vector
fields, tensor fields and multi-scalar datasets. Moreover, data from these subgroups may
combine together in one dataset, which is sometimes the case in scientific simulations.

Multidimensional data can be sorted according to various criteria. As the first
criterion, one may see the domain, over which the data are defined, and which is usually
two or three dimensional. As the second one, we may regard the dimension of the data
values themselves, which is theoretically unlimited and depends on the particular
application. Two or three dimensional vector fields can be encountered most frequently,
but fields of quadratic tensors also appear quite commonly. It is, however, necessary to
realize, that the character of the data must be taken into account as well. Three
dimensional vectors need to be treated in a different way than a set of three scalar
values. The third important criterion is, whether the data vary in time. If so, they are
usually called time dependent. Otherwise, we speak of time independent data. A more
detailed taxonomy of multidimensional data will be described later in chapter 2.

Such a variety of kinds of data implies even larger variety of visualization
techniques. These may be again divided into categories according to various criteria.
Since multidimensional datasets usually contain fairly big amount of information, which
could hardly be mentally integrated and analyzed without proper visualization, the
primary criterion for evaluating individual methods should probably be the quality of
the visualization in terms of simplicity, accuracy, speed of response et cetera. Each user,
however, compares the outcomes of these methods from a different point of view,
prefers different features and accentuates different details. A method, which may be of
no use to some users, may be crucial for others. Thus, less subjective classification must
be adopted.

Obviously, the type of data, to which a particular technique applies, may
represent the primary criterion. Among the secondary ones, the following aspects
belong: whether the approach focuses on the whole data set or just certain region,
whether it visualizes the actual data or some derived quantities (e.g. velocity
magnitudes, gradients and other), whether it aims to be “photo-realistic” or not, et
cetera. A brief overviews of selected multidimensional data visualization techniques can
be found for example in [52] and [64]. More detailed studies, usually devoted to one
specific type of visualization methods, can be found in [38] as well as in [45], for
instance.

This work intends to bring an overview of the major approaches and directions
in multidimensional data visualization. The main problems and techniques should be
discussed in more detail. On the other hand, the description of all the types of
multidimensional data and the corresponding visualization methods exceeds the scope
of this work, if possible at all.

An introduction to isosurface extraction, on which we have worked, will also be
described here. Although, extracting isosurfaces is known as related rather to scalar
fields, in combination with the dimension contraction, isosurfaces are an important tool

2

for depicting multidimensional data. Work with isosurfaces has also led us to studying
and comparing techniques for computing normal vectors in the vertices of triangle
meshes, which are usually used for representing isosurfaces (and surfaces in general).
Furthermore, we have moved to gradient estimation, where we concentrated especially
on accuracy.

The document structure is as follows. In Chapter 2 we present a classification of
the kinds of multidimensional data. Chapters 3, 4 and 5 discuss the major approaches to
visualization of vector or flow fields, tensor fields and multi-scalar data respectively.
Chapter 6 summarizes our previous work related to this topic and in chapter 7 our future
goals are stated.

3

2 TYPES OF MULTIDIMENSIONAL DATA

As mentioned above, there are numerous types of multidimensional data and even more
methods for their visualization. Although we will only discuss the selected ones in this
work, we will briefly introduce all the types in a classification based on the
dimensionality of the domain, over which they are defined, as well as on the
dimensionality of the data values themselves. This classification is borrowed from [5]
and it will be divided into two sections. The first being devoted to multi-scalar data and
the second to vector and tensor data. In the following text, the term tensor will stand for
tensors of second and higher order, although scalars and vectors are tensors (of zeroth
and first order respectively) as well. In the tables, the cells with the data types to be
discussed later in this work will have links to the corresponding chapters.

2.1 Multi-Scalar Data
The first part of the classification, which describes various kinds of multi-scalar data, is
shown in Table 1, where Entities defined over d-dimensional domain containing (n-)
Scalar data are denoted by Ed

(n)S . Furthermore, if the entity state evolves in time, lower
index t is added.

Label Application

E1
S math

E2
S meteorology

aerodynamics
physics and astronomy

E2

nS geography
physics and astronomy
medical science

see chapter 5

E3

S physics and astronomy
remote scanning
chemistry

E3
nS

physics
physical chemistry and biochemistry
medical science
archeology

see chapter 5

E2;t

nS astrophysics
meteorology
CFD

see chapter 5

4

E3;t
nS astrophysics

meteorology
CFD
oceanography

see chapter 5

Em

nS physics - dynamical systems
computer science – algorithm
illustration

see chapter 5

Table 1: Classification of multi-scalar data

2.2 Vector and Tensor Data
Table 2 is organized the same way as Table 1 with the difference that it lists vector and
tensor data instead. The entities thus contain (n-) Vector or (i, j, k...-) Tensor data.
Thus, the notation is either Ed

V
n or Ed

T
i;j;k;.... Index t has the same meaning as in the

previous case.

Label Application

E2
V

2
E2;t

V
2

physics
oceanography
CFD

see chapter 3

E2

V
3

E2;t
V

3
physics
meteorology

see chapter 3

E3

V
3

E3;t
V

3
physics
meteorology
aerodynamics
CFD

see chapter 3

E3

T
3;3

E3;t
T

3;3
fluid dynamics
material science (stress etc.)

see chapter 4

E3

T
n;n

E3;t
T

n;n
material science (stress etc.) see chapter 4

Table 2: Classification of vector and tensor data

The visualization methods are, however, not limited by using either scalar or vector
data. On the contrary, they can be combined.

5

3 VECTOR FIELD VISUALIZATION

Vector field allow the scientists to describe a wide range of phenomena. Therefore, this
kind of data is often used to store information obtained via scientific simulations,
measurements etc. Easy to understand visualization of vector fields thus belongs among
important tasks of computer graphics. In general, vector fields characterize the dynamic
evolution of arbitrary systems as, for instance, electromagnetic field or some other
quantity. Most often, however, vector fields are used to represent fluid flow data. This is
also probably the most intuitive notion one can think of, when trying to imagine a
vector field. For this reason, the terms vector field and flow field are sometimes
interchanged. In the following paragraphs, the term flow field is also sometimes used,
yet meaning vector field in general.

3.1 General Concepts
Easily understandable and yet informatively rich visualization of flow fields is required
in a vast variety of application fields as the aerodynamics, turbomachinery, astronomy,
automotive industry, design, weather simulation and meteorology, climate modeling,
ground water flow, etc. Among the users from all these scientific and industrial fields
the demands on the output images as well as on the aspects of the visualization process
like accuracy, speed of response or storage requirements, differ significantly.
Consequently, the spectrum of flow visualization approaches is very rich and covers
various features, e.g., 2D vs. 3D solutions, techniques for steady and time-dependent
data et cetera.

Since the visual outcomes must be as easily understandable and interpretable for
human eyes as possible, many of the computer graphics flow visualization techniques
build upon simulating real world experiments. Visualization of, for instance, path lines,
which will be explained later in this text, simulates inserting a light-emitting particle
into the flow and recording its movement on a photographic plate. Streak lines, on the
other hand, resemble continuous injection of dye into the flow from a constant place,
thus leaving a colorful trace in the liquid. Finally, time lines correspond to emitting a set
of e.g. hydrogen bubbles to the flow at one instant of time but from different locations,
usually from a line perpendicular to the flow [39].

3.1.1 Dimensionality – Spatial and Temporal
In flow visualization, available solutions significantly differ with respect to the
dimensionality of the given flow data. Techniques, which are intuitive and useful for 2D
data, like color coding or arrow plots, sometimes lack similar advantages in 3D.

In addition to the spatial dimensions addressed above, also dimensionality with
respect to time is of great importance in flow visualization. First of all, flow data itself
incorporates a notion of time – flows are often interpreted as differential data with
respect to time, i.e., when integrating the data, paths of moving entities are obtained.
Additionally, the flow itself can change over time (like in turbulent flows, for example),
resulting in time-dependent or unsteady data. In this case, two dimensions of time are
present and the visualization must carefully distinguish between both in order to prevent
the user from being confused. This is especially true, when animation should be used

6

for flow visualization. Then, even a third temporal dimension can show up in
visualization, requiring special care to avoid confusion along with interpretation of the
animations.

3.1.2 Flow Data Definition
An inherent characteristic of flow data is that derivative information is given with
respect to time, which is provided across an n-dimensional domain Ω ⊂ Rn, for
example, for representing 3D fluid flow (n = 3). In the case of multidimensional flow
data (n> 1), temporal derivatives v of nD locations p within the flow domain Ω are n-
dimensional vectors:

 RtRRdtd nn ∈∈⊆∈= ,, ,/)(vOpppv (1)

In analytic models (like dynamical systems – see [30]), vectors v are often described as
functions of the respective spatial locations p, say like v = Ap for steady linear flow
data if A is a constant n×n-matrix. A general formulation of (possibly unsteady, i.e.,
time-dependent) flow data v would be

 RtRRt nn ⊂∈⊂∈→× ?Op?Opv , ,:),((2)

where p represents the location of the flow and t represents the system time. If t is
considered to be constant, i.e., for steady flow data, the more simple case of
v(p) : Ω → Rn is given.

3.1.3 Discrete vs. Analytical
In cases of results from flow simulation, like in automotive applications or airplane
design, vector data v are usually not given in analytic form, but need to be reconstructed
from the (discrete) simulation output. As usually, numerical methods are used to
actually do the flow simulation such as finite element methods, mostly producing a
large-sized grid of many sample vectors vi;t, which discretely represent the solution of
the simulation process at time steps ti. The terms p ∈ Ω and t ∈ Π in (2) should be
replaced by p ∈ [p1,...,pn], where n is the number of grid vertices, and t ∈ [t1,...,tn],
where this time n is the number of time steps, respectively. For further procedure, it is
assumed that the flow simulation was based on an at least locally continuous model of
the flow, thus allowing for continuous reconstruction of the flow data v during
visualization. One option for doing such reconstruction would be to apply a
reconstruction filter RRh n →: to compute),()(),(tht ii

i
pvpppv ⋅−= ∑ . Filter h usually

has only local extent, efficient procedures for finding those flow samples vi;t, which are
nearest to the query point p, are needed to do proper reconstruction (refer to the Cell
search section in chapter 3.3.1). It is necessary to realize that the reconstruction includes
both, spatial as well as temporal, characters (see sections Spatial velocity interpolation
and Temporal velocity interpolation in subchapter 3.3.1).

3.1.4 Grids
As already mentioned, applications producing vector data usually present them as a
field of vector quantities aligned to grid vertices. There are of course many types of
grids with different properties. Among the most frequently exploited types, one can find
regular Cartesian and curvilinear grids, regular or irregular tetrahedral grids, multi-

7

zoned, moving or complex unstructured grids etc. Grid type is an important property of
each vector field data set as it significantly influences the effectiveness of some
algorithms. An example would be the cell search or point location algorithm (described
in 3.3.1), which heavily depends on the type of the used grid. Cell search is trivial and
very fast in Cartesian grids, more complicated and less effective in curvilinear grids and
quite ineffective in unstructured grids. Another example could be the algorithm for
vector field reconstruction, which is used for approximating vector quantities in
locations other than the grid vertices and in temporal instants between two consecutive
time steps. The theory of grids is, however, too broad to discuss it here in detail.

The approach of attaching the data values to fixed locations is sometimes called
Eulerian [39]. The opposite is Lagrangian approach, which links the physical quantities
to small particles moving through the area with the flow and given as a function of
starting position and time. This attitude is, however, less frequently exploited.

3.1.5 Main Approaches
The large spectrum of users’ needs has led to a development of numerous approaches
for vector field visualization, which can be sorted into four main categories, the first
being direct flow visualization. Methods from this category use an as direct as possible
translation of the flow data into visualization cues, such as by drawing arrows. Flow
visualization solutions of this kind allow immediate investigation of the vector data,
without a lot of mental translation effort. For a better illustration of the long-term
behavior induced by flow dynamics, integration based approaches first integrate the
flow data and use the resulting integral objects as a basis for visualization. Displaying
streamlines is a good example of integration based techniques. Another approach for
visualizing flow data is the feature based approach, in which an abstraction step is
performed first. From the original data set, interesting objects are extracted, such as
important phenomena or topological information of the flow. These flow features
represent an abstraction of the data, and can be visualized efficiently and without the
presence of the original data, thus achieving a huge data reduction, which makes this
approach very suitable for large (time-dependent) data sets, originating from
computational fluid dynamics simulations. These data sets are simply too large to
visualize directly, and therefore, a lot of time is required in preprocessing, for
computing the features (feature extraction). But once this preprocessing has been
performed, visualization can be done very quickly. The general idea behind the fourth,
and in our classification the last, group of methods consists in deriving scalar quantities
from the vector data first and then visualizing them via approaches like isosurface
extraction or direct volume visualization. Each of the four categories will be described
in a separate section bellow.

Now that we have outlined one of the possible classifications, which sorts the
flow data visualization techniques into four main categories, it is desirable to briefly
note that in practical applications, hybrid methods combining techniques from different
categories are usually implemented. As mentioned above, the main task of vector data
visualization is to communicate as large amount of information as possible to the user,
yet keeping it intuitively and easily understandable. Combining various visualization
techniques is obviously a good tool to fulfill such task. Thus, one can come across color
coded line integral convolution applied on an isosurface. That is, a hybrid of the direct,
integration-based and derived value visualization.

8

3.2 Direct Visualization
Direct, or global, flow visualization techniques attempt to present the complete data set,
or a large subset of it, at a low level of abstraction. The mapping of the data to a visual
representation is direct, without complex conversion or extraction steps. These
techniques are perhaps the most intuitive visualization strategies as they present the data
in a straight way. They can be best utilized for 2D vector fields.

Dealing with 3D flow data naturally brings additional challenges such as 3D
rendering. A transition step between 2D flow visualization and the visualization of truly
3D flow data is the restriction to sub dimensional parts of the 3D domain, e.g., sectional
slices or boundary surfaces. Thereby, techniques known from 2D flow visualization
usually are applicable without major changes. When working with sectional slices, the
treatment of flow components orthogonal to slices requires some special care.

For real 3D vector field visualization, rendering becomes the most critical issue.
Occlusion and complexity make it difficult to get an immediate overview of an entire
flow data set.

3.2.1 Color coding
A common direct flow visualization technique is to map flow attributes such as
velocity, pressure, or temperature to color resulting in very intuitive depictions. Of
course, the color scale, which is used for mapping, must be chosen carefully with
respect to perceptual differentiation. Color coding for 2D flow fields extends to time-
dependent data very well, resulting in moving color plots according to changes of the
flow properties over time.

Color coding is very effective for visualizing boundary flows or sectional
subsets of 3D flow data. In [48] color coding of scalars on 2D slices in 3D automotive
simulation data was used and an interactive slicing probe was introduced, which maps
the vector field data to hue. The use of scalar clipping, i.e., the transparent rendering of
slice regions where the corresponding data value does not lie within a specific data
range, allows to use multiple (colored) slices with reduced problems due to occlusion.

For color coding in 3D, volume rendering is necessary to deal with occlusion.
This topic is, however, too broad. Therefore, we refer the user to the volume rendering
status quo report [12]. In this paragraph, we will only outline some additional issues of
volume rendering of vector fields when compared to the well-known volume rendering
applied on medical volumetric data. These challenges are briefly addressed here [38]:
(1) flow data sets are often significantly smoother than medical data – an absence of
sharp and clear “object” boundaries (like organ boundaries) makes mapping to opacities
more difficult and less intuitive. (2) flow data are often given on non-Cartesian grids,
e.g., on curvilinear grids – the complexity of volume rendering gets significantly more
tricky on those kinds of grids, starting with nontrivial solutions required for visibility
sorting and blending. (3) flow data are also time-dependent in many cases, imposing
additional loads on the rendering process.

9

3.2.2 Arrow plots
A natural vector visualization technique is to map a line, arrow, or glyph to each sample
point in the field, oriented according to the flow field. Usually a regular placement of
arrows is used in 2D, for example, on an evenly spaced Cartesian grid. Two basic
variants of commonly used arrow plots are:

• normalized arrows of unit length visualizing only vector directions as
illustrated by Figure 1

• arrows of varying length proportional to the vector magnitudes

This technique is sometimes called hedgehog visualization. In combination with color
coding, arrow plots can depict some additional value at the same time. 2D hedgehog
plots can be extended to time-dependent data, although bigger time steps might result in
jumping arrows, decreasing the quality of such visualization.

Figure 1: Normalized arrow plot (taken from [30])

Using 2D arrows on slices from 3D flow data may also be telling. When interpreting
results of such visualization, however, one must keep in mind that the vector
components orthogonal to the slice are usually not depicted. On the other hand, the use
of arrows is quite suitable for visualizing flows over boundary surfaces, as can be seen
in [56]. The problem with orthogonal vector components is suppressed as cross-
boundary flows rarely appear.

Arrow plots in 3D suffer from at least two problems:

• the 2D screen projection can distort vectors‘ positions and orientation thus
making the image possibly misleading – using 3D representations of arrows
(like a cylinder plus a cone) decreases these problems (see Figure 2) [39].

• glyphs occluding one another – careful seeding is required

Figure 2: Ambiguity of projecting arrows on a 2D screen on the left; a 3D arrow glyph on the right

10

To avoid the later, arrow plots are usually based on selective seeding. For instance, one
out of a few slices of the 3D field is chosen to form a region from which all the arrows
start. Another approach is to highlight those parts of a 3D arrow plot, which point
roughly in a user-defined direction as proposed in [2]. Dovey [11] describes a technique
of seeding arrows or glyphs in curvilinear and unstructured grids. In order to achieve a
uniform density on nonuniformly spaced grids, the paper presents two methods of
resampling the data. While the physical space resampling assures the sample points to
be well-distributed, an element-based resampling or parameter space resampling can be
used to visualize vector fields at arbitrary surfaces within 3D.

3.3 Integration Based Visualization
Unlike the direct visualization methods, techniques to be described now require some
sort of computation or extraction prior to the visualization itself. The final image then
does not aim to display directly the vector field, it rather shows objects obtained via
some computation relying on certain assumptions about the character of the vector field.

As the meaning of the vectors can usually be interpreted as a derivative with
respect to some parameter (e.g. derivative of position with respect to time in case of
velocity fields), integrating the data over this parameter provides an intuitive notion of
how the information contained by the vector field evolves. The following visualization
techniques, therefore, fall into the category of integration based methods. We will
further divide them into geometric techniques and texture based techniques according to
the approach to visualization. Both these groups utilize particle tracing to obtain integral
objects and both the groups are closely interconnected.

While particle tracing (see section 3.3.1) concerns the process of integrating
through the vector field and gives a recipe to obtain the integral objects, the geometric
(3.3.2) and texture-based (3.3.3) methods exploit these objects within the visualization
process. They only differ in the way, how they do it. In the former case, individual
objects are displayed as they are, while in the later one, the integral lines are convolved
with certain texture. When stated like this, both the attitudes might seem to be
diametrically different. But on the other hand, from the conceptual point of view, the
path leading from one approach to the other is relatively straight. Moving form
geometric to texture-based visualization, we just need to apply a dense seeding strategy.
In other words, densely seeded geometric objects result in an image similar to that
obtained by dense, texture-based techniques. Likewise, moving from texture-based
visualization to visualization using geometric objects can be obtained via applying a
sparse texture for the convolution.

3.3.1 Particle Tracing – General Issues
As the title implies, these methods simulate real world experiments, when a particle is
injected into a flow and its trace within the region is observed. Inserting a set of such
imaginary particles into a vector field will result in a set of integral curves, which will
more or less characterize the underlying data. Using appropriate temporal and spatial
combinations of injecting the particles (i.e. all at once from different locations or just
one at the time but from a constant location) will lead to various alternatives of these
integral curves, as discussed in the paragraphs bellow. First, however, some general
problems, which can be encountered when tracing an imaginary particle through a
vector field, must be clarified. We will do so using time dependent vector fields. Steady
flow can be considered as a special case for t constant.

11

Vector Field Integration
The integration through a vector field is a computational challenge, and since it is
crucial for all the methods in this chapter, it should be explained at the beginning. The
explanation will be carried out on a flow data – an important, intuitive and probably the
most frequent case of a vector field.

Integrating flow brings the respective path p(s) of an imaginary particle traveling
through the field. This path would analytically be defined by

 ∫
=

++=
s

t

dtttts
0

00)),(()(pvpp (3)

where p0 represents the seed location of the particle and t0 equals to the time when the
particle was seeded. Such a particle trace through a vector field is called pathline. There
are also other types of integral curves such as streamlines, streaklines, timelines etc.,
which will be described bellow. The dependency of vector v on time t in equation (3)
implies that in this as well as in the upcoming cases we consider an unsteady flow,
where the vector field changes in time.

In addition to the theoretical specification of integral curves, it is important to
note, that respective integral equations like equation (3) usually cannot be resolved for
the curve function analytically, and thereby numerical integration methods need to be
employed. The most simple approach is to use a first-order Euler method to compute an
approximation pE – one iteration of the curve integration is specified as

)),(()()(ttttttE pvpp ∆+=∆+ (4)

where ∆t usually is a very small step in time and p(t) denotes the location to start this
Euler step from. A more accurate but also more costly technique is the second order
Runge-Kutta method, which uses the Euler approximation pE as a hint to compute a
better approximation pRK2 of the integral curve:

 2/))),(()),((()()(2 ttttttttt ERK ∆++⋅∆+=∆+ pvpvpp (5)

Higher-order methods like the often used fourth-order Runge-Kutta integrator utilize
even more such steps to better approximate the local behavior of the integral curve:

6/)22()()(
),,)((

,)2/,2/)((
,)2/,2/)((

,)),((

4 dcbapp
cpvd
bpvc
apvb

pva

++++=∆+
∆++⋅∆=

∆++⋅∆=
∆++⋅∆=

⋅∆=

ttt
tttt

tttt
tttt

ttt

RK

 (6)

Obviously, the choice of the step size ∆t is an issue. Too large step will lead to loss of
accuracy, small steps will, on the other hand, increase the time required for the
computation. This topic will be discussed a little later in this chapter, because other
problems must first be resolved to maintain consistency. As [26] and [39] suggest,
problems to deal with include especially domain transformations, point location or cell
search, step size selection and velocity interpolation.

12

Domain Transformations
The process of numerical simulation and visualization of fluid flow is typically
performed in three different domains, sometimes also referred to as spaces [26]. These
are [39]:

• physical domain P, where the equations of motion are defined. The domain
is discretized, often into a curvilinear, boundary-conforming grid fitting the
surface of objects; the flow variables (velocity, density, pressure, etc.) are
computed in the grid points of P.

• computational domain C, to which the equations of motion are
transformed. It is descretized to suit the needs of numerical computation,
often into a uniform rectangular grid, and thus deformed with respect to P.

• graphical domain G, which is also often discretized to suit the needs of
graphics processing. There is no generally accepted representation of G. As
visualization often directly refers to physical reality, the shape of objects in
G is usually the same as in P. Often a regular or hierarchical, rectangular
discretization is used. G is populated with geometric primitives and
attributes, such as shapes and colors, which must be ultimately expressed in
pixels.

Transitions between these domains [39] must be performed as depicted in Figure 3.
Although the grids can be of several types (structured or unstructured, rectilinear or
curvilinear etc.), we will focus on structured grids with regular hexahedral topology.
Their geometry can be curvilinear, in which case cells resemble warped bricks, or
orthogonal, resulting in cubical or rectangular brick shaped cells.

Figure 3: Transformation between the physical and the computational domain (taken from [39])

The discretization in P for a flow simulation often lads to a structured curvilinear grid,
in each cell of which the grid point nearest to the origin has coordinates (i, j, k), where

zyx nknjni ,1 ,,1 ,,1 ∈∈∈ . A general point of P is denoted as xp(x, y, z). Velocity

vectors vp(i, j, k) = (u, v, w) are computed at each grid point.
Computational space C is usually discretized as a regular orthogonal Cartesian

grid with the same cell indices (i, j, k) and points xc(ξ, η, ζ), where again

zyx nknjni ,1 ,,1 ,,1 ∈∈∈ . Velocities at the grid points of C are

vc(i, j, k) = (u′, v′, w′). Generally, a single global transformation between P and C is not
known, but for each neighborhood of a grid point (i, j, k) in P a local transformation L

13

can be determined. Transformations for other points in P must then be derived by
interpolation between grid values.

Matrix L specifies the local transformation of a grid point (i, j, k) from C to P as
)(cp xLx = ; similarly, L-1 is used to transform a point from P to C (refer to Figure 3).

The Jacobian matrix J of L, defined analytically as cxLJ ∂∂= / , can be used to
transform a vector quantity from C to P. For instance, cp vJv ⋅= . Again, the inverse J-1
is used to transform vector from P to C.

In general, the mappings are only known at discrete points. As a consequence,
the Jacobian must be approximated by finite differences. For a grid point (i, j, k) of C,
the columns of J may, for example, be approximated by:

kjikji

kjikji

kjikji

xx

xx

xx

,,1,,3

,,,1,2

,,,,11

−=

−=

−=

+

+

+

Je

Je

Je

 (7)

where xi,j,k are the coordinates of grid point (i, j, k) in C and ei the unit vector in the
direction of xi. Another possibility would be to use central differences:

2/)(,,1,,11 kjikji −+ −= xxJe ; other types of differences can also be used.
As visualization often directly refers to physical reality, G must be undeformed

with respect to P. Also, a new discretization is desirable in G, to support the operations
in the rendering stage. The transition to another grid usually involves a resampling of
the data field and this has several disadvantages. Especially the transition from a
boundary-conforming, locally refined curvilinear grid in P to a uniform orthogonal grid
in G may lead to a severe waste of storage space or to loss of information, depending on
the resolution of the regular grid. In areas where the resolution of the P grid is higher
than the G grid, data may be lost, while in low resolution areas of P, oversampling will
lead to many identical data points in G. A partial solution is the use in G of a
hierarchical grid type of which the resolution can vary locally.

Often, the boundary conformance will be lost, so that object geometry must be
represented separately in G. Another important point is the degradation of accuracy as a
result of interpolation. Use of higher order interpolation techniques can reduce this
problem.

Cell search
During particle integration, it is necessary to determine the grid cell that a particle
current ly lies in. This requires cell search (also referred to as point location). In
computational space, the grid is uniform and the cell in which the particle currently lies
can be determined easily. For example, suppose the computational coordinates of the
particle’s position are (ξ, η, ζ), then the particle lies in grid cell (int(ξ), int(η), int(ζ)).
Although cell search is fast and simple in computational space, there are some
disadvantages for tracing in C. Firstly, the velocity needs to be converted from P into C.
This requires additional calculation time for the velocity transformation. Secondly, the
transforming Jacobian matrices are usually approximations. Therefore, accuracy may be
lost during the transformation due to the transformation scheme used. Lastly, if
irregularities exist in the grid, then the transformed velocity may be infinite [26]. For
these reasons, algorithms for particle tracing performed in physical space were
developed as well [21].

14

As mentioned above, the main reason for tracing in physical space is accuracy.
The disadvantage is that cell search is more time consuming in physical space than in
computational space. Kenwright and Lane found the time spent in cell search could
require more than 25% of the particle tracing time, as it is required whenever the
particle moves to a new position. For multi-stage integration methods, such as the fourth
order Runge-Kutta described earlier, cell search is required at the intermediate stages of
the integration. For example, cell search is needed for p(t) + a/2, p(t) + b/2, and p(t) + c
in equation (6). If the step size ∆t is relatively small, then the particle is likely to move
within the current cell or jump no more than one cell. Hence, a local cell search can be
performed to find the new position. If the grid is multi-zoned, then a global cell search
is required when the particle moves to a new block (referred to as grid jumping).
Because global cell search is more computationally expensive than local cell search,
grid jumping can increase the particle tracing time considerably. Kenwright and Lane
[21] managed to improve the speed of particle tracing in physical space by several
factors. By decomposing the grid cell into tetrahedra, cell search time was reduced.
Furthermore, particle integration, velocity interpolation, and step size control were
performed in physical space.

Computational domain cell search
The problem of cell search may be stated the following way. Given p in the physical
domain, the task is to find the corresponding point c in the computational domain. The
first step is to find the grid cell that p lies in. An intuitive method would be to search for
the closest point in the grid using all points. However, this could be expensive if the grid
consists of millions of points. Therefore, an algorithm was suggested in [6], which
searches along edges of the grid cells to find the closest grid point, and then uses a
“stencil walk” approach to find the exact offset of the particle inside the grid cell. The
stencil walk approach, which is based on the Newton-Raphson approach, is summarized
below [26]:

1. Select the center of the grid cell (i, j, k) as the initial guess of c, where (i, j, k) is
the closest grid point to p. Thus, let c = (ξ, η, ζ), where ξ = i + 0.5, η = j + 0.5 and ζ =
k + 0.5.

2. Convert (ξ, η, ζ) to its corresponding physical point p(ξ, η, ζ) using trilinear
interpolation (Figure 4):

γβαα

βαα

γβαα

βααζηξ

]))1((

)1)()1([(

)1]())1((

)1)()1([(),,(

1,1,11,1,

1,,11,,

,1,1,1,

,,1,,

+++++

+++

+++

+

+−+

+−+−+

+−+−+

+−+−=

kjikji

kjikji

kjikji

kjikji

pp

pp

pp

ppp

 (8)

where α = ξ - i, β = η - j and γ = ζ - k.

15

Figure 4: Trilinear interpolation as in [39]

3. Evaluate the difference vector ∆p, where),,(ζηξppp −=∆ . This vector indicates,
how close p(ξ, η, ζ) is to p in physical domain.

4. Convert ∆p to ∆c, where ∆c is the difference vector mapped into computational
domain. Let),,(zyx ∆∆∆=∆p and),,(γβα ∆∆∆=∆c .Then

















=
















=
















∆
∆
∆

=
















∆
∆
∆

−−

zyx

zyx

zyx

zzz
yyy
xxx

z
y
x

ζζζ
ηηη
ξξξ

γ
β
α

ζηξ

ζηξ

ζηξ
11 and where, JJJ . (9)

The terms in J-1 are:

,/)(,/)(,/)(

,/)(,/)(,/)(

,/)(,/)(,/)(

DyxyxDzxzxDzyzy

DyxyxDzxzxDzyzy

DyxyxDzxzxDzyzy

zyx

zyx

zyx

ξηηξηξξηξηηξ

ζξξζξζζξζξξζ

ηζζηζηηζηζζη

ζζζ

ηηη

ξξξ

−=−=−=

−=−=−=

−=−=−=

 (10)

where D is the determinant of the Jacobian matrix J and

 ξηζζξηηζξξζηηξζζηξ zyxzyxzyxzyxzyxzyxD −−−++= . (11)

The partial derivatives in the Jacobian matrix J are the partial derivatives of (8), where
),,(zyx ppp=p . For example, ξξ ∂∂= /xpx , ξξ ∂∂= /ypy , ξξ ∂∂= /zpz , etc.

5. Let ααα ∆+= , βββ ∆+= and γγγ ∆+= . If 1,0,, ∉γβα , then p is outside the
current cell. Increase i by 1 if α > 1 or decrease i by 1 if α < 0. Update j and k according
to β and γ respectively, then go to step 1.

6. Let αξξ ∆+= , βηη ∆+= and γζζ ∆+= . If ε<∆c , where ε is the chosen
tolerance, then p(ξ, η, ζ) is close enough to p and its corresponding point c(ξ, η, ζ) in
computational space has been found. Otherwise, go to step 2.

The above procedure suits the steady case, for time dependent vector fields, some
modifications may need to take place, as the grid may move in time. Particle tracing in
moving grids requires additional interpolations. In cell search, to find the current grid

16

cell containing p at time t, an interpolated grid cell is generated. The grid cell is simply
a linear interpolation of the grid cells at tl and tl+1 if tl ≤ t ≤ tl+1. It is not necessary to
interpolate the entire grid, only the current grid cell that p lies in. Thus, at each
intermediate stage of the RK4 integration, an interpolated grid cell is computed for
velocity interpolation and cell search.
To transform the velocity from physical space to computational space in unsteady flows
with moving grids, equations (9) and (20) (see bellow) need to be modified to consider t
and the grid velocity (xr, yr, zr). Let





















=





















=



















=



















−−

tzyx

tzyx

tzyx

tzyx

tttt
zzzz
yyyy
xxxx

t
w
v
u

T
W
V
U

ττττ
ζζζζ
ηηηη
ξξξξ

τζηξ

τζηξ

τζηξ

τζηξ

11 and where, JJJ . (12)

Time changes constantly and independently of position and thus the partial derivatives
0=== ζηξ ttt and ll ttt −= +1τ and

),,(),,(),,(1 ζηξζηξτττ
ll ttzyx pp −= + , (13)

where),,(ζηξltp and),,(1 ζηξ+ltp are),,(ζηξp at time tl and tl+1 respectively. The nine
metric terms in the upper left corner of J-1 are the same as in (10), and the remaining
terms are

τ

ττττ

ττττ

ττττ

ττττ

ζζζζ

ηηηη

ξξξξ

t

Dtzyx

Dtzyx

Dtzyx

tzyx

zyxt

zyxt

zyxt

/1 and 0

,/)(

,/)(

,/)(

====

−−−=

−−−=

−−−=

 (14)

where the determinant D is given in (11).

Physical domain cell search
As mentioned above, Kenwright and Lane developed an algorithm for cell search in
physical space [21]. They employ tetrahedral decomposition for this purpose. This
decomposition allows them to quickly find the cell a given point p lies in and also its
natural coordinates. The natural coordinates, also called barycentric, are local non-
dimensional coordinates for a cell.

The trilinear interpolation function (equation (8)) provides the opposite mapping
to that required for point location, that is, it determines the coordinates of p from a
given natural coordinate (ξ, η, ζ). Unfortunately, it cannot be inverted easily because of
the non- linear products, so it is usually solved numerically using the Newton-Raphson
method as described above. Tetrahedral elements, on the other hand allow to use a
linear interpolation function to map from natural to physical coordinates:

 ζηξζηξ)-()-()-(),,(1413121 xxxxxxxx +++= (15)

Note that x1, x2, x3 and x4 are the physical coordinates at the vertices of the tetrahedron.
The natural coordinates (ξ, η, ζ) vary from 0 to 1 in the non-dimensional cell.

17

Figure 5: Relation between the natural (left) and physical (right) coordinates

Equation (15) can be inverted analytically because it does not have any non-linear terms
thus allowing the natural coordinates to be evaluated directly from the physical
coordinates. The solution at a given physical point (xp, yp, zp) is given by:

















−
−
−

⋅















=

















1

1

1

333231

232221

131211
1

zz
yy
xx

aaa
aaa
aaa

V
p

p

p

ζ
η
ξ

 (16)

The constants in the 3x3 matrix are:

)x)(xy(y)x)(xy (y a
)x)(xy(y)x)(xy (y a
)x)(xy(y)x)(xy (y a

)z)(zx(x)z)(zx (x a
)z)(zx(x)z)(zx (x a
)z)(zx(x)z)(zx (x a

)y)(yz(z)y)(yz (z a
)y)(yz(z)y)(yz (z a
)y)(yz(z)y)(yz (z a

3221213233

1421211423

1443431413

3221213232

1421211422

1443431412

3221213231

1421211421

1443431411

−−−−−=
−−−−−=
−−−−−=

−−−−−=
−−−−−=
−−−−−=

−−−−−=
−−−−−=
−−−−−=

 (17)

and the determinant V (actually 6 times the volume of the tetrahedron) is given by:

)]y)(yz(z)z)(zy)[(yx(x
)] y)(yz(z)z)(zy)[(yx(x

)] y)(yz(z)z)(zy)[(yx (xV

1312131214

1421142113

1413141312

−−−−−−+
+−−−−−−+

+−−−−−−=

 (18)

The natural coordinates (ξ, η, ζ) can be evaluated by implementing the equations above.
The common terms can be precomputed before evaluating the matrix coefficients and
determinant.

The large size of the time-dependent flow data sets makes it impractical to
decompose the whole grid. On the contrary, the decomposition is applied on the fly.
When a particle enters a hexahedral cell, it is divided into five tetrahedra, which is the
minimal possible number. This decomposition is not unique because the diagonal edges
alternate across a cell (see Figure 6). Since the faces of a hexahedron are usually non-
planar, it is important to ensure that adjoining cell’s diagonals match to prevent gaps.
This is achieved by alternating between an odd and even decomposition. In a curvilinear

18

grid, the correct configuration is selected by simply summing up the integer indices
(i, j, k) of a specific node (e.g. the node with the lowest indices). Choosing the odd
configuration when the sum is odd and the even configuration when the sum is even
guarantees continuity between cells.

Figure 6: Two ways to decompose a cubic cell into five tetrahedra

Having computed the natural coordinates (ξ, η, ζ) in equation (16), there are
four conditions, whose validity shows, whether the point p(xp, yp, zp) lies within the
tetrahedron or not. These are:

 01 ; 0 ; 0 ; 0 ≥−−−≥≥≥ ?????ξ (19)

If any one of these is invalid then the point is outside the tetrahedron. In particle tracing
algorithms, this happens when particles cross cell boundaries. The problem then arises
of which tetrahedron to advance to next. The solution is quite simple since the natural
coordinates tell you which direction to move. For example, if ξ < 0, the particle would
have crossed the ξ = 0 face. Similarly, if η < 0 or ζ < 0, the particle would have
crossed the η = 0 or ζ = 0 face respectively. If the fourth condition is violated, i.e. (1 -
 ξ - η - ζ) < 0, then the particle would have crossed the diagonal face. The cell-search
proceeds by advancing across the respective face into the adjoining tetrahedron, which
can be found quickly using look-up tables.

Occasionally, two or more of these conditions may be violated if a particle
crosses near the corner of a cell or if it traverses several cells at once. In such cases, the
worst violator of the four conditions is used to predict the next tetrahedron. Even if the
bounding tetrahedron is not the immediate neighbor, by always moving in the direction
of the worst violator the search will rapidly converge upon the correct tetrahedron.

It is necessary to point out that this approach should only be used when the
sought cell lies in close neighborhood of the current one. This condition is hardly ever
violated since particles usually do not cross more than one cell at a time. An exception
is the very start of tracing a particle and also, in case of multizoned grids, when a
particle jumps from one block to another. In such situations global search using a
different method should be applied.

The authors of this method claim that the performance of the particle tracing is
not degraded on larger data sets, because particle advection only requires local cell
searches and interpolations. Multi-zone grids, on the other hand, cause some
performance penalty because global searches are required when particles move into new
grids.

19

Step size selection
We will now return to the problem of step size selection, which was mentioned in the
chapter devoted to vector field integration, and the explanation of which we postponed
for this chapter.

The distance that a particle traverses at each integration step is based on the step
size ∆t (in equations (4), (5) and (6) or other, depending on the integration scheme
employed) and the velocity at p. The larger ∆t is, the further p traverses. If ∆t is too
large, then the resulting particle trace can be inaccurate because the particle may miss
important flow features. This is especially true if the flow changes direction rapidly.
Likewise, if ∆t is too small, then particles may unnecessarily take too many steps to
traverse the grid, which would increase the computation time. A good rule for selecting
∆t is based on the velocity at the current grid cell: if the velocity is large, then ∆t should
be small. Buning [6] suggested letting),,max(/ WVUct =∆ where (U, V, W) represent
the computational velocity at p and
















=
















−

w
v
u

W
V
U

1J . (20)

Matrix J-1 is given in (9). The computational velocity is used so that the number of steps
in each cell is consistent. For example, if c = 0.2, then the particle will traverse no more
than one-fifth of a computational cell at each step. Small c yields small steps. A
common scheme for adaptively setting ∆t is step doubling, which successively reduces
∆t until some desired accuracy is obtained. As this approach is computationally too
expensive [21], Kenwright and Lane suggest another scheme for determining ∆t, which
is based on the curvature of the particle trace. If the curvature is high, then ∆t should be
small.

Spatial velocity interpolation
In particle tracing, the velocity at the current position of the particle is required to
advance it further. Velocity interpolation is performed at each stage of the RK4
integration. The velocity at p can be interpolated using the velocities at the corners of
the grid cell that contains p. A fast and simple scheme is trilinear interpolation. If p is in
grid cell (i, j, k) and p has the fractional offsets (α, β , χ) from the grid point at (i, j, k),
then

γβαα

βαα

γβαα

βααγβα

]))1((

)1)()1([(

)1]())1((

)1)()1([(),,(

1,1,11,1,

1,,11,,

,1,1,1,

,,1,,

+++++

+++

+++

+

+−+

+−+−+

+−+−+

+−+−=+++

kjikji

kjikji

kjikji

kjikjikji

vv

vv

vv

vvv

 (21)

where vi,j,k is the velocity at grid point (i, j, k). The trilinear interpolant assumes that the
velocity varies linearly across the edges of the cell. Though trilinear interpolation is
simple, accuracy may be lost if the grid cell is deformed. Higher order interpolation
would help to reduce this disadvantage, however, at the expense of higher number of
velocity vectors needed and higher demands on computational resources.

20

The computation is even simpler in the case of tetrahedral decomposition
described in the previous section. Using the numbering convention in Figure 5, the
linear basis function for spatial velocity interpolation is:

 ζηξζηξ)-()-()-(),,(1413121 vvvvvvvv +++= (22)

where ξ, η and ζ are the natural coordinates computed in equation (16) and v1, v2, v3
and v4 are the velocity vectors at the vertices.

Temporal velocity interpolation
Steady flows do not change in time and we can assume that the number of time steps is
infinite. Thus, the velocity function is defined for any t. However, unsteady flows vary
in time and the velocity function is only known at time steps tl, ..., tn. At time t, if t ≠ tl
for l = 1, ...,n, then a temporal interpolation of velocity is performed prior to the spatial
interpolation given in (21). If tl ≤ t ≤ tl+1, then let

)/()(and)1()(1,,,,,,
1

lll
t

kji
t

kjikji ttttll −−=+−= +
+ δδδδ vvv , (23)

where lt
kji ,,v and 1

,,
+lt

kjiv are the velocities at grid point (i, j, k) at time tl and tl+1,
respectively. After the above temporal interpolation of velocity, equation (21) can be
evaluated by letting)(,,,, δkjikji vv = . The above interpola tion assumes that the flow
varies linearly between the time steps and it is only second order accurate in time over a
complete RK4 integration.

Overall Particle Tracing Scheme
At this point, we can outline the essential steps in a (time-dependent) particle tracing
algorithm as described in [21]. The scheme is general, disregarding the computational
versus physical domain problem:

1. Specify the injection point for a particle in physical space (x, y, z, t).
2. Perform a point location to locate the cell that contains the point.
3. Evaluate the cell’s velocities and coordinates at time t by interpolating

between simulation time steps.
4. Interpolate the velocity field to determine the velocity vector at the current

position (x, y, z).
5. Integrate the local velocity field using selected integration scheme (e.g.

RK4 described by equation (6)) to determine the particle’s new location at
time t + ∆t.

6. Estimate the integration error. Reduce the step size and repeat the
integration if the error is too large.

7. Repeat from step 2 unt il particle leaves flow field or until t exceeds the last
simulation time step.

It is important to note that step 5 may involve repeated applications of steps 2, 3 and 4
depending on which numerical integration scheme is used. The 4th order Runge-Kutta
scheme used in this study actually requires three repetitions to advance from time t to
t + ∆t.

21

Basic integral objects
Having explained the problems arising from the need to integrate through a vector field
and having presented the overall particle tracing scheme, we will now look at the
individual types of integral curves, which can be computed and displayed. The basic
integral objects available in 2D as well as 3D include:

• path line or particle trace – a trajectory, along which a particle travels
through the vector field

• stream line – a line that is everywhere tangent to the vector field
• streak line – arises when a set of particles is being continuously injected

into the vector field from a constant location over certain period of time. In
[28], some implementation details are given and a comparison to
streamlines can be found.

• time line – joins the positions of particles released at the same instant in
time from different insertion points. These points are usually located on a
line perpendicular to the vector field. Once released to the flow, these lines
are moved and transformed by the vector field, thus showing the evolution.
By calculating the distance between neighboring timelines, one can
determine the velocity of the particles in the flow [28].

While stream lines, streak lines and path lines coincide in steady flows, in the case of
time varying fields these curves show different trajectories. As Kenwright and Lane
[21] claim, streak lines, also called filament lines, are the most popular visualization
technique and also the simplest to generate. Stream lines are not generally used to
visualize unsteady flows because they do not show the actual motion of particles in the
fluid but rather the theoretical trajectories of particles with infinite velocity.

3.3.2 Geometric Visualization of Integral Objects
The previous sections have brought a recipe for obtaining the integral objects from a
vector field, outlined problems associated with the computation and presented their
known solutions. However, having computed the integral objects, there are also various
approaches how to visualize them. These approaches may be sorted into two main
categories. Firstly, it is the visualization of integral objects as geometric bodies, which
will be examined in this section. Secondly, we talk about texture-based methods whose
description will be given in section 3.3.3.

In section 3.3.1, some basic integral objects have already been mentioned.
Displaying these objects by the geometric methods will be discussed here in detail and
some more advanced geometric objects, commonly used for vector field visualization,
will also be added. When using these methods, inconvenient spatial distribution of
geometric objects will result in chaotic, cluttered views. Especially in 3D, appropriate
seeding strategy constitutes a crucial condition for comprehensive output. As mentioned
in the heading paragraphs of the Integration Based Visualization chapter, even the
relation between the geometric and texture-based visualization may be expressed in
terms of choosing an appropriate seeding strategy. For this reason, seeding strategies
will be introduced together with the integral objects being described.

Particle Rendering
Quite a straight forward way is to consider particles, traced by the above methods, to be
a kind of geometrical primitive [39]. If a set of such particles is rendered
simultaneously, the visualization process is called particle system. The most frequent

22

use of particle systems consists in depicting fuzzy entities with irregular, complex or
blur geometry, like grass, tree, fire or smoke. Besides its motion dynamics attributes
(like position, speed and motion direction), each particle communicates information by
other means as well (shape, size, color, reflectivity and transparency). Individual
particles also have their life cycle. They are born, have certain lifetime and die.

The particles’ attributes determine the rendering technique. They can be
rendered like light emitting particles, which means that during rendering, intensities of
particles falling into a single pixel are integrated to obtain its value. If they are,
however, rendered as light reflecting objects, shading computations must be performed.
For large datasets, the deterministic approach is exchanged for probabilistic attitude,
where the particle’s position and orientation only act as parameters for computing the
probability that the particle is lit directly and the ambient, diffuse and specular
components are assigned according to this probability [39].

Streamlets
Streamlets are generated by integrating the flow vectors for a very short time. Even
though short, streamlets already communicate temporal evolution along the flow. Figure
7 illustrates an example of inspecting 2D flow field by several streamlets. This
technique is easily extendable to 3D, although perceptual problems may arise due to
distortions resulting from the rendering projection. Thus, seeding becomes more
important in 3D.

Figure 7: The field from Figure 1 visualized by streamlets (also taken from [30])

Löffelmann and Gröller [31] use a thread of streamlets along characteristic structures of
3D flow to gain selective, but importance-based seeding. They employ a probability
distribution function assuring the streamlets to be distributed uniformly around a
selected base trajectory. The function is designed so that with increasing distance from
this trajectory, the distribution of streamlets fades out. As the authors claim, the shape
of the field of streamlets will then directly depict flow properties like local
convergence / divergence or rotational behavior with respect to the base trajectory.
Moreover, the streamlet length represents a perfect mean to intuitively visualize flow
velocity.

Streamlines
Performing longer integration, in comparison to streamlets, results in obtaining
streamlines. These offer an intuitive semantics, because users naturally understand that
flows evolve along such integral objects. This statement, however, holds in the case of
stable vector fields only. For time-varying data, streak line visualization works better

23

(see section Streak Lines and their Seeding bellow for details). Concerning the
extension to 3D, the same condition stands for streamlines as well as for streamlets –
careful seeding is necessary. Otherwise, visual clutter can easily become a problem and
the results might be difficult to interpret. The streamline seeding strategies are discussed
in a separate section bellow.

To avoid visual chaos and improve perception of various fieldlines in 3D,
Zöckler et al. present illuminated streamlines [63][54]. It is necessary to note that this
technique could be applied on streaklines and timelines as well. Proper illumination
greatly improves spatial perception of complex scenes. However, approximating
streamlines (or any other field lines) by cylindrical tubes, which can be illuminated in a
straight- forward way using graphics libraries like OpenGL, introduces too many
triangles into the scene, thus decreasing the maximum number of streamlines, which
can be displayed interactively.

The authors, therefore, present a way of applying Phong-like local illumination
model directly to one-dimensional lines, although such an approach is not directly
supported in OpenGL. They implement the effect via texture-mapping, utilizing
hardware acceleration. For every vertex of a line segment the line's tangent vector is
specified as a three-component texture coordinate. Texture coordinates are transformed
by a texture transformation matrix before the actual texture lookup is performed. Thus,
by initializing this matrix with the current light and view vectors the inner products
required for proper illumination can be computed on the fly. By making the streamlines
partially transparent, the authors also address the problem of occlusion. Concerning the
seeding strategy, they recommend an interactive probe, which can be moved by users
according to their immediate needs. Distributing the lines near potential objects of
interest was also shown.

Streamline Seeding Strategies
The streamline seeding strategies are of high importance for the informative as well as
aesthetic quality of the outcoming image, thus being a subject to an investigation. This
topic is, in our opinion, worth a separate section. In the following paragraphs, therefore,
these approaches will be categorized and discussed.

First of all, however, the goals that an ideal seeding strategy attempts to reach
will be specified together with their priorities.

Goals for Seeding
The aims to achieve in development of the streamline seeding strategy might be put as
follows [59]:

• Coverage: The streamlines should not miss any interesting regions in the
vector field. The interesting regions are those that we would like
to study in the vector field, e.g. critical points, separation, and re-
attachment lines. In addition, streamlines should cover the entire
region of the field. Hence, even if the field is more or less
uniform in certain region, some streamlines should indicate the
uniform nature of the flow in such area. This goal is considered to
be of greatest priority because from a scientific point of view the
information content of any visualization is the most important
aspect. It is also easier to achieve than the other goals because
one can always generate a lot of streamlines such that nothing
important is missed. However, simply populating the field with

24

more streamlines is not acceptable because some areas in the flow
field, such as convergent regions, will force streamlines to cluster
together, making it difficult to distinguish among individual
streamlines. Moreover, it suppresses the characteristic of
uniformity as described next.

• Uniformity: The streamlines should be more or less uniformly distributed over
the field. This is a more challenging goal to achieve because
while we can control where to place the seeds, we do not know
how the resulting streamlines will behave. Uniformity is directly
related to the density of streamlines crossing a unit area of the
flow field. Hence, density of streamlines is an important
parameter. This goal of a uniform spatial distribution of
streamlines is important only to the extent that it does not
interfere with the most important goal of achieving a good
coverage.

• Continuity: It is desirable from the point of view of aesthetics that the
streamlines show continuity in the flow. Hence, one would prefer
fewer long streamlines over many short streamlines. The latter
tend to give the impression of “choppiness” while the former tend
to give an impression of smooth continuous flow. In general,
given an arbitrary flow field, the longer the streamlines, the
higher the likelihood that they will tend to crowd together in
some areas and disperse in other areas, thereby making it difficult
to meet both the uniformity and continuity criteria
simultaneously. Therefore, this parameter needs to be balanced
against the uniformity criterion. Although the aim to achieve an
aesthetically pleasing visualization has its merits, it should not
compromise the other two goals (coverage and uniformity), hence
it is lowest on our priority scale.

Grid Aligned Streamline Seeding
Since most flow fields are defined over a grid, a popular seeding strategy is to seed at
the grid points. With such approach, no important features are missed but, on the other
hand, too many streamlines must be traced. Furthermore, the streamlines tend to clutter
unpredictably. Even if the grid is sub-sampled to reduce the density of streamlines,
cluttering is still difficult to avoid. Finally, in case of regular grids, such seeding may
produce visual artifacts that are not present in the flow field, because the underlying
regular structure can be perceived in the output image (Figure 8 left). It is also
necessary to point out that regular streamline seeding does not imply regular streamline
distribution (Figure 8 right), which also discourages form applying methods focusing on
uniform seeding, which have been developed for placing arrow plots and glyphs (e.g.
[11] briefly reviewed in section 3.2.2). Depending on the flow field, plain seeding on a
regular grid often brings cluttered images, where the individual streamlines can be
difficult to distinguish in important regions, for instance, around critical points. The
above described requirements of coverage and uniformity may be violated by this
approach.

25

Figure 8: Regular seeding may introduce disturbing artifacts to the picture (left) or lead to

unbalanced streamline distribution (right) [59]

Density Guided and Image Guided Streamline Seeding
The density driven seeding strategies as well as the image guided techniques focus on
the problem of cluttering and address the aesthetic aspects of a flow visualization using
streamlines. These methods also enforce a uniform spatial distribution of streamlines.

In [33] Max et al. present, beside other, a way to cover a 3D surface (not
necessarily tangential to the field) with a set of streamlines. Once a seed point has been
selected in the field, they make a streamline growing beyond that point back-ward and
forward. The growing process is stopped when the streamline reaches an edge of the
surface, a singularity in the field (source or sink) or becomes too close to another
streamline. The streamline is then divided into a set of small segments of contrasting
color and projected onto the surface. Although this method was intended to visualize a
flow on a 3D surface, it can be generalized to all kinds of steady 2D fields.

In [57] the placement of streamlines at a specified density is reached via
minimization of an energy function. The method uses a low-pass filtered version of the
current image to measure the difference between this image and the desired density
value. The energy is reduced iteratively by changing the positions and lengths of
streamlines, merging streamlines, and creating new ones. The resulting placement has a
hand-placed appearance and the streamlines appear to be neither too sparse nor too
crowded. Computation time for their method is significant.

Jobard and Lefer [19] extend the Max’s approach [33] showing how the
algorithm can be controlled by the user to produce a wide range of flow fields images,
ranging from hand-drawing to LIC-like style. They aim to produce long and evenly
spaced streamlines. An important feature of the algorithm is that, unlike Turk’s
progressive refinement approach, it works in a single pass. To compute an image, a
number of streamlines are calculated until a user-fixed density level has been obtained.
When computing a new streamline, a new seed point is chosen at a minimal distance
apart from all existing streamlines. Then a new streamline is integrated beyond the seed
point backward and forward until it gets too close to some other streamline or it leaves
the 2D domain in which the computation takes place. The algorithm ends when no more
valid seed points can be found. The quality of this method’s outputs is comparable to
that of [57]. The demands on computational time, however, are significantly lower.

All these methods manage to avoid clutter, present easy to understand pictures
and also dispose of disturbing artifacts that might lead to a misinterpretation of the flow
field. However, from the scientific point of view, the most important property of a

26

visualization technique consists in its ability to display all the important features of the
underlying phenomena. Methods in this group do not assure such behavior and in some
cases, they may fail to satisfy the coverage criterion.

Flow Guided Streamline Seeding
As already mentioned above, the major drawback of the methods above is that they do
not take guidance from the important features of the flow. None of the methods
guarantees that the resulting streamlines will capture all the essential features of the
flow field. Therefore, flow-guided streamline placement strategy was developed [59],
which takes the advantage of the knowledge of important features contained by the
flow.

The main idea consists in seeding around flow field’s critical points (consult
section Critical or Fixed Points in subchapter 3.4.1 for explanation) using seed
templates, which correspond to individual types of these points. The procedure is
straight- forward and consists of four essential steps:

1. Compute critical point locations and determine their type.
2. Segment the flow field into regions, each containing a single critical point,

by constructing a Voronoi partitioning over the set of all these critical
points.

3. Perform seeding at the vicinity of the critical points by applying the
appropriate templates conforming to the individual types of critical points.

4. Randomly insert additional seed points in the field using a Poisson disk
distribution to minimize closely spaced seed points.

Definition and classification of critical points will be given in the Feature
Extraction chapter together with an overview of methods focusing on extracting these
critical points from vector fields. Since the flow-guided seeding strategy exploits critical
points to a large extent, its description requires the knowledge of this term as well as the
knowledge of individual kinds of critical points. Briefly, we can say that critical points
are locations in a vector field where the vectors are null. Critical points are then
classified according to the behavior of the flow in their vicinity, thus forming centers,
saddles, attracting and repelling foci (i.e. sources and sinks) and attracting and repelling
spirals are recognized. (see Figure 9 for illustration).

27

Figure 9: Critical point classification in 2D (from [38])

The authors of [59] have found out that in close surrounding of a critical point,
the flow field usually resembles an ideal flow pattern for that type of critical point. The
further we move from the critical point, the higher is the influence of the other critical
points, which makes the flow behave less ideally in these areas. To be able to decide,
which critical point influences a given position in a vector field the most, Voronoi
segmentation is used to divide the flow field. Each Voronoi region then contains one
critical point and the size of such Voronoi region is an approximation of the extent of
this point’s influence.

Deciding about the size and shape of the seed templates depends on the type of
the critical point and was suggested as follows:

• center, spiral: For center and spiral type of critical points, the algorithm finds
the line segment that joins the critical point to the closest point on
the Voronoi boundary and seeds along this line segment.
Although other line segments might also be used, the authors
claim, that the ideal flow pattern of the critical points fades rather
quickly, and thus other possibilities mostly result in too many
streamlines and hence clutter.

• source, sink : For source and sink types of critical points, the algorithm seeds
along a circle’s perimeter. This circle has its center at the critical
point and it is the largest circle that would fit completely inside
the critical point’s Voronoi region. Hence, the radius of this circle
is equal to the distance between the critical point and the closest
point on the Voronoi boundary. In contrast to centers and spirals,
the ideal flow pattern of sources and sinks seem to extend further
out.

• saddle: For saddles, seeds are placed along two lines. These lines are the
bisectors of the principal eigenvector directions. The extent of
these lines is decided by their intersection with the Voronoi
boundary. The saddles are the trickiest to seed because if the seed

28

closest to the saddle’s location along the bisectors is not close
enough then the saddles are not captured properly. For this
reason, it is wise to seed two special streamlines very close to the
saddle. The seeds for these two streamlines are chosen to lie on
the same bisector but on the opposite sides of the saddle’s center.
The distance of these special seeds from the center is chosen to be
equal to one half the cell size of the grid.

In practice, the size of the templates can in fact be halved. Sufficient radius of the circle
for seeding around source and sink critical points is then equal to half the distance of the
critical point to the closest point on the Vorono i boundary.

Figure 10: Critical point seeding templates

Seeding only in a surrounding of critical points, however, leaves large blank areas in the
image. These regions do not contain any additional important features, hence the
seeding strategy can be less careful here. Verma et al. fill these regions by random
seeding driven by a Poisson disk distribution. Instead of searching for the blank areas,
the authors first determine the, so called, regions of influence of the critical points (i.e.
circles around the critical points with recommended, experimentally found, radius equal
to 0.8 times the template radius) and then perform the random seeding outside these
regions. Tracing from these random points introduces a few very short streamlines to
the output picture. These streamlines can be omitted from the visualization. Their
exclusion improves the aesthetic aspect and does not reduce the informative qualities of
the image.

There are two important consequences of seeding with the seed template before
the random seeds. By giving priority to seed templates, the coverage of flow patterns
near critical points is assured. Furthermore, the algorithm terminates a streamline when
it comes close to an existing streamline, thus earlier streamlines will tend to be longer
than later streamlines. Hence, streamlines traced from the seed templates are longer than
those traced using seeds placed randomly to fill in blank spaces. Such a strategy ensures
that the regions in the flow field close to critical points are given more importance than
other regions.

The authors compared this technique to the one of Turk and Banks presented in
[57] and briefly described above. Although the uniformity goal seems to be better
satisfied by the image-guided approach making the flow-guided method generated
pictures look slightly worse from the aesthetic point of view, the coverage criterion,
which was claimed to be the primary visualization goal, is definitely better met by the
flow-guided technique.

Moreover, it is necessary to realize that with the increasing number of traced
streamlines, the iterative nature of the image-guided algorithm causes a significant
growth of computational time. Potential further savings of computational time with the
flow-based technique arises from the fact that it is view-independent, unlike the image-

29

guided approach. This will show when users need to inspect the flow field from
different view-points.

Stream Ribbons, Polygons, Tubes, Balls, Surfaces, Arrows et cetera
Many extensions of streamlines have been developed because of various demands on
the visualization. We will only mention them briefly here, together with a short
description and a reference to the sources, where the methods were presented.

Stream ribbons [58] are in fact stream lines with a winglike strip, whose
orientation shows the rotational character of the flow.

Stream polygons [47] were developed to visualize tensor information in a vector
field. The stream polygon is a regular n-sided polygon oriented normal to a local 3D
vector in a given point and is deformed by either the whole deformation tensor, just a
component of it, or an additional derived tensor (e.g. the vorticity tensor for a velocity
field). Polygon’s shape, radius, number of sides and rotation reflect the vector field
quantities.

Stream tube [58] is constructed by computing a streampolygon in every point of
a streamline.

Stream balls [4] serve for visualization of divergence and convergence as well as
acceleration and slow down via splitting and merging.
Stream surfaces [17] are surfaces, which are tangent to the flow. Stream surfaces can be
approximated by connecting a set of streamlines along timelines.

Stream arrows [31][32] visualize flow direction, convergence or divergence and
other flow properties by cutting arrow-shaped pieces out from the stream surfaces, thus
leaving transparent arrow-shaped holes in these surfaces. Not only that the holes reflect
some flow features, they also allow the user to see through the surface in the front and
discover surfaces, which would normally be hidden behind it.

Streak Lines and their Seeding
As already mentioned, streak lines are integral curves, produced by simulating
continuous injection of particles into the flow field from constant location over certain
period of time. Displaying streak lines serves, at the first place, for unsteady flow data
visualization, for, in case of steady flows, streaklines coincide with streamlines and
pathlines. Visualizing unsteady vector data requires proper choice of the method to use.
Streamlines, for instance, bring certain amount of information about the underlying field
too, however, the results might be misleading in a way. Streamline computation always
exploits vector information from just a single instant of time. A trace obtained this way,
therefore, describes the trajectory of an imaginary massless particle moving through the
flow field at infinite speed, which diverges from what users would usually expect. Such
technique is called instantaneous. Streak lines, on the other hand, belong among time-
correlated methods, which progressively include information from consecutive
temporal instants letting the integral curve develop in time.

The nature of the instantaneous methods causes problems when used for
visualizing time-varying data via animations. Since they only exploit information from
one temporal level for creating a frame of the animation, they suffer from a lack of
coherence between individual images. A comparison of instantaneous and time-
correlated methods can also be found in [27] and [28], where some implementation
details about computing streaklines and timelines are mentioned.

The disturbing problem with lack of temporal coherence appears for example if
LIC (Line Integral Convolution) images are computed for each time step separately and
then put together, one after another, to make up an animation. An improvement has

30

been reached by Forssell and Cohen [13], who replaced streamlines with pathlines.
Their method produces better visualization of time-varying vector fields, yet it lacks
temporal coherence, where the flow is fairly unsteady. With time correlated methods,
this is not the case. The first approach of this sort is probably UFLIC (Unsteady-Flow
LIC), which employs certain kind of temporal convolution. Both, LIC and UFLIC will
be explained later, because they fall into the category of texture base methods. We have
mentioned them here to stay consistent, since the following methods draw on their
findings.

Sanna et al. [43] propose a geometric approach, which builds upon the
experience of the methods above and overcomes the temporal coherency problem. Their
algorithm follows streaklines in order to produce an image for each time step of an
animation. They also came up with an important finding that streak lines, as they
develop in time, overlap easier then streamlines and their orientation is less evident, if
just a single frame is inspected. Thus, the results might confuse the user.

To fix this flaw, another improvement was reached in [44] by designing more
adequate seeding strategy. The density of traced streaklines differs according to the
local vorticity of the vector field (refer to section Vorticity, Rotation or Curl in 3.4.1). In
the areas where higher velocity gradients appear, a larger number of traces is displayed,
while in the regions with smoother flow, a smaller number of streaklines is traced.
Moreover, each particle of a streakline is denoted by a color depending on the character
of the local vorticity in the area around such particle.

A set of insertion points, from which the particles are released, will correspond
to a set of pixels on the output texture. The insertion points are kept constant for the
whole animation. At each time step a new particle is released from each location and the
positions of the previously emitted particles are updated. In this way, each frame of the
animation maintains the coherence with the previous ones and the resulting sequence
can effectively show the evolution of the field in time.

Similarly as in the flow-guided streamline seeding strategy (see above), it is
necessary to avoid too sparse or even blank areas in the final image. Therefore, in order
to guarantee a minimum level of details all over the resulting image, the streaklines
starting from a subset of insertion points are traced independently of the vorticity
values. On the other hand, the particles released from the other insertion points will
affect the output frame only if they are placed in field zones where the vorticity is
greater than a user predefined threshold. In this way, the user can tune the magnitude of
the flow field details to be displayed.

Finally, the maximum length of the streak lines (L) can be set by the user before
the visualization starts. After releasing new particles in certain time step, the positions
of the previously emitted particles must be updated according to their locations inside
the vector field. Should the streak line exceed the length limit that is should it consist of
at least L+1 particles, the oldest one is dropped.

Time Surfaces
Time surfaces are the 3D equivalents of timelines in 2D. Time surface is produced by
inserting a set of particles from a 2D patch into the flow in one instant of time. The
evolution of the time surface’s shape reflects the character of the vector field.

3.3.3 Texture Based Methods
As well as the geometric visualization techniques, texture based algorithms utilize
integral curves, the computation of which was discussed in 3.3.1. Instead of displaying
them as individual geometric entities, a convolution with some kind of input texture is

31

performed. The type of the input texture as well as the integral curve used then makes
the difference between individual techniques. Apparently, texture base techniques need
two input structures, these being the vector field and the texture to convolve it with. An
overview of texture based vector field visualization methods can be found in [45].

Spot noise
Spot noise [61] is considered to be the first texture based vector field visualization
technique. The name is derived form the texture type used for the convolution. It
contains small, spots resembling, intensity functions distributed over the data domain.
Each of these spots then becomes a little dispersed by the influence of the vector field
and also moved on a path],[),(21 tttti ∈x . Therefore, the image of a single particle can
be obtained as:

 ∫ −=
2

1
,))(()(

t

t ii dh ttxxAx (24)

where A is a particle spread function. Image hi is the, so called, spot (or streak) of a
single particle. The sum of all spots characterizes the whole texture:

 ∑ −=
i

ii haf),()(xxx (25)

where x is a random starting point for each spot, and ai is a random scaling factor with a
zero mean. The shape of the intensity function hi is deformed according to the vector
field, which stretches the spots elliptically in the direction of the local field. The
algorithm was ineffective when visualizing regions with high velocity gradients.

Line Integral Convolution (LIC)
Line integral convolution (LIC) first presented in [8] and latter reviewed in [7] stands
for probably the best known texture based integral method for visualizing vector fields.
On the input, it takes the vector field to be visualized and a texture – usually some kind
of random image like for example white noise of the same resolution as the vector field
grid. These are then convolved together producing an image resembling surface oil
patterns, which can be seen in real world experiments. In other words, the white noise
texture is smeared along the direction of the streamlines. The convolution, LIC
performs, is thus one dimensional, which effectively correlates pixels located along
stream lines and leaves pixels in the transverse direction uncorrelated. A low pass filter
is used to restrict the convolution only to streamline segments of selected length.

To be precise, equation (3) defined for unstable flows must first be rewritten to
define an integral curve1 in a time independent vector field:

 ∫
=

+=
s

t

dtts
0

0))(()(pvpp . (26)

Having expressed a streamline p(s), LIC computes the pixel intensity at x0 = p(s0) as

1 In the following text, this integral curve will be reffered to as a streamline. As mentioned above,
streamlines, streaklines and pathlines coincide in time independent vector fields.

32

 ∫
+

−

−=
Ls

Ls

dssTsskI
0

0

))(()()(00 px , (27)

where T denotes an input texture. The filter kernel k is assumed to be normalized to
unity. In [53], the filter length L equal to 1/10th of the image width is recommended.
Animating and coloring LIC images (for instance according to the velocity magnitude)
can further extend the informative value of the results.

As a powerful method, LIC draws researchers’ attention. Thus, a method for
comparative analysis of this algorithm and visualizing streamlines by using non white
noise texture was suggested in [60] and is called PLIC (Pseudo-LIC). Shen et al. [51] on
the other hand developed a visualization software based upon line integral convolution
called GLIC (Graphical Line Integral Convolution). LIC has also been extended to 3D
surfaces in [1]. Besides these, LIC was upgraded to successfully visualize time
dependent vector fields in [50]. This is an important modification, which will be
described bellow in a separate section. First, however, some improvements to the LIC
technique itself will be described.

Despite the unquestionable effectiveness of the basic LIC algorithm, Stalling and
Hege [53] brought significant advances to this technique. They focused especially on
the speed up, smooth animations and detail enlargement.

Speeding up LIC
In traditional LIC a separate stream line segment and a separate convolution integral are
computed for each pixel in the output image. Since a single stream line usually covers
lots of image pixels, it redundant to always recompute large parts of a stream line.
Furthermore, for a constant filter kernel k very similar convolution integrals occur for
pixels covered by the same stream line. In [53], exploiting these observations is
proposed.

Consider two points located on the same stream line, x1 = p(s1) and x2 = p(s2)
separated by a small distance ∆s = s2 - s1. For constant k then obviously:

 ∫∫
∆++

+

∆+−

−

⋅⋅+⋅⋅−=
sLs

Ls

sLs

Ls

ds(sTkds(sTkII
1

1

1

1

))())()()(12 ppxx (28)

The intensities differ by only two small correction terms that are rapidly computed by a
numerical integrator. By calculating long stream line segments that cover many pixels
and by restricting to a constant filter kernel, both the redundancies can be avoided.

Animating Stable Flows
Changing the shape and location of the filter kernel k over time causes the LIC images
to be animated, thus reflecting not only the tangential but also the directional
information. The above restriction to constant filter, however, requires a different
approach. This can be achieved by rotating the box filter, which however introduces
disturbing artifacts, when the boxes reenter the interval. To see this, consider two points
p1 and p2 on a single stream line that are half a filter length apart. The corresponding
pixel intensities initially have a 50% correlation because half of the texture cells being
convolved are covered by both filter boxes. When the filter boxes reenter the interval,
correlation suddenly drops to zero, as demonstrated in Figure 11.

33

Figure 11: Correlation drop off with the box filter kernel shifting [53]

Since changing the filter kernel, which would solve this problem, is not possible with
the fast version of LIC, the authors suggest using frame blending. In this technique, a
sequence of images Bn, n = 0, 1,..., N-1, is computed, with the box filter running just
once along a streamline segment. Such sequence is not periodic any more, but exhibits a
constant intensity correlation. A periodic sequence A of length N/2 may be obtained by
smoothly blending between two phase-shifted B- frames:

 NnNnn BnwBnwA mod)2/1(2mod1)()(++= . (29)

Weights w1 and w2 are chosen as:

Figure 12: Weights for frame blending [53]

Then, pictures near the critical positions will have small weights and the transition from
one cycle to another will be smooth.

A great advantage can be seen in the fact, that this technique (unlike the standard
filter cycling approach) can also be applied when it is necessary to animate pictures
with variable velocities for individual pixels. Thus, vector magnitude |v| can be
recorded as well.

Level of Detail
The traditional LIC requires the output image to be of the same size as the input

texture. Fast LIC on the other hand allows to choose the output picture size
independently of the input image and the vector field resolution. Therefore, it is easy to
zoom in and out to the vector field in case of necessity. Since the fast LIC algorithm
utilizes the fourth order Runge-Kutta integration scheme described by equation (6), only
the time step size ∆t needs to be adjusted adequately when changing resolution.

34

Unsteady Flow Line Integral Convolution (UFLIC)
As mentioned in the section devoted to LIC, it is possible to animate the output images
to create a notion of a real flow. Referring to section 3.1.1, however, we recall that such
visualization only illustrates one temporal dimension, resulting from the differential
character of vector data. Yet, the data themselves are invariant in time. Another
temporal dimension is encountered, when dealing with time-dependent data, where the
vector field itself changes in time. We have already encountered this situation in section
Streak Lines and their Seeding in subchapter 3.3.2, where we have explained the tricky
physical meaning of streamlines in time-dependent data, defined the instantaneous and
time-correlated methods and drawn the distinction between them. In the same section,
we have also mentioned, why it is necessary to base time dependent data visualization
on streaklines, rather than streamlines. The LIC derived method tackling this problem is
called UFLIC and will now be briefly outlined.

This algorithm extends the LIC method by devising a new convolution algorithm
that simulates the advection of flow traces globally in unsteady flow fields. The input
texture (white noise as for LIC) is advected over time to create directional patterns of
the flow at every time step. The advection is performed by using a new convolution
method, called time-accurate value scattering scheme. In the time-accurate value
scattering scheme, the image value at every pixel is scattered following the flow‘s
pathline trace, which can be computed using numerical integration methods. At every
integration step of the pathline, the image value from the source pixel is coupled with a
timestamp corresponding to a physical time and then deposited to the pixel on the path.
Once every pixel completes its scattering, the convolution value for every pixel is
computed by collecting the deposits that have timestamps matching the time
corresponding to the current animation frame. To track the flow patterns over time and
to maintain the coherence between animation frames, a process is devised, called
successive feed-forward, which drives the convolutions over time. In the process, the
time-accurate value scattering is repeated at every time stamp. Instead of using the
white noise image as the texture input every time, the algorithm takes the resulting
texture from the previous convolution step, performs high-pass filtering and then uses it
as the texture input to compute the new convolution.

3.4 Feature Extraction
This chapter might also be called Topological Representation of Vector Fields. Methods
described here are based on extracting some topologically important features from the
vector field and their subsequent visualization. The advantages are apparent. Displaying
only the important features will significantly reduce the amount of visualized data.
Since the original datasets are usually rather huge, such reduction is necessary from at
least two reasons. Visualizing all the data values would, on the first place, be too slow.
Secondly, occlus ion and clutter caused by the quanta of more or less uninteresting data
might prevail and dominate the final views.

A disadvantage is that if some of the important features, which are present in the
original dataset, remained unrecognized by the extraction algorithm, it might lead to
misinterpreting the character and content of the information the vector field contains.

3.4.1 Feature Extraction Dictionary
The task of this section is to introduce basic concepts and some important and
frequently used terms from the feature extraction field. In the first place, the relation

35

between vector fields and general dynamical systems will be drawn along with the
recipe, how to represent a vector field so that the dynamical system analysis tools can
be applied to investigate it.

Vector Fields as Dynamical Systems
As already mentioned in sections 3.1.2 and 3.1.3, vectors in linear fields can be
expressed in the form v = Ap, where vectors v are functions of the spatial locations p,
with A being a constant n×n-matrix (in case of time independent fields). Such a
description classifies the vector field as a dynamical system, but it is only available in
case of analytical models. In practice, one usually works with a set of discrete samples
of the data. Numerical methods must thus be employed to obtain an approximation of
matrix A, whose analysis plays a crucial role for investigating the vector field via the
feature extraction methods. Before describing this process, the terminology will be
clarified using [32] and [30].

Gradient and Jacobian
Gradient and Jacobian are denoted by operator ∇, which produces a vector of partial
derivatives of its operand as shown in equation (30), where ∇ f(x) is called gradient for
scalar operand f(x) and ∇v(x) Jacobian matrix for vector function v(x).

) ..., , ,(
21 nxxx ∂

∂
∂
∂

∂
∂=∇ , grad f(x) = ∇ f(x), J = ∇ v(x) = ∂v / ∂x, (30)

Divergence
Divergence div v(x) of a flow is a frequently used scalar quantity, which can be
described as ∇⋅ v(x) or as the trace Tr of the Jacobian ∇ v(x). Symbolically:

 ∑ ∂∂=∇=⋅∇=
i

iiTr ,)/()()()(div xvvxvxv . (31)

Divergence determines the local amounts of incoming and outgoing flow and equals to
zero if these amounts are the same.

Vorticity, Rotation or Curl
Vorticity, rotation and curl all denote a vector ω = rot v(x), which points in the direction
of the axis of the flow’s rotation and its length equals to twice the angular velocity [44]:

)()(curl)(rot xvxvxv? ×∇=== . (32)

Stream Vorticity
The cosine of the angle enclosed by the vorticity vector rot v(x) and the flow vector v(x)
defines the scalar term stream vorticity Ω. Stream vorticity equal to 1 thus implies a
flow rotating around the flow vector v(x), while Ω equal to zero identifies a location,
where either the flow rotates in the plane containing the v(x) vector or where there is no
rotation at all. Symbolically:

vv
vv

?v
?v

×∇⋅
×∇⋅

=
⋅
⋅

=Ω
)(. (33)

36

Helicity or Helicity Density
Helicity and helicity density again denote the same quantity Hd, which defines the same
as no stream vorticity if equal to zero. Helicity

)(vv?v?v ×∇⋅=⋅=⋅⋅Ω=dH , (34)

however, increases proportionally to the length of ω and v.

Circulation
Circulation Γc equal to zero for any closed curve C indicates that a potential function f
exists, for which grad f(x) = v(x), and this function can then be used for analysis instead
of v. If Γc = 0 for ∀C, then there is no rotation in the field at all. Mathematically:

 ∫∫ ==Γ
Sc

c dSds)(rot)(xvxv , (35)

with S being the surface of an arbitrary volume containing closed curve C.

Critical or Fixed Points
Critical points, sometimes also called fixed points, are locations within the vector field,
where vector v vanishes to zero. These points are important topological places and their
location provides a basis for many visualizing methods.

3.4.2 Analyzing the Transformation Matrix
At the beginning of the previous section, vectors v were expressed as a function of
positions p, where the relation was described by matrix A as v = Ap. Hence, A can be
regarded as a transformation matrix between the spaces of p and v. Analyzing this
matrix will therefore bring valuable information about the flow, sufficient to investigate
it. First, however, it is necessary to describe, how to extract such matrix from the
discrete samples if the analytical model of the system is unknown.

Approximation in the Discrete Case
If the analytical model is unknown, the Taylor series expansion must be utilized locally
to find the relation between v and p, supposing the flow v to be sufficiently smooth and
differentiable. In such case, the expansion of v about point x0 is [14]:

)()(2x
x
v

xxvv 00 ∆+
∂
∂−+= O . (36)

Omitting the remainder term, equation (36) can be rewritten using the matrix notation as
[20]:
















⋅

























∂
∂

∂
∂

∂
∂

∂

∂

∂

∂

∂

∂
∂

∂
∂
∂

∂
∂

+
















=
















∆⋅+=

z
y
x

z
v

y
v

x
v

z

v

y

v

x

v
z

v
y
v

x
v

v
v
v

v
v
v

zzz

yyy

xxx

z

y

x

z

y

x

δ
δ
δ

,0

,0

,0

xJvv 0

 (37)

37

where (δx, δy, δz) is the Cartesian coordinate vector assuming x0 to be the origin. Vector
v0 is the velocity vector in the origin and J = ∇v the Jacobian matrix. The coefficients of
v0 and those in the Jacobian matrix are constants. If the discrete mesh decomposes into
tetrahedral elements, these constants have an analytic solution as a tetrahedron has four
vertices, precisely the right number of datum points to evaluate the 12 coefficients of a
3D linear interpolation function. For linear vector fields, like that described by equation
(37), the flow’s general shape can be determined. Matrix J only has local validity (i.e. it
is different for each tetrahedron) and it is most often examined in critical points, where
v0 equals to a zero by definition and J is thus identical to matrix A in the definition for
the analytical models. The advantage of investigating J near critical points is that in
these locations, non-linear fields can also be studied, because the higher order terms in
the Taylor series expansion tend to vanish near the critical points, thus the linearization
of the non- linear field by disregarding these terms does not cause significant
inaccuracies (see [32] for details). The information encoded in the Jacobian matrix J
will be revealed in the following paragraphs.

Eigenvalue/Eigenvector method
One way to examine the behavio r of a vector field is to compute the eigenvalues λi
(from det(J - λi ⋅ I) = 0) and corresponding eigenvectors ei (from J ⋅ ei = λi ⋅ ei) of J in
the critical points. When interpreting the Jacobian matrix as a transformation, its
eigenvectors will point in the directions, which are invariant to this transformation. The
way such a line itself is transformed is given by the corresponding eigenvalue λi.

The constellation of the eigenvalues and eigenvectors gives rise to critical point
classification, for the 2D case already mentioned in the Flow Guided Streamline
Seeding section in subchapter 3.3.2. In 3D, the situation is analogical, as depicted in
Figure 13. Although more combinations are possible, the principle is the same.

Figure 13: Vortex classification in 3D

When a critical point is located, its type must be determined. This is done by examining
the three eigenvalues of J, which can be either three real numbers or one real and two
complex conjugate numbers. The two eigenvectors derived from the complex conjugate
eigenvalues define a plane, which contains the swirl of the flow. The third one is the
axis of the swirl and if subtracted from the vector field a purely rotational flow will be
obtained.

38

As already mentioned, critical points stand for a topologically important feature
and they are often used as the starting location for integrating streamlines, thus
describing the field comprehensively.

Jacobian Matrix Decomposition
Another possibility to extract the information from the Jacobian matrix J, is to
decompose it into a symmetric matrix J+ and an antisymmetric matrix J- [32], where:

 2/)(,2/)(TT JJJJJJ −=+= −+ . (38)

The elements of these two matrices then have the following meaning:

)(div)(and , xvddd
d

d
d

zyx

z

y

x

=++
















••
••
••

=+J , (39)

with the elements • represent the shear strain,

)(rot and ,
0

0
0

2
1

xv
r
r
r

rr
rr

rr

z

y

x

xy

xz

yz

=
































−
−

−
=−J . (40)

J in Local Coordinate System
If the flow’s Jacobian J is studied at some point of a trajectory of the flow, it can also be
transformed to conform the local coordinate system determined by the Frenet-Frame (J
→ Jloc), whose elements are given in
















=

dtdc
tddc

ssa
loc

,
,J , (41)

where elements a, s and c describe changes of the flow parallel to v(x). More precisely,
a gives the acceleration, s the shear strain and c the curvature. Elements d and d, t, on
the other hand, specify changes in the direction perpendicular to v(x). Splitting this
2 × 2 part of the matrix into a symmetric and an antisymmetric parts, elements d would
denote divergence and t the torsion of the flow.

3.4.3 Extraction of Features
Using the above described knowledge of the vector field, various physical
characteristics can be searched within the data. These characteristics are called features.
The choice of features to look for within a data set depends heavily on the application,
taking into account the character of the vector data and the purpose of visualization.
Probably the most frequently used examples from the field of flow visualization are
vortex cores, shock waves, separation and attachment lines etc. Numerous methods
exist to locate and extract these features within a vector fields and for tracking these
features over time in case of time-dependent data. For an overview of the main
approaches, refer to [38] and especially to [41].

39

3.5 Derived (Scalar) Value Visualization
Another approach of visualizing vector fields is based upon the fact that in some
situations it is possible or even necessary to represent the vector data by some scalar
values. A very intuitive example is searching for a region in a flow field, where velocity
magnitude reaches certain user specified limit. Similarly as in the methods discussed in
the previous chapter, where some objects (integral or topological) were first extracted
from the vector field and then visualized, here scalar values are derived from the vector
data first and these values are then processed and visualized. The most common
operation with the scalar values being isosurface extraction. The whole process is
sometimes also called dimension contraction. In multidimensional data visualization,
reducing dimension is a generally popular concept, as we will see later in the chapter
devoted to tensor field visualization.

3.5.1 Types of Derived Values

In this section we outline a few examples of scalar values, which may be derived from
vector data and which may be requested for visualization by the user. These examples
come from [39]:

• The magnitudes of all velocity vectors v define a scalar field.

• The kinetic energy density is 2

2
1

v⋅⋅ ρ .

• The scalar product of two vectors is a measure of the angle φ between
them:

 φcos⋅⋅=⋅ vuvu (42)

This can be used to find the components of all velocity vectors in a given
direction, or to find the changes in direction at two neighboring points.

• The magnitude of the vorticity ω may be used to find vortices. Using ω,
helicity density is computed as: ?v ⋅=dH .

• The scalar fshock is defined for compressible media as:

c
v

p
p

f ⋅
∇
∇

=shock , (43)

in which c is the speed of sound. The isosurface for fshock = 1 shows shock
waves.

3.5.2 Visualizing Derived Values
Once computed, these scalar values may be depicted and investigated using common
methods for scalar volumetric data visualization. The term “Once computed”, however,
does not mean that the whole scalar field needs to be computed first in preprocessing
and only then visualized. In fact, with regard to the increasing size of data sets, these
scalar values must often be derived from the vector data on the fly. On the other hand,
should the user need to, for instance, extract multiple isosurfaces, it is wise to consider
precomputing the whole scalar field in advance and storing it together with the vector
field if possible. Simply, the ubiquitous trade-off between size and speed must be
considered before choosing the right attitude for implementation.

40

We will not describe all the numerous techniques devoted to scalar field
visualization (iconic visualization, direct volume rendering etc.), because it falls behind
the scope of this work. On the other hand, we will briefly touch probably the most
popular approach, isosurface extraction and visualization (chapter 6), since it is one of
the topics we have dealt with.

41

4 TENSOR FIELD VISUALIZATION

Similarly as vector fields, tensor datasets also represent a crucial form of storing
information in numerous engineering and physics disciplines. To be precise, vector (or
scalar) field is nothing else but a field of first (or zero) order tensors. This chapter,
however, only deals with second and higher order tensors. In this respect, the most
frequently used tensor datasets are fields of second order tensors, on which we will
focus primarily. Yet higher order tensors can also be encountered and therefore we will
give them some attention as well. An example of higher order tensor would be
describing the piezoelectric properties of a crystal by 27 = 33 quantities, thus using a
third order tensor. Elasticity of anisotropic body requires 81 = 34 numbers, which means
a fourth order tensor [35].

As one might have expected, multiple approaches for visualizing tensor fields
have appeared. The information encoded in tensors is, however, very complex and, as
compared to vectors, much less intuitive for humans. Lucidity is very hard to reach in
this field of visualization and thus the methods need to be rather smart, not to have the
user misinterpret the results and gone astray.

4.1 Theoretical Background
To prove that the motivation for visualizing tensor fields is not artificial, a list of some
commonly used physics tensor quantities, which deserve visualizing, will be presented
first. Afterwards, some basic tensor theory will be shortly explained. A comprehensive
description with examples can be found in [35] (in Czech). Illustrative images and
explanatory videos concerning concrete results of advanced techniques for tensor data
visualization can be found at [62].

4.1.1 Physical Tensor Quantities
In [10] some physics tensor quantities from the fluid flow area are listed. We will also
use them for illustration (see Table 3).

42

k

i
ki x

v
v

∂
∂

=
*

, Velocity gradient (u)

ikkiik vv ,, +=ε Rate-of-strain tensor (s)
**

ikik ηεσ =′ Viscous-stress tensor (s)

ikikik p σδσ ′+−= Stress tensor (s)

kiikik vvp ρδ +=Π ′ Reversible momentum flux density tensor (s)

ikikik σ ′−Π′=Π Momentum flux density tensor (s)

* In non-Cartesian coordinate system, covariant derivatives must be used instead
** In compressible flows, there is an additional term involving the divergence of the
velocity field.

p = pressure
ρ = mass density
νi and νk = velocity components
η = viscosity

δ ik = Kronecker symbol
(u) = unsymmetrical
(s) = symmetric

Table 3: Tensor fields in fluid flows

4.1.2 Tensor Fundamentals
More definitions of tensor exist depending on which feature should be emphasized. The
most common way is to define tensor as an object, which obeys a specific
transformation rules under a change of coordinate system. But it can also be defined as
a multi- linear map between vector spaces [3]. For the purposes of the following
paragraphs, the second definition suits better. A second order tensor quantity is defined
to be a bilinear map νω ⊗ such that:

 1),(),(),()(=⋅=⋅⊗ baba νωνω (44)

Here ω and ν are co-vectors, i.e. linear maps (dot products) on the a and b vectors such
that ω ⋅ a = 1 and ν ⋅ b = 1.

In more familiar matrix notation for a 3-dimensional space, equation (44) can be
expressed as:

 [] 1

3

2

1

333231

232221

131211

321 =
































a
a
a

bbb
νωνωνω
νωνωνω
νωνωνω

 (45)

Thus a second order tensor takes the form of a square matrix and associates state with
two directions in space. Provided we have a tensor T = ω ⊗ ν and the vectors a and b,
the original co-vectors may be computed form the following expression:
































=

















3

2

1

333231

232221

131211

3

2

1

a
a
a

νωνωνω
νωνωνω
νωνωνω

ν
ν
ν

 (46)

and

43
































=

















3

2

1

333231

232221

131211

3

2

1

b
b
b

νωνωνω
νωνωνω
νωνωνω

ω
ω
ω

 (47)

Indeed, the inner product of T and any linear combination of a and b produces
the appropriate linear combination of ω and ν. Thus the tensor is a specific map
between the vector space spanned by a and b and the vector space spanned by ω and ν.

For example, the stress tensor at a point is a set of components containing stress
state information for any arbitrarily oriented plane passing through the point.
Multiplication of a unit vector representing a plane normal by the stress tensor gives one
of the two stress vectors (also known as a traction vectors) representing the stress on
that plane (Multiplication by the negative normal would yield the second stress vector
acting on this plane):
































=

















⋅=

3

2

1

333231

232221

131211

3

2

1

n
n
n

s
s
s

σσσ
σσσ
σσσ

nSs

 (48)

In this case, we are mapping between the set of 3D plane normals and the set of 3D
stress vectors acting on those planes.

Tensor Decomposition
General second order tensors contain nine independent scalar quantities. It is desirable
to reduce this dimensionality in a meaningful way as an aid in understanding the
physical state represented by a tensor. To do so, some visualization techniques exploit
Symmetric-Antisymmetric decomposition. Another possibility is a Polar Decomposition.
Sometimes it is also desirable to filter out a background isotropic contribution, which, if
dominant, may suppress interesting features. Decomposition to isotropic and deviator
tensors is used for that purpose. These three operations are described in the following
paragraphs.

Symmetric-Antisymmetric Decomposition
Any second order tensor may be decomposed into the sum of a symmetric tensor S and
an antisymmetric tensor A [35]. Symbolically written:

)(
2
1

)(
2
1 tt TTTTAST −++=+= (49)

Where,

















−−
−=
















=

0
0

0
 and

2313

2312

1312

332313

232212

131211

aa
aa
aa

sss
sss
sss

AS . (50)

The antisymmetric tensor A is also called axial.

44

Polar Decomposition
Any second order tensor may be expressed as a product of a stretch tensor V and an
isometric transformation tensor Q. There are two equivalent ways to do so (Figure 14).
Symbolically written:

 QVQVT 21 == . (51)

Here, Q is an orthogonal tensor and both V1 and V2 are symmetric positive definite
tensors (i.e. symmetric tensors with real and positive eigenvalues). Regions, where Q
reduces to a plus or minus identity matrix, the field is symmetric. It is also necessary to
note that where det(T) ? 0, there is a unique correspondence between matrix T and the
set of matrices {Q, V1, V2}. If the determinant equals zero, Q can not be computed, so
visualization methods would have to bypass such a region by e.g. interpolation [10].

V 1

V 2

Q QT

Figure 14: Polar decomposition – two equivalent ways are possible

Deviator-Isotropic Decomposition
Any second order tensor may be decomposed into the sum of a deviator tensor D and an
isotropic tensor U. Symbolically written:

 UDT += (52)

Where,























=























−

−

−

=

q

q

q

qttt

tqtt

ttqt

3
1

00

0
3
1

0

00
3
1

 and

3
1

3
1

3
1

332313

232212

131211

UD . (53)

Here, ∑
=

=
3

1i
iiq T is the trace of T.

The deviator- isotropic decomposition can be applied to tensors in general, or to
the symmetric part of a symmetric-antisymmetric decomposition. The deviator has no
meaning in the context of the antisymmetric portion of a tensor since the diagonal
elements are null.

45

Fluid Flow Example
Some of the tensor visualization methods make use especially of the symmetric-
antisymmetric decomposition, the deviator- isotropic tensor decomposition or their
combination. This will be demonstrated on the example of velocity gradient, which
must sometimes be investigated when dealing with fluid flows. From this physical
quantity, represented by a second order tensor, many other useful quantities can be
derived (see Table 3).

The velocity gradient can be obtained using the first order Taylor’s series
expansion of the velocity at a point:

 rvvv
vvv

vv 00 δδδδ ⋅∇+=
∂
∂+

∂
∂+

∂
∂+=)(or z

z
y

y
x

x
, (54)

where

























∂
∂

∂
∂

∂
∂

∂

∂

∂

∂

∂

∂
∂

∂
∂
∂

∂
∂

=∇

z
v

y
v

x
v

z

v

y

v

x

v
z

v
y
v

x
v

zzz

yyy

xxx

v . (55)

Applying the symmetric-antisymmetric decomposition yields the following tensors:

























∂
∂

∂
∂

+
∂

∂

∂
∂

+
∂

∂
∂
∂

+
∂

∂

∂

∂

∂

∂
+

∂
∂

∂
∂

+
∂

∂
∂

∂
+

∂
∂

∂
∂

=

z
v

y
v

z

v

x
v

z
v

y
v

z

v

y

v

x

v

y
v

x
v

z
v

x

v

y
v

x
v

zzyzx

zyyyx

zxyxx

)(
2
1

)(
2
1

)(
2
1

)(
2
1

)(
2
1

)(
2
1

S (56)

























∂

∂
−

∂
∂

∂
∂

−
∂

∂
∂

∂
−

∂

∂

∂
∂

−
∂

∂
∂
∂

−
∂

∂
∂

∂
−

∂
∂

=

0)(
2
1

)(
2
1

)(
2
1

0)(
2
1

)(
2
1

)(
2
1

0

z

v

y
v

z
v

x
v

y
v

z

v

y
v

x

v
x
v

z
v

x

v

y
v

yzxz

zyxy

zxyx

A . (57)

The Taylor’s series expansion from (54) can then be also decomposed to

 rArSvv 0 δδ ⋅+⋅+= . (58)

From equation (58) we can see that the velocity consists of and can be decomposed into
local translation (v0) plus local rate of strain (S + δr) plus local rigid body rotation
(A + δr). The symmetric part (S) has six independent components, three in either the
upper or lower triangular matrix plus three components on the diagonal. This
multivariate data may be visualized, for instance, by hyperstreamlines (see section
Hyperstreamlines in subchapter 4.2). Since the diagonal components of the
antisymmetric portion (A) are zero, it has only three independent components. This
corresponds to a rotation vector that can be visualized as hedgehogs or ribbons imposed

46

on visualizations of the symmetric tensor. This technique was described in [10] and will
be discussed later in the Hyperstreamlines section.

Before visualization, however, the deviator- isotropic tensor decomposition can
be performed to filter out the background isotropic component, which is uniform in all
directions and might suppress the deviator [25]. Here, quantity q in the two equations

(53) would then equal to v⋅∇=
∂

∂
+

∂

∂
+

∂
∂

=
z

v
y

v

x
v

q zyx , which is the velocity divergence.

Thus, for the velocity gradient tensor, the deviator corresponds to removing one third of
the velocity divergence from each of the diagonal elements.

4.2 Second Order Tensor Visualization
Visualization methods for second order tensor fields will be discussed in this section.
As already mentioned, second order tensors are produced by numerous applications in
physics and engineering such as fluid flow simulations [10], mechanics and material
science but also in seismology [46], biology [24] etc. In this section, we will describe
current approaches.

Coloring Coding
These methods offer an aid for understanding the tensor data by displaying its scalar
components in a two or three dimensional form. More precisely, the scalar values are
mapped to color and then applied on the orthogonal planar slices through the volume.
These colored slices are usually presented in a 3 x 3 panel layout. Three dimensional
second order tensors consist of 9 scalars, thus one slice corresponds to one of the 9
scalar components (Figure 15). The picture demonstrates that although all the scalar
values are depicted, this method does not provide an intuitive understanding of tensors.
An inexperienced user will have difficulties to mentally integrate the visual information
and interpret its meaning.

Figure 15: The color coded slices in a 3x3 panel layout [22]

47

Another way is to apply color coding on the images of the tensor‘s eigenvalues.
Although the scalar values in these images are rotationally invariant and they
communicate some geometric information, no directional cue is involved [24].
However, the directional information is too valuable to be omitted. From this reason,
color coding tensors can not be considered effective.

Tensor Glyphs
These methods depict selected data via simple local icons representing, for example,
eigenvalues and eigenvectors at seed positions. Such discrete icons are usually called
tensor glyphs and their design and placement need to be done wisely. Glyph choice and
seeding are crucial for the understandability and the informative value of the resulting
images. Tensor glyphs map tensor information from discrete locations within the field
onto a geometric object. As mentioned above, mapping the three eigenvectors as
principal axes of an ellipsoid is a good example (Figure 16).

Figure 16: Examples of glyphs to map various quantities on (taken from [40])

Other additional derived information such as shear, convergence/divergence and
curvature can be also added onto a flow probe depicted in Figure 17. Another technique
of this kind is using deformed cube, which displays a Frenet coordinate frame to show
local relative stretch, shear, and rigid body rotation at a point. Glyphs allow the
possibility of comprehensive displaying all the tensor information at a particular point.
Their discrete nature, on the other hand, does not allow to show the information
continuously. Furthermore, improper seeding may cause glyphs overlapping and thus
clutter.

48

Figure 17: A tensor probe

Hyperstreamlines
Tensor field lines and hyperstreamlines [10] are extensions of vector streamlines into
tensor fields. For symmetric tensor fields, the three orthogonal eigenvector components
are sorted into largest, median, and smallest eigenvalues. Tensor field lines and hyper-
streamlines are then generated by integrating along one of these eigenvector fields.
General hyperstreamlines allow the two other eigenvectors and their corresponding
eigenvalues to modulate an ellipse along the principal hyperstreamline.

For non-symmetric tensor fields, where the three eigenvector components are
not necessarily orthogonal to each other, the tensor field is first decomposed into a
symmetric tensor field and an accompanying axial vector as shown in equation (50).
Ribbons along the hyperstreamlines are then added to show the rotational effects of the
axial vector.

Visualization based upon the eigenvectors and eigenvalues ensures that all the
directional and amplitude information will be included in the final result. On the other
hand, only one of the eigenvector fields is used for integrating the hyperstreamline.
Therefore, there are two other possible hyperstreamlines that can result from a single
seed point, so the understanding of the tensor field must be done separately for each
eigenvector component. The user must integrate and interpret these three different
views mentally.

Topological Approach
This approach aims to provide a global structural representation of the tensor field by
first identifying degenerate points (trisectors and wedge points), which are locations,
where at least two of the tensor’s eigenvalues are equal to each other, and connecting
them with topological skeletons (hyperstreamlines). The result of this approach is a
display of the important features in the tensor field at the same time showing the
continuity (and discontinuities) in the field. Topological tensor field visualization is a
direct extension from topological vector field visualization. Morover, as [16] claim, the
tensor field topology is often simpler than that of a vector field. While this class of
methods draws the user’s attention to the special features in the field, the user still has to

49

mentally reconstruct the rest of the field around these degenerate and critical points and
skeletons.

Deformation Visualization
Boring and Pang [3] suggest visualizing symmetric second order tensor fields by letting
the tensors deform a geometric object, plane for instance. First, the so called resolute
vector of the tensor, which determines the tensor’s impact on an interrogation object I
with normal n, is computed at all points defining I using equation (48). Where the
tensor is unknown, trilinear interpolation is used to approximate it. The resolute vector
is then applied. The displacement of point I(x) of the interrogation object to a new
position O(x) follows the following rule:

)]()([)()(xnxTxx ⋅+= sIO , (59)

where x denotes position, s is a scale factor, T(x) tensor at x and n(x) is the user
selected normal at the position of x. The product T(x) ⋅ n(x) is the resolute vector. The
deformed object illustrating the impact of the tensor field’s influence is then visualized
using appropriate visualization techniques. Should we need to separate the normal and
shear component of the resolute vector r(x) = T(x) ⋅ n(x), equation (59) must be
modified to

)]()]()([)([)()(

or)()]()([)()(

xnxnxrxrxx

xnxnxrxx

⋅−+=

⋅+=

sIO

sIO
 (60)

for the normal or shear components respectively.
Instead of really deforming the object, it is also possible to keep its geometry

untouched but replace its normals with the resolute vectors at the corresponding
locations. Adjusting the light position and direction, the areas, where the resolute
vectors are shear or normal, can be recognized quickly.

This approach can, in fact, be classified as an attitude based on dimension
contraction. By selecting the normal vector n, the problem is reduced to visualization of
vector fields. As the field of the resultant vectors is derived from a tensor field and
depends on the selected normal vector, common vector visualization techniques might
fail to depict all the information, which is why the object deformation is used.

4.3 Higher Order Tensors
For higher order tensor field visualization, contracting the dimension is crucial. A way
to do so is choosing certain parameters to eliminate the independent variables, for the
depiction of which there would be no more visualization means left. It is similar as in
the Deformation Visualization section above, where the user had to choose a specific
surface normal to transform the second order (deformation) tensor field visualization
problem to a problem of depicting a field of resolute vectors. An example of higher
order tensor visualization is given in [23], where a fourth order stiffness tensor studying
symmetries of the propagation of waves in different anisotropic crystal class symmetries
is described:

 0][2 =⋅⋅⋅−⋅⋅ kkljiijkl pv??C δρ . (61)

50

In this equation, vector pk is the vibration direction and the two vectors υ1 and υ2 denote
the propagation direction of the wave and they are contracted with the fourth order
stiffness tensor Cijkl, thus reducing the problem by two orders. For illustration, we can
write:

 0)(=⋅⋅− kklkl ndß β , (62)

where

 2v and , ρβ === kkjiijklkl pn??Cß . (63)

Having performed the contraction, the problem reduces to a second order tensor
eigenvalue problem. Note, however, that β kl is not just a simple second order tensor but
it derives its properties from a higher order tensor and hence enjoys a much richer
surface topology then a simple stress quadric.

For visualization of βkl, tensor glyph is used (Figure 18). In accordance with the
statement in the previous paragraph, the depicted glyph is not just a simple quadric like,
for instance, the ellipsoids mentioned in section Tensor Glyphs in subchapter 4.2. It
must reflect the properties of the fourth order tensor Cijkl. Indeed, the glyph in Figure 18
iconically characterizes all of the components of Cijkl via its shape (eigenvalues) and
color (eigenvectors).

As Kriz et al. claim in [23], sixth order tensors associated with the strain cubed
terms of the strain energy density function can also be visualized by modifying equation
(61) to include the effect of load induced anisotropy. This problem is also an eigenvalue
problem but now with sixth order tensors. With an applied load, the resulting glyph in
Figure 18 should deviate from a symmetric shape. This shape change not only
represents a change in elastic anisotropy but should also show the load direction to the
viewer.

Figure 18: A glyph for visualizing higher order tensors

51

5 MULTI-SCALAR DATA

The last type of multi dimensional data, the visualization of which will be discussed in
this work is multi-scalar information. In other words, the following paragraphs briefly
describe, how to visualize datasets consisting of several scalar fields put together. An
example of such data is a field containing pressure, density and temperature at each
sample point. In the case of multi-scalar data, no explicit relation among the values is
usually known. Therefore, the visualization methods concentrate particularly on
producing views, which would reveal the existence and the character of such relations.

5.1 Parallel Coordinates
The parallel coordinates technique, presented in [18], differs from all the other
approaches in its nature, because it uses parallel coordinates for depiction instead of
orthogonal ones. Although we will not describe it in detail, nor its further extensions,
yet it has to be mentioned here.

The underlying idea is mapping an nD space on a 2D surface, where each
dimension corresponds to one vertical axis, as can be seen in Figure 19.

Figure 19: Depiction using parallel coordinates

To understand the outcomes of this approach, the user has to cognitively investigate the
results. Yet, this technique is very helpful in searching for relations in the data. If we
look at Figure 20 and imagine that the left co-ordinate represents temperature while the
right one pressure, then the left image depicts three data samples, for which it holds that
the higher the temperature, the higher is the pressure. The right image would, on the
hand, mean that in case of the five samples depicted, the temperature and pressure are
inversely proportional. Moreover, the color coding may imply, whether the values fall
into certain user defined interval or not.

52

Figure 20: Using the parallel coordinates

This approach is not intended to observe the data as a unit but rather for revealing
relations hidden within. The main disadvantage consists in the fact that with increasing
amount of visualized information, occlusion may appear and the image quality
decreases.

5.2 Color Coded Isosurfaces
Another interesting approach to visualizing multiple scalar fields at the same time and
searching for relations among the quantities was proposed in [23]. A single scalar field
is usually depicted by extracting isosurfaces or volume rendering methods. This can be
done for each value independently, but the results will not show any information about
potential correlation between them. This approach tries to bypass this limitation.

The method can be explained using, for example, seven parameters (P1 through
P7), which can be then cognitively compared in the same visual space where four of the
seven properties P1, P2, P3 and P4 are chosen as independent variables (not necessarily
coordinate space and time). Hence this method provides a common basis from which to
test for the existence of relationships between the remaining properties P5, P6, and P7.

Figure 21 illustrates the procedure. The first three parameters P1, P2 and P3 are
independent (orthogonal) variables that are visually defined as perpendicular axes in
this figure. The fourth property is reserved as another independent variable, e.g. P4 =
time, that is uniform everywhere, but cannot be drawn as the orthogonal fourth axis.
The task remains to find relationships, if any, of the remaining properties P5, P6, and P7
that must all be functions of P1, P2, P3, and P4. For the simplest case this method can be
reduced to a single function, where P4 is assumed to be constant everywhere. On the
other hand, this method can also be generalized to more than three functions i.e. for P8,
P9,, Pn, where n is “the viewer’s cognitive limit”.

53

Figure 21: Illustration of the relations between the functions

The method for searching the relation between P5, P6 and P7, starts at some
point, where these quantities reach unique values Figure 21. In the vicinity of this point,
the values will differ with certain gradient. Although all possible values, normally
visualized through direct volume rendering, can not be seen in the same region for all
three functions, a quantitative isosurface can be seen for each function as a separate
shaded surface. The change of the surfaces’ shapes following a slow change of the
isovalue would then give a gradient notion as well.

The mutual relation between the properties is then reached through drawing two
(e.g. P5 and P6) of the three properties as two unique intersecting isosurfaces as shown
in Figure 22. If the surfaces do not intersect, there can be no relationship between the
functions. If they do, further investigation has to be done to find the nature of the
relation. This investigation, however, is rather experimental. The user has to guess the
mathematical relation from the visual pattern the functions show. The authors describe a
case for detecting linear proportionality and inverse proportionality of P5, P6 and P7, i.e.
searching for the relation corresponding to the expression .765 constPPP =⋅⋅

Figure 22: No relation between P5 and P6

Such relation is identified, when P7, mapped as color on the two isosurfaces (i.e.
isosurfaces of P5 and P6), has constant shade around the curve, where P5 and P6 intersect

54

Figure 23. Having found such pattern, the user must still find out, which of the
following three situations turned up:

 .. , . , . 765765765 PPconstPPconstPPconstPPP ⋅⋅=⋅=⋅=⋅⋅ (64)

This is done by varying individual isovalues and observing the result.
The authors claim that with this method it is possible to successfully find many

more complex functions. In all cases, just as in finding solutions to differential
equations, the user must guess at possible solutions, as already mentioned. Of course
only significant functional components will be detected and extracted much like the
dominant terms in a series solution. Mentally the observer first sees a pattern related to
the function and can then deduce the function mathematically. Hence the pattern of a
function occurs first and becomes the cognitive mechanism that allows the investigator
to confirm the existence of suspected functional relationships.

Figure 23: In this case, the three function are related

Although far from accurate and reliable, this method may be an interesting tool
for observing dependencies in multi-scalar data. The advantage is that for seeing the
relation, functions P5, P6 and P7 do not have to be reconstructed. Also, the user gets a
notion of the behavior of the whole system.

55

6 ISOSURFACES, NORMALS AND GRADIENTS

Although isosurface extraction was originally developed for scalar volumetric data
visualization, as can be seen from the chapters above, this well-known technique can be
successfully applied on multidimensional data as well, especially in combination with
dimension contraction. We have shortly studied this field and we have found the
motivation here to experiment with the issues of accuracy and temporal demands of
computing normal vectors in the vertices of triangle meshes representing the
isosurfaces. This has also brought us to examining methods for gradient estimation and
proposing an improvement. In the following three subchapters, this work will be
outlined.

6.1 Isosurface Extraction
As mentioned above, we have had some experience with isosurface extraction. In this
chapter, however, we will not present a study about known methods and techniques.
The focus of our effort was vertex normal computation and gradient estimation, so we
will only outline a short classification of the isosurface extraction methods, explain our
motivation for computing normals and gradients and we will move to these topics.

Fundamental Algorithms
Marching cubes and marching tetrahedra stand for the fundamental isosurface
extraction algorithms. They were designed for regular grids and, although they have
experienced a lot of modifications over time, the original versions will be briefly
outlined here.

Marching Cubes (MC)
Probably the best known technique for isosurface extraction is marching cubes. It was
developed for volumetric data organized to a regular Cartesian grid. The algorithm
marched through all the cubic cells in the grid one after another, compared the values at
the cell’s vertices with a user selected isovalue and recognized, whether the isosurface
intersects the cell and how. For this purpose, a table of 256 possible cases of interaction
between an isosurface and a grid cell was introduced. Exploiting the symmetry of the
cells, this table was later reduced to 16 items. The drawback of this method were holes,
which sometimes appeared on the surface due to ambiguous meaning of some of the
interaction cases. This method has experienced many improvements.

Marching Tetrahedra (MT)
One of the attempts to fix the problems with holes was subdividing the cubic cells into
smaller, tetrahedral ones utilizing a pattern, which ensures that two adjacent tetrahedra
will share either nothing, a vertex, a whole edge or a whole facet. The situation with two
tetrahedra sharing only a part of an edge or facet had to be avoided. Having
decomposed the grid cell, marching tetrahedra was used instead of marching cubes. The
advantage is that there are only three possibilities, how an isosurface can intersect a
tetrahedral cell. The disadvantage, on the other hand, was that too many triangles were
produced.

56

Optimized Isosurface Extraction
One of the reasons, why the MC and MT algorithms became so famous, might have
been their simplicity. On the other hand, with increasing sizes of the volumetric
datasets, some optimized methods had to appear. The broadness of this topic does not
allow to provide a survey of these methods here. We will therefore only outline the
basic concepts.

These optimized methods are mostly based upon the fact that just a fraction of
the grid cells is usually intersected by the isosurface. Ways, how to identify these cells
without examining the whole grid, are different for each of these methods. This is
difficult to do in the common geometric space. Yet, some approaches appeared, which
fist located one intersected cell, extracted isosurface patch from it and then examined
the neighboring cells, thus moving along the isosurface. Discovering all the parts of the
isosurface was, however, not assured by this approach.

An alternative attitude to the common geometric space is the, so called, value
space. Techniques utilizing this attitude start with a preprocessing step, during which
they determine for each cell the minimum and maximum values associated to the cell’s
vertices. From this point, cells are treated according to the range of values, they cover,
rather then according to their geometric coordinates, from which the term value space
arises. A cell, which is intersected by an isosurface must have its maximum value
higher, than the threshold while the minimum value must be lower. Thus, if the cells are
sorted according to these extreme values and stored in some convenient data structure,
they can be identified quickly without the need to investigate the unintersected cells.

The examples of the value space techniques, which exploit various data
structures to optimize the search for the intersected cells are Sweeping Simplices [49],
Interval Tree [9] and Span Space [29].

Isosurface Shading
Our work in this field was focused in a little different direction than what the above
paragraphs describe. Obviously, once the isosurface is extracted, it also has to be
rendered. To be able to employ Gouraud rendering technique, normal vectors in the
vertices must be known. We have thus focused on how to get these normal vertices as
precise as possible, so that smooth look of the rendered object can be reached (see
section 6.2).

The other goal arises from the fact that [42] the gradient vector

k
z

j
y

i
x ∂

∂
+

∂
∂

+
∂
∂

=∇
φφφ

φ in location],,[000 zyxQ of the function ()pφ , which describes the

values of a scalar field, is perpendicular to the field’s isosurface passing through
],,[000 zyxQ . The gradients might therefore be pre-computed in the preprocessing step

and then, during the extraction, just interpolated to form the vertex normals of the
extracted surface. This requires the gradient vectors to be estimated exactly enough
including their length and not only the direction (see section 6.3).

6.2 Vertex Normal Computation
In the following paragraphs, three methods for vertex normal computation will be
described, tested and compared. In [iii], we studied two more approaches. Unlike the
techniques described bellow, they were not restricted to triangle meshes. On the other
hand, however, they could only be applied on surfaces, which can be defined as
z = f (x, y) and it is not the case here. Although other techniques for surface normal

57

computation exist as well, some of which are briefly described in the appendix of [iii],
we will restrict to methods focusing precisely on estimating normal vectors in the
vertices of a general triangle mesh.

6.2.1 Theoretical Background
All the three methods for triangle mesh vertex normal computation discussed bellow
share the basic idea. They all compute the vertex normals by combining normal vectors
of the triangles adjacent to the vertex being computed. While the basic idea is common
for all the three methods, the difference consists in how the triangle normals are
weighted.

There is one more aspect to be pointed out. The purpose of using these methods
is to make the surface shaded smoothly and to avoid those edges between adjacent
polygons that do not occur on the original object and that are caused by the surface
approximation by the polygonal mesh. However, the rendered body may also contain
some real edges. Smoothing out these edges would rather decrease than increase the
realism of the output image. The real edges therefore should be rendered. If these edges
are not marked within the input data, the rendering algorithm should attempt to
recognize them. The method that can help to overcome this drawback is based on
defining certain “decision angle”. If the angle between two adjacent polygons is less
sharp than the decision angle, the edge is considered to be an artifact and is smoothed.
Otherwise, the edge probably represents a real edge on the rendered object and should
be displayed sharply.

No Weighting
This method has been described in [15] by Gouraud, who suggests computing normals
in the vertices of a triangle mesh as the average of the normal vectors of the facets that
share the vertex being computed. In his approach, all the facets, which contribute to the
vertex normal computation, are weighted equally. Mathematically,

∑

∑

=

==
n

i
i

n

i
i

N

N
N

1

1 , (65)

where N is the normal in the vertex and Ni are the normals of the n triangles that share
it.

Weighting by Angle
Thurmer and Wuthrich [55] aim to improve the accuracy of the vertex normal
computation method suggested by Gouraud. They claim that the results of the
Gouraud’s method strongly depend on the topology of the mesh around the vertex being
processed. In other words, if we start with certain triangle mesh, choose one of its
vertices and compute the normal vector there, then if we restructure the surrounding of
this vertex and then we re-compute the vertex normal, the result should ideally be the
same. By restructuring the vertex surrounding we mean using a different triangulation
upon the same set of vertices. This can be reached for example by adding new vertices
on the edges of some of the existing triangles thus dividing these triangles into two or
more smaller ones while keeping the overall shape of the surface untouched (see Figure
24).

58

N
N

Figure 24: Illustration of the normal’s dependency on the meshing

The authors of this article try to reach the independency on the mesh structure through
weighting the contribution of each facet‘s normal by the size of the angle enclosed by
the facet‘s edges incident to the computed vertex. This can be expressed as

∑

∑

=

==
n

i
ii

n

i
ii

N

N
N

1

1

α

α
, (66)

where iα is the angle between the two edges of the facet that lead to the vertex.

Weighting by Area
In this method, the normal N is computed as a normalized weighted sum of the unit
length normal vectors Ni of the facets that belong to the cycle around the vertex being
processed similarly as in Gouraud’s [15] and Thurmer’s [55] approach. This time, each
facet’s area iS is considered as the weighting function for the corresponding normal.
Thus, the larger facets have higher influence than the smaller ones. Symbolically
expressed:

∑

∑

=

==
n

i
ii

n

i
ii

NS

NS
N

1

1 , (67)

The idea of area weighting comes from [64] (p. 149) and it serves for the computation
of a normal vector of a surface interleaved among points, which generally do not lie in
one plane. The purpose of including this method was to find out, how accurate it would
be to consider this normal to be a normal in the vertex, whose direct neighbors are
interleaved by the surface.

6.2.2 Implementation
Besides other, all the above-described methods for vertex normal computation were
implemented within one application developed under the Borland Delphi environment
and the tests were run on a system with the Intel Pentium III @ 448MHz CPU and
1024MB RAM.

59

Testing Data
The testing data for the vertex normal computation were produced via the MVE2 system
using the DTLib module. For each of the three kinds of 2D triangle meshes available in
this module (i.e. regular meshes, irregular meshes with unifo rmly distributed vertices
and irregular meshes with vertices distributed randomly), input files were generated for
1,000 / 10,000 / 100,000 / 250,000 / 500,000 / 750,000 and 1.000,000 vertices.

For the computation of the z coordinate, three different functions were used.
These being:

• 22
1 2),(yxyxf −−=

•)2sin(25.0),(2
2 yxyxf ⋅⋅⋅+= π

•)cos(25.0)sin(25.01),(3 yxyxf ⋅⋅+⋅⋅+= ππ

The examined vertex normal estimating methods can be applied to various triangle
meshes, which have no common characteristic. Thus there is no principal criterion to be
used for designing the testing functions for the z coordinate generation. Since 1,0, ∈yx
for all the vertices of the generated 2D triangle mesh, the only limitation is that the
function f must be defined for any point p from this region (i.e.

)(:},1,0,:],[{ 2 ppp fzRzyxRyx =∈∃∈∈∈∀). All the three functions listed above fit
this condition. When choosing the functions, the aim was to test the methods on
surfaces that are curved just slightly as f1, as well as surfaces, where the curvature
changes quite a lot f3. Function f2 is something in between.

For the testing purposes, the boundary vertices of the mesh were not included in
the statistics.

6.2.3 Results

Notation
In the following text, the three methods described in 6.2.1, which compute vertex
normals from adjacent triangles’ normal vectors, will be marked as NfT(w=1),
NfT(w=angle) and NfT(w=area) respectively.

Accuracy Statistics – Varying the z-Function (Surface Shape)
One of the important aspects, which influence the accuracy of the estimation of the
triangle mesh vertex normal, is the shape of the examined surface. As one might
intuitively expect, it is easier to estimate the normal vector in a vertex of a plane or
some slightly wavy surface than to estimate such normal for strongly curved meshes. To
confirm or disconfirm this belief experimentally, the examined methods were tested on
surfaces constructed from planar 2D meshes by defining the z coordinate via the
functions listed above. Each of the three graphs displayed below describes the average
errors produced by individual methods when applied on the three differently curved
surfaces. As expected, most precise results were obtained on the surfaces produced by
f1, where the curvature was minimal. For f3, on the other hand, the average measured
errors were approximately four times as big. The function f2 appeared to be half way
between f1 and f3.

2 MVE (Modular Visualiztion Environment) was developed by the Centre of Computer Graphics and
Data Visualization at the Department of Computer Science, University of West Bohemia in Pilsen.

60

Accuracy - f1

0
0,02
0,04
0,06
0,08

0,1
0,12
0,14
0,16
0,18

0 200000 400000 600000 800000 1000000

Number of Vertices

A
ve

ra
g

e
E

rr
o

r
[d

eg
]

NfT(w=1) NfT(w=angle) NfT(w=area)

Graph 1: The estimation errors for f1

Accuracy - f2

0
0,05

0,1
0,15

0,2
0,25

0,3
0,35

0,4
0,45

0 200000 400000 600000 800000 1000000

Number of Vertices

A
ve

ra
g

e
E

rr
o

r
[d

eg
]

NfT(w=1) NfT(w=angle) NfT(w=area)

Graph 2: The estimation errors for f2

Accuracy - f3

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 200000 400000 600000 800000 1000000

Number of Vertices

A
ve

ra
g

e
E

rr
o

r
[d

eg
]

NfT(w=1) NfT(w=angle) NfT(w=area)

Graph 3: The estimation errors for f3

61

Another aspect that plays an important role is the density of the mesh. When the number
of vertices increases, more information is contained in the mesh, smaller regions are
used for the estimation and more precise results can be obtained. This fact is also
illustrated by the three graphs above.

However, the most important fact these measurements reveal is that, regardless
of the number of vertices or the function used, the best results were obtained using the
NfT(w=1) and NfT(w=angle) methods, which scored rather equally. We point out the
fact that weighting by area performs significantly worse than no weighting at all, which
implies that using the facet area as a weighting function for computing vertex normals
decreases rather than increases the resulting precision.

Accuracy Statistics – Varying Vertex Distribution (Surface Internal Structure)
In the previous section, the influence of the overall shape and the density of the mesh on
the accuracy of the vertex normal computation was examined. Here, concern will be put
on the internal structure of the mesh and its relation to the accuracy of the vertex
normals computed by individual tested methods.

For these tests, meshes constructed upon non-uniformly, uniformly or regularly
distributed vertices were created. The following two graphs show that using meshes
with randomly distributed vertices, whether uniformly or not, does not make a big
difference from the point of view of which method performs better.

Accuracy (f3) - Nonuniform Distribution

0

0,1

0,2

0,3

0,4

0,5

0,6

0 200000 400000 600000 800000 1000000

Number of Vertices

A
ve

ra
g

e
E

rr
o

r
[d

eg
]

NfT(w=1) NfT(w=angle) NfT(w=area)

Graph 4: Estimation from meshes with non-uniform vertex distribution.

62

Accuracy (f3) - Uniform Distribution

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 200000 400000 600000 800000 1000000

Number of Vertices

A
ve

ra
g

e
E

rr
o

r
[d

eg
]

NfT(w=1) NfT(w=angle) NfT(w=area)

Graph 5: Estimation from meshes with uniform vertex distribution.

Note, however, that the precision was better for all the methods using the non-uniform
distribution, regardless of the number of vertices the mesh consisted of.

Furthermore, if we start with a 2D mesh containing regularly distributed vertices
(see Figure 25), then we can see that weighting by angle brings significantly better
results than the other two methods. For correctness, it is necessary to point out that after
the transformation to 3D by applying one of the three functions listed in section 6.2.2,
the vertex distribution will not be regular any more. Yet, the character of the mesh will
be preserved, which is sufficient for our purpose.

Graph 6 describes the average error of vertex normal vector estimation on a
mesh with such regular vertex distribution. For this purpose, function f3 was used, but as
other measurements have shown, using the other functions leads to similar results. Thus
the graph tells us, that for this type of meshes, the method of weighting triangle normals
by angle brings a significant improvement, as compared to the standard Gouraud
technique. NfT(w=1) worked with roughly the same quality as NfT(w=area).

Accuracy (f3) - Regular Distribution

0

0,05

0,1

0,15

0,2

0 200000 400000 600000 800000 1000000

Number of Vertices

A
ve

ra
g

e
E

rr
o

r
[d

eg
]

NfT(w=1) NfT(w=angle) NfT(w=area)

Graph 6: Estimation from meshes with regular vertex distribution.

The reason resides in the structure of the original 2D mesh. Figure 25 shows a real
example of such mesh. Although the vertex distribution is regular, the triangulation of

63

the vertices is not. On the contrary, there are only a few vertices, the nearest
surrounding of which is triangulated symmetrically. If we recall the principle of
NfT(w=angle) as described in the Theoretical Background, it is obvious that the
computation of vertex normal vectors from facet normals without using any weighting
function, which is the case of NfT(w=1), does not take the constellation of the
surrounding polygons into account. Although the transformation into 3D deforms the
mesh partially, it is not surprising that NfT(w=1) produces similar results as
NfT(w=area) for such mesh, since all the triangles cover roughly the same area.

Figure 25: An example of a 2D mesh with a regular vertex distribution.

Speed Statistics
The time requirements of individual methods are illustrated by Graph 7. Obviously, all
the three algorithms performed roughly the same concerning temporal demands, the
subtle differences were caused by the need to compute the additional information for
weighting.

Speed

0
0,5

1
1,5

2
2,5

3
3,5

4

0 200000 400000 600000 800000 1000000

Number of Vertices

T
im

e
[s

]

NfT(w=1) NfT(w=angle) NfT(w=area)

Graph 7: The time requirements of the tested methods.

64

6.2.4 Conclusion & Recommendations
In the preceding paragraphs, three methods for computing triangle mesh vertex normal
vectors from the normals of the adjacent polygons have been described, implemented
and their results were compared with focus on accuracy. Considering all the information
gathered about the behavior of the tested methods, using angle weighted normals,
proposed by Thurmer and Wuthrich, seems to be the best solution. Although in some
cases, it performs the same as Gouraud, in other (depending partially on the structure of
the input mesh) it works better, yet without any significant temporal penalty.

6.3 Gradient Estimation
Our motivation to deal with gradient estimation has already been described in section
Isosurface Shading in subchapter 6.1. Here, we will present an extension of the 4D
linear regression method for the scalar irregularly distributed volumetric data gradient
estimation. The aim is to reach higher accuracy and the main tool is using quadratic
regression function. The results will be compared to the original method as well as to
the approach based on the generalization of the finite differences method presented in
[34]. The performance of all the three methods will be examined from different points
of view.

6.3.1 Theoretical Background
In the following paragraphs, the principles of 4D linear regression method for gradient
estimation will be described and the approach utilizing quadratic approximation
function for the linear regression will be proposed.

4D Linear Regression using Linear Approximation Function
This method for gradient estimation from regular as well as irregular volumetric data
proposed in [37] tries to find a 3D regression hyper plane

DzCyBxAzyxf +⋅+⋅+⋅≈),,(with minimal error. The error function is represented as
the summed squares of the difference between the original values in the interpolated
vertices and the values that the solution of the hyper plane equation would give in these
points. Mathematically:

 ∑
=

−+⋅+⋅+⋅=
n

k
kkkkk fDzCyBxAwDCBAE

0

2)(),,,(, (68)

where xk, yk and zk are the coordinates of the vertices involved in the approximation
(the computed vertex being considered as the origin of the coordinate system) and fk are
the values in these points. A, B and C make up the vertex gradient that we search for
and D is the filtered value in the computed vertex. The wk symbol represents the
weighting function, which should be spherically symmetric and monotonically
decreasing as the distance from the origin (i.e. from the computed vertex) grows.

To minimize the error function E, its partial derivatives along A, B, C and D
must be equal to zero:

 ∑ =⋅−+⋅+⋅+⋅⋅⋅=
∂
∂

k
kkkkkk xfDzCyBxAw

A
E

0)(2 ,

65

 ∑ =⋅−+⋅+⋅+⋅⋅⋅=
∂
∂

k
kkkkkk yfDzCyBxAw

B
E

0)(2 ,

 ∑ =⋅−+⋅+⋅+⋅⋅⋅=
∂
∂

k
kkkkkk zfDzCyBxAw

C
E

0)(2 ,

 ∑ =−+⋅+⋅+⋅⋅⋅=
∂
∂

k
kkkkk fDzCyBxAw

D
E 0)(2 .

This system of simultaneous linear equations can be rewritten in a matrix notation the
following way:





















=





















⋅





















∑
∑
∑
∑

∑∑∑∑
∑∑∑∑
∑∑∑∑
∑∑∑∑

kk

kkk

kkk

kkk

kkkkkkk

kkkkkkkkkk

kkkkkkkkkk

kkkkkkkkkk

fw

zfw
yfw

xfw

D
C

B
A

wzwywxw
zwzwzywzxw

ywzywywyxw
xwzxwyxwxw

2

2

2

. (69)

Solving the system for A, B, C and D gives the hyper plane normal vector, which is
considered to be the estimation of the gradient analytically defined as),,(

z
f

y
f

x
ff

∂
∂

∂
∂

∂
∂=∇ .

4D Linear Regression using Quadratic Approximation Function
In order to reach higher accuracy of estimated gradient vectors, it is necessary to apply a
nonlinear approximation function. In our approach we use a general quadratic function
of the following form:





















⋅





















⋅=

1000
00

0
]1,,,[),,(

44

3433

242322

14131211

z
y
x

A
AA
AAA
AAAA

zyxzyxg , (70)

instead of the original linear function DzCyBxAzyxf +⋅+⋅+⋅≈),,(. For the further
description, the non-matrix notation will be more illustrative:

 4434
2

332423
2

22141312
2

11),,(AzAzAyAyzAyAxAxzAxyAxAzyxg +++++++++= .

Now we need to express the error function:

 ∑ −+++++++++=
k

kk fAzAzAyAyzAyAxAxzAxyAxAwAAE 2
4434

2
332423

2
22141312

2
114411)(),...,(

and find the partial derivatives according to all the ten unknown parameters A11 through
A44:

 ∑ ⋅−+++++++++⋅=
∂
∂

k
kkkkkkkkkkkkkkk xfAzAzAyAzyAyAxAzxAyxAxAw

A
E 2

4434
2

332423
2

22141312
2

11
11

)(2 ,

 ∑ ⋅−+++++++++⋅=
∂
∂

k
kkkkkkkkkkkkkkkk yxfAzAzAyAzyAyAxAzxAyxAxAw

A
E

)(2 4434
2

332423
2

22141312
2

11
12

,

 .
 .
 .

66

 ∑ ⋅−+++++++++⋅=
∂
∂

k
kkkkkkkkkkkkkk fAzAzAyAzyAyAxAzxAyxAxAw

A
E

1)(2 4434
2

332423
2

22141312
2

11
44

.

These partial derivatives must be equal to zero, thus we get a 10 x 10 matrix describing
the set of simultaneous equations, which are linear in respect to the A11 through A44
parameters.
The gradient of the function can be described by the following formula:

)2;2;2(),,(),,(342313332423122214131211 AyAxAzAAzAxAyAAzAyAxA
z
g

y
g

x
g

zyxg +++⋅+++⋅+++⋅=
∂
∂

∂
∂

∂
∂

=∇ .(71)

As the active vertex is always shifted to the origin of the coordinate system, the x, y and
z coordinates are zero. Thus computed the A11 through A44 parameters, the gradient
vector can be obtained from a simple formula:

).,,()0,0,0(342414 AAAg =∇ (72)

6.3.2 Implementation & Testing
Both the above-described approaches were implemented within one application.
Moreover, as announced in the Introduction section, the 3D version of the gradient
estimation method based on the generalization of the finite differences method,
presented in [34], was implemented for the purpose of comparison. All the
implementations were done in the Borland Delphi environment and the tests were run
on a system with the Intel Pentium III @ 448MHz CPU and 1024MB RAM.

Testing Data
The application requires the volumetric data to be structured to constitute a tetrahedra
mesh whether regular or not. The tetrahedra structure only serves to determine each
vertex’s surrounding, which should be involved in the computation, and is not necessary
for the approach itself.

Our tests have been performed on meshes constructed upon the sets of 5000,
10000, 15000 and 20000 vertices using Delauney approach, maximal number of
tetrahedra and minimal number of tetrahedra. To show, how the mesh structure
influences the results, estimations from meshes constructed upon clusters of vertices
have also been tested.

To be able to make comparisons and evaluations we need the exact gradient
vectors. Thus it is necessary to use some known function to generate the scalar field
values. However, the estimation methods are meant to search for gradients of general
data with no common characteristic known in advance (e.g. empirically measured data).
Therefore, there was no definite criterion for choosing the testing function. The strategy
was chosen to test the methods on some simple function (i.e. f1 – see below), then on
some simple function (i.e. f2) with higher order then the order of the approximation
functions used in the estimation method and eventually on a relatively complex function
(i.e. f3), which would be rather distant to those approximation functions thus at least
partially substituting the empirically obtained data:

• 222
1),,(zyxzyxf ++= ,

• 333
2),,(zyxzyxf ++= ,

• 524
3 16583),,(zexyeyxzyxf yz ⋅+⋅⋅+⋅+⋅⋅⋅= .

 These functions will be referenced as f1, f2 and f3.

67

Error Measurement
For the testing purposes, the boundary vertices of the mesh were filtered out from the
statistics. The main measure of accuracy was the average error angle computed the
following way. For each vertex, the angle in degrees between the exact gradient and the
estimated one was found. Their arithmetic average then determined the average error:

 ∑
−

=
=

1

0
/)(

N

i
i NE αα (73)

The secondary measure was the error of the vector length. In this case, the error
computation consisted of the following steps. First, the difference in the length of both
the vectors was enumerated for each mesh vertex. The ratio of this distance and the
length of the exact gradient vector in that vertex was then expressed. Finally, the
arithmetic average of such ratios was computed:

 N
v

vu
E

N

i i

ii
l /

1

0
∑

−

=

−
= r

rr
 (74)

where E is the average error, ui and vi are the estimated and the exact gradient vectors
respectively and N is the number of evaluated vertices.

Instead of (73) and (74), it would also be possible to measure the error as the
length of the error vector (75), which would be the distance between the end points of
the exact and the computed vector. Symbolically written:

N

v

vu

E

N

i i

ii∑
−

=

−

=

1

0
r

rr

 (75)

where E is again the average error, ui and vi are the estimated and the exact gradient
vectors respectively and N is the number of evaluated vertices. However, some
applications are only interested in the error angle and do not require the gradient length
to be correct. For this reason, we have used the first evaluation procedure applying
equations (73) and (74).

The following picture should make the geometrical meaning of individual error
expressions clear:

i

iu

iv ii vu −

ii vu −

Figure 26: Error measurements illustration

6.3.3 Results
In the following paragraphs, where the implemented three approaches will be examined
from several points of view and their results compared, LR-Lin denotes the method that
uses linear regression based on linear approximation function, LR-Nonlin stands for
linear regression based on quadratic approximation function and FDM represents the
method based on generalization of the finite difference method described in [34].

68

Accuracy Statistics – Varying Sampling Functions
A good basic notion of how the methods perform can be acquired just by testing them
on a mesh of only 1000 vertices using the Delaunay criteria. Table 4 shows that, from
the accuracy point of view, LR-Nonlin performs best (marked by darker shading). The
exception was using it for estimating linear function (plane) gradients, where the FDM
reached the best results. The reason is that LR-Nonlin attempts to approximate sample
values in the vertices by a quadratic function. Therefore, when applied on a simple
plane, it performs worse than the linearly oriented methods. In all the other cases,
however, LR-Nonlin reached the most accurate results while FDM the worst, LR-Lin
being in the middle. The linear sample function (plane) will not be included in further
testing as the results balance on the edge of computational numerical precision and are
not of high importance, for in practice, linear sampling function can hardly be expected.

Error Angle in Degrees LR-Lin LR-Nonlin FDM

x (plane) 1.31E-15 1.29E-12 9.30E-16
x2 + y2 + z2 (sphere) 2.55 0.45 3.89
x3 + y3 + z3 4.66 0.92 6.32
3 x4 y2 ez + 8 y + 5 x ey + 16 z5 3.36 1.54 3.86

Table 4: Tests on Delaunay tetrahedra mesh with 1000 vertices.

Accuracy Statistics – Varying Data Dens ity
The following three graphs (one graph for each of the three sample functions) show
how the estimation results improve when supplying more information by using a denser
mesh. Although the graphs look quite similar, it is necessary to note that the scale on the
y axis differs to keep the graphs legible.

Accuracy - f1

0

0,5

1

1,5

2

2,5

3

5000 10000 15000 20000

Number of Vertices

A
ve

ra
g

e
E

rr
o

r
[d

eg
]

Accuracy - f2

0

1

2

3

4

5

5000 10000 15000 20000

Number of Vertices

A
ve

ra
g

e
E

rr
o

r
[d

eg
]

Accuracy - f3

0

0,5

1

1,5

2

2,5

3

5000 10000 15000 20000

Number of Vertices

A
ve

ra
g

e
E

rr
o

r
[d

eg
]

LR-Lin LR-Nonlin FDM

Graph 8: Estimation accuracy for f1, f2 and f3

Each value in the graphs has been obtained as an average of three measurements, each
using a different tetrahedra mesh (i.e. Delaunay mesh and meshes with maximal and
minimal number of tetrahedra). It is obvious from the graphs above that the denser

69

sampling is available the more accurate gradient estimation can be expected. As well,
the graphs confirm that (except for the linear sample functions) the LR-Nonlin method
returns best results. On the other hand, comparing these three graphs to each other
reveals an interesting fact that more complex sampling function does not imply lower
estimation accuracy. Regardless of the estimation method used, the results of gradient
computation are more precise for f3 than for f2. In fact, in case of FDM, the results for f3
are even slightly better than those for f1. These, maybe a little surprising, results are
promising for practice, where the samples will probably not approximate simple neat
functions.

Accuracy Statistics – Varying Vertex Distribution
In this section the influence of the structure of the input mesh on the accuracy of the
estimation will be demonstrated. For this purpose, a pair of Delaunay tetrahedra meshes
was generated upon 5000 and 10000 vertices distributed in clusters Graph 9 shows the
average estimation error for all three methods on both the uniform as well as the
clustered vertices, meshed by the Delaunay method. Although the graph was meant
primarily to illustrate the influence of the mesh structure on the results, we can also
notice that the LR-Nonlin method performed best again with significant advance to LR-
Lin, let alone FDM. Since the graphs for different sample functions f1, f2 and f3
resembled each other, only one of them will be presented here. For easier orientation,
the marks at the ends of the lines are rectangular for the estimation from the mesh with
uniformly distributed vertices and triangular for the mesh on clusters.

Accuracy (f1) - Uniform vs. Cluster Vertex Distribution

0

0,5

1

1,5

2

2,5

5000 6000 7000 8000 9000 10000

Number of Vertices

A
ve

ra
g

e
E

rr
o

r
in

 D
eg

re
es

Uniform LR-Lin

Uniform LR-Nonlin

Uniform FDM

Clusters LR-Lin

Clusters LR-Nonlin

Clusters FDM

Graph 9: The average error of the estimation on meshes with clustered and uniform vertex

distribution.

At the first glance it might seem rather surprising, but the graph shows that the gradient
estimation applied on the tetrahedra mesh generated upon the clusters of vertices gives
better results than the mesh with the same number of vertices distributed uniformly.
Closer analysis shows that such results in fact correspond to what was described in the
previous section. When the vertices are grouped in clusters, some of them are positioned
at locations, where the clusters are connected to each other. In these locations, big errors
can be expected as the surrounding of these vertices consists of small tetrahedra in the
direction of the cluster, on the boundaries of which the vertex resides, and large
tetrahedra in the other direction, where the cluster is connected to the other clusters.
This unbalanced distribution of information around these vertices causes the failure of
all the gradient estimation methods. The estimated gradient vectors are strongly
inaccurate in such locations. Yet, this situation applies to only a small percent of
vertices. The majority is located inside the clusters, where their density is higher than in
case of uniform distribution, which leads to better estimations. The bigger errors are

70

compensated and the overall average error is lower for the clustered data than for the
uniformly distributed vertices, where some error peaks appear as well, especially in the
locations close to the surface.

The distribution of the error within the data is illustrated by Graph 10. To keep
the graphs understandable, files with only 1000 vertices have been used. The vertices,
where the error has its peaks, are easily recognizable and the situation in some of these
“problematic” vertices has been analyzed visually. This analysis was the ground to the
explanations described above.

Error Distribution - Delaunay Mesh with
Uniform Vertex Distribution

0

5

10

15

20

25

0 200 400 600 800 1000

Vertex Number

E
rr

o
r

A
n

g
le

[d

eg
]

Error Distribution - Delaunay Mesh
with Clustered Vertices

0

5

10

15

20

25

0 200 400 600 800 1000

Vertex Number

E
rr

o
r

A
n

g
le

[d

eg
]

Graph 10: The distribution of the error for uniformly distributed and clustered vertices.

Accuracy Statistics – Vector Length
So far, we have only been concerned in measuring the error angle between the exact and
the estimated gradient vectors. It is however necessary to realize that, unlike for
example surface normal vector, gradient is determined by its length as well. Therefore
the methods were also tested from this point of view and the results have been
summarized in Graph 11.

Accuracy - Length

0,00E+00

2,00E-02

4,00E-02

6,00E-02

8,00E-02

1,00E-01

1,20E-01

1,40E-01

5000 10000 15000 20000

Number of Vertices

A
ve

ra
g

e
E

rr
o

r
[%

/1
00

]

LR-Lin

LR-Nonlin

FDM

Graph 11: The average error of the estimated gradients’ length in percents of the exact vector

length.

Each value in this graph was obtained as the arithmetic average of nine measurements
combining the usage of three sampling functions on the three types of meshes described
above. We can see that the LR-nonlin method gives the most precise results being far
ahead of the other two. The LR-lin estimations were approximately four times less
accurate and those of FDM more than six times. Using different mesh types did not lead
to significant differences here. Concerning the sampling function, results for f1 were a
little better than results for f2, f3.

71

Speed Statistics
Although we have adopted the accuracy of individual methods as the main criterion
according to which the methods should be judged, the time requirements of the
computations are usually much too important to bee ignored. To be consistent, the
temporal needs of the three approaches were measured on the same data files as in the
section Accuracy Statistics – Varying Data Density and the results are summarized in
Graph 12. Each value in the graph has thus been obtained as an average of three
measurements on different tetrahedra meshes. When compared to each other, the results
of these three measurements differed just slightly i.e. at most around 10 percent in one
direction or the other.

Speed

0

2

4

6

8

10

5000 10000 15000 20000

Number of Vertices

T
im

e
in

 S
ec

o
n

d
s

LR-Lin

LR-Nonlin

FDM

Graph 12: Comparison of the methods according to their time requirements

Apparently, the more accurate the method is, the more time it needs to do the
computation. While producing the best results, the linear regression method utilizing
quadratic regression function required about four times more time than the method
using linear approximation function and up to ten times more than the finite difference
method. Yet, all three methods have linear time complexity O(N), where N is the
number of vertices.

Conclusion
In this chapter, the behavior of the gradient estimation methods has been examined in
terms of accuracy while varying several aspects as the mesh internal structure, density
and the sample function defining the scalar field’s values. From this point of view, the
linear regression method with quadratic approximation function turned out to be the
best, providing significantly better results than the other two. On the other hand, it was
the most time demanding one. Although the time complexity is linear for all these
methods, the growth of the time requirements is steeper for the method using quadratic
function. Thus, an imaginary ratio accuracy/speed is roughly the same for all the
methods.

72

7 CONCLUSION

In this work a study of the multidimensional data visualization approaches has been
presented. Although the broadness of the topic and the variety of existing techniques did
not allow to make this survey exhaustive, the main attitudes have been described and
the most important aspects have been discussed in detail. After overviewing the kinds of
multidimensional data in chapter 2, focus has been put especially on the approaches and
techniques for the analysis and depiction of vector fields, tensor fields and also fields of
multi-scalar values, as these seem to be the most important types for representing
scientific as well as industrial data. In addition, our work related to this topic was
outlined in the last chapter.

Concerning our current work and future goals, at present we are about to finish
the accuracy and time requirements tests of estimating isosurface vertex normals using
the standard techniques known for triangle meshes as compared to estimating these
normals by interpolating scalar field’s gradients, computed prior to the isosurface
extraction step. We have also been preparing a publication on this subject, which is our
primary short term aim.

Although our work has not been focused primarily on multidimensional data
visualization so far, it has been related and we would like to shift the scope of our future
efforts to this area, with special concern on vector, and possibly tensor, fields. We see
our long term goal in searching for improvements of the visualization methods in
respect to the practical needs of the researches. Rather than trying to speed up existing
approaches, we will focus on the qualitative aspects. That is, how to visualize more
information yet avoiding visual clutter. A concrete example of the problems, we would
like to deal with, is visualization of the transition areas, where a flow of steam
transforms to a stream of moving liquid droplets. Another problem we find interesting is
comparative visualization.

73

REFERENCES

[1] Battke, H., Stalling, D., Hege, H. C.: Fast Line Integral Convolution for
Arbitrary Surfaces in 3D, Visualization and Mathematics, pages 181--195.
Springer-Verlag, Heidelberg, 1997.

[2] Boring, E., Pang, A.: Directional flow visualization of vector fields, Proc.
Visualization’96, pp. 389-392, 1996.

[3] Boring, E., Pang, A.: Interactive deformations from tensor fields, Proceedings
IEEE Visualization 98, pages 297-304, 1998.

[4] Brill, M., Hagen, H., Rodrian, H. C., Djatschin, W ., Klimenko, S. V.:
Streamball techniques for flow visualization, IEEE Visualization 94, pp. 70-76,
1994.

[5] Brodlie K.W., Carpenter L.A., Earnshaw R.A. ,Gallop J.R.,Hubbold R.J.,
Mumford A.M.,Osland C.D., Quarendon P.: Scientific Visualization -
Techniques and Applications, Springer-Verlag, 1992.

[6] Buning, P.: Numerical Algorithms in CFD Post-processing, Computer Graphics
and Flow Visualization in Computationa l Fluid Dynamics, von Karman Institute
for Fluid Dynamics Lecture Series 1989-07, 1989.

[7] Cabral, B., Leedom, C.: An Introduction to Line Integral Convolution, Siggraph
97, 1997.

[8] Cabral, B., Leedom, C.: Imaging vector fields using line integral convolution,
Siggraph’93, 1993.

[9] Cignoni, P., Marino, P., Montani, C., Puppo, E, Scorpio, R.: Speeding Up
Isosurface Extraction using Interval Tree, IEEE Transactions on Visualization
and Computer Graphics, 1997.

[10] Delmarcelle, T., Hesselink, L.: Visualizing Second-Order Tensor Fields with
Hyperstreamlines, IEEE Computer Graphics and Applications, 13(4): 25-33,
1993.

[11] Dovey, D.: Vector Plots for Irregular Grids, Proc. Visualization’95, pp.248-253,
IEEE Computer Society, 1995.

[12] Engel, K., Ertl, T.: Interactive High-Quality Volume Rendering with Flexible
Consumer Graphics Hardware, EUROGRAPHICS 2002, Saarbrucken, 2002.

[13] Forssell, L., Cohen, S.: Using Line Integral Convolution for Flow Visualization:
Curvilinear Grids, Variable-Speed Animation, and Unsteady Flows, IEEE
Transactions on Visualization and Computer Graphics Volume 1, 1995.

74

[14] Globus, A., Levit, C., Lasinski, T.: A Tool for Visualizing the Topology of
Three-Dimensional Vector Fields, Proc. Visualization’91, pp.33-39, 1991.

[15] Gouraud, H.: Continuous Shading of Curved Surfaces, IEEE Transactions on
Computers, Vol. 20, No. 6, pp. 623--629, June 1971.

[16] Hesselink, L., Levy, Y., Lavin, Y.: The Topology of Symmetric, Second-Order
3D Tensor Fields, IBEE. Trans. Vis&CG, pp. 1-11, Vol. 3, No. 1, 1997.

[17] Hultquist, J. P. M.: Constructing Stream Surfaces in Steady 3D Vector Fields,
Proc. Visualization'92, pp. 171-178, 1992.

[18] Inselberg, A.: The plane with parallel coordinates, The Visual Computer 1, New
York: Springer, pp. 69-91, 1985.

[19] Jobard, B., Lefer, W.: Creating evenly-spaced streamlines of arbitrary density,
Proc. of 8th Eurographics Workshop on Visualization In Scientific Computing,
pp. 45-55,1997.

[20] Kenwright, D. N., Haimes, R.: Automatic Vortex Core Detection, IEEE CGA,
18(4): 70-74, 1998.

[21] Kenwright, D. N., Lane, D.: Interactive Time-Dependent Particle Tracing Using
Tetrahedral Decomposition, IEEE TVCG, 2(2): 120-129, 1996.

[22] Kindlmann, G., Weinstein, D.: Hue-Balls and Lit-Tensors for Direct Volume
Rendering of Diffusion Tensor Fields, 10th IEEE Visualization Conference,
1999.

[23] Kriz, R. D., Glassgen, E. H., MacRae, J. D.: Eigenvalue-Eigenvector Glyphs:
Visualizing Zeroth, Second, Forth and Higher Order Tensors in a Continuum,
Workshop on Modelling the Development of Residual Stresses During
Thermoset Composite Curingm, 1995.

[24] Laidlaw, D. H., Ahrens, E. T., Kremers, D., Avalos, M. J., Jacobs, R. E.,
Readhead, C.: Visualizing Diffusion Tensor Images of the Mouse Spinal Cord,
IEEE Visualization 98, pp. 127-134, 1998.

[25] Lavin, Y., Levy, Y., Hesselink, L.: Singularities in Nonuniform Tensor Fields,
Proceedings of Visualization '97, pp. 59-66, 1997.

[26] Lane, D. A.: Scientific Visualization of Large-scale Unsteady Fluid Flows,
Scientific Visualization: Overviews, Methodologies, and Techniques, chapter 5,
pp. 125-145, 1997.

[27] Lane, D. A.: Visualization of Numerical Unsteady Fluid Flows, Sixth
International Symposium on Computational Fluid Dynamics, 1995.

[28] Lane, D. A.: Visualizing Time-Varying Phenomena in Numerical Simulations of
Unsteady Flows, 34th AIAA Aerospace Sciences Meeting, AIAA 96-0048,
1996.

75

[29] Livnat, Y., Shen, H. W., Johnson, C. R.: A Near Optimal Isosurface Extraction
Algorithm Using the Span Space, IEEE Transactions on Visualization and
Computer Graphics, 1996.

[30] Loffelmann, H.: Visualizing Local Properties and Characteristic Structures of
Dynamical Systems, PhD Thesis, TU Wien, 1998.

[31] Loffelmann, H., Groller, E.: Enhancing the Visualization of Characteristic
Structures in Dynamical Systems, Proceedings of 9th EUROGRAPHICS
Wokshop on Visualization in Scientific Computing, pp. 35-46, 1998.

[32] Loffelmann, H., Szalavari, S., Groller, E: Local Analysis of Dynamical Systems
- Concepts and Interpretation, Proceedings of the Fourth International
Conference in Central Europe on Computer Graphics and Visualization, pp.170-
180,1996.

[33] Max, N., Crawfis, R., Grant, C.: Visualizing 3D velocity fields near contour
surfaces, Proceedings of Visualization '94, IEEE Press, pp. 248-255, 1994.

[34] Meyer T.H., Eriksson M., Maggio R.C.: Gradient estimation from irregularly
spaced data sets, Mathematical Geology, 33: (6) 693-717, August 2001.

[35] Míka, S.: Matematická analýza III – Tenzorová analýza, edicní stredisko ZCU
Plzen, 1993.

[36] Moran, P., Henze, C., Ellsworth, D., Bryson, S., Kenwright, D.: The Field
Encapsulation Library (FEL),
http://www.nas.nasa.gov/Groups/VisTech/projects/fel.

[37] Neumann L., Csbfalvi B., Knig A., Groeller E.: Gradient Estimation in Volume
Data using 4D Linear Regression. EUROGRAPHICS 2000, 2000.

[38] Post, F. H., Vrolijk, B., Hauser, H., Laramee, R. S., Doleisch, H.: Feature
Extraction and Visualisation of Flow Fields, EUROGRAPHICS 2002,
Saarbrucken, 2002.

[39] Post, F. H., van Walsum, T.: Fluid Flow Visualization, Focus on Scientific
Visualization, pp 1-40, 1993.

[40] Post, F. J., van Walsum, T., Post, F. H.: Iconic Techniques for Feature
Visualization, Proceedings Visualization '95, IEEE Computer Society Press, pp.
288-295, 1995.

[41] Reinders, F.: Feature-Based Visualization of Time-Dependent Data, PhD thesis -
ASCI, dissertation series number 61, 2001.

[42] Rektorys, K.: Prehled užité matematiky. SNTL – Nakladatelství technické
literatury, Praha, 1981.

[43] Sanna, A., Montrucchio, B., Arinaz, R.: On Time-Varying Flow Fields: a
streakline-based visualization method, Eurographics'99 Short Papers and Demos
Proceedings, pp. 30-33, 1999.

76

[44] Sanna, A., Montrucchio, B., Arinaz, R.: Visualizing unsteady flows by adaptive
streaklines, WSCG 2000 Conference Proceedings, 2000.

[45] Sanna, A., Montrucchio, B., Montuschi, P.: A survey on visualization of vector
fields by texture-based methods, Research Developments in Pattern
Recognition, 1(1), 2000.

[46] Scheuermann, G., Frey, J., Hagen, H., Hamann, B., Jeremic, B., Kenneth, I. J.:
Visualization of Seismic Soils Structure Interaction Simulations, Proceedings of
IASTED International Conference on Visualization, Imaging and Image
Processing (VIIP 2001), ACTA Press, pp. 778-83, 2001.

[47] Schroeder, V., Volpe, C. R., Lorensen, W. E.: The Stream Polygon: A
Technique for 3D Vector Field Visualization, Visualization '91, pp. 126-132,
1991.

[48] Schulz, M., Reck, F., Bartelheimer, W., Ertl., T.: Interactive visualization of
fluid dynamics simulations in locally refined cartesian grids, Proc.
Visualization’99, pp. 413-416, 1999.

[49] Shen, H., Johnson, C. R.: Sweeping Simplices: A fast iso-surface extraction
algorithm for unstructured grids, 6th IEEE Visualization Conference, 1995.

[50] Shen, H., Kao, D.L.: A new line integral convolution algorithm for visualizing
time-varying flow fields, IEEE Transactions on Visualization and Computer
Graphics 4:2, pp. 98-108, 1998.

[51] Shen, H., Kao, D.L., Chiang, L., Kuswik, A.: GLIC: An Interactive Software
Tool for Visualizing Surface Flows, 37th AIAA Aerospace Sciences Meeting
and Exhibit, 1999.

[52] Spears, W.M.: An Overview of Multidimensional Visualization Techniques,
GECCO, 1999.

[53] Stalling, D., Hege, H. C.: Fast and Resolution Independent Line Integral
Convolution, SIGGRAPH 95 Conference Proceedings, pp. 249-256, 1995.

[54] Stalling, D., Zockler, M., Hege, H. C.: Fast Display of Illuminated Field Lines,
IEEE Transactions on Visualization and Computer Graphics 3:2, pp. 118-128,
1997.

[55] Thurmer G., Wuthrich A.: Computing vertex normals from polygonal facets.
Journal of Graphics Tools, 3(1):43-46 1998.

[56] Treinish, L. A.: Multi-resolution visualization techniques for nested weather
models, Proc. Visualization’00, pp. 513-516, 2000.

[57] Turk, G., Banks, D.: Image-Guided Streamline Placement, SIGGRAPH 96
Conference Proceedings, Anual Conference Series, pp. 453-460, 1996.

77

[58] Ueng, S. K., Sikorski, C., Ma, K. L.: Efficient Streamline, Streamribbon, and
Streamtube Constructions on Unstructured Grids, IEEE TVCG, 2(2), pp. 100-
110, 1996.

[59] Verma, V., Kao, D., Pang, A.: A flow-guided streamline seeding strategy, Proc.
Visualization’00, pp. 163-170, 2000.

[60] Verma, V., Kao, D., Pang, A.: PLIC: Bridging the Gap Between Streamlines and
LIC, Proceedings of IEEE Visualization '99, San Francisco, October 1999.

[61] van Wijk, J. J.: Spot noise - texture synthesis for data visualization, Proceedings
of Siggraph'91, pp. 309-318, 1991.

[62] Wunsche, B.: Visualization of Tensor Fields in Bioengineering,
http://www.cs.auckland.ac.nz/~burkhard/PhD/introduction.html.

[63] Zockler, M., Stalling, D., Hege, H. C.: Interactive Visualization of 3D-Vector
Fields Using Illuminated Stream Lines, Proc. Visualization’96, pp. 107-113,
1996.

[64] Žára, J., Beneš, B., Felkel, P.: Moderní pocítacová grafika, Computer Press,
Praha, pp. 353-355, 1998.

PUBLICATIONS

[i] Jirka, T., Skala, V.: Isosurface Vertex Normal Computation, submitted to
Szczyrk 2003, 2003.

[ii] Jirka, T.: Metody extrakce isoploch pro tetrahedronové síte a zobrazování
neskalárních velicin, diplomová práce + dodatek k DP, Fakulta aplikovaných
ved – Západoceská univerzita v Plzni, 2001.

[iii] Jirka, T., Skala, V.: Gradient Estimation and Vertex Normal Computation,
Technical Report, University of West Bohemia in Pilsen, 2002.

[iv] Jirka, T., Skala, V.: Gradient Vector Estimation, ICCVG 2002, 2002.

STAYS AND CONFERENCES

Stays
14.2.2001-14.6.2001 University of Girona, Spain

Conferences
25.9.2002-29.9.2002 ICCVG 2002, Zakopane, Poland

