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Abstract

This work is focused on the iso-surfaces extraction from scalar data sets with

dynamic simulation mesh. Such data sets usually originate from Computational

Fluid Dynamic (CFD) simulations, where moving boundaries of a simulation

domain force a simulation mesh to change itself with each discrete time step. Up

to now, each time step has been treated as a stand-alone entity, because of lack

of the methods capturing spatial and temporal coherency in data sets of such

nature.

The work covers the existing techniques for iso-surfaces extraction from time-

varying scalar data sets with static mesh and provides an introduction to the

problematic of dynamic meshes and an overview of the initial research done.

Finally our concept of handling data sets with time-varying meshes is described.

keywords: iso-surface, extraction, scalar field, time-varying mesh

Abstrakt

Táto práce se zabývá extrakci iso-ploch ze skalárńıch datových množin obsahuj́ıćıch

časově proměnnou śı̌t. Taková data pocházej́ı např́ıklad z numerických simulaćı

prouděńı kapalin. Nedostatek zobrazovaćıch metod umožňuj́ıćıch práci s časově

proměnnými śıtěmi zp̊usobil, že v existuj́ıćıch aplikaćıch bylo s kažým časovým

krokem zacházeno jako se samostatnou datovou množinou.

Táto práce popisuje existuj́ıci metody extrakce iso-ploch z časově proměnných

skalárnich dat se statickou śıti a poskytuje úvod do problematiky časově proměnných

śıt́ı. Rovněž je popsán úvodńı výzkum v této oblasti a náš koncept dopoč́ıtavańı

konektivy mezi vrcholy śıt́ı v sousedńıch časových hladinách.

kĺıčová slova: iso-povrch, extrakce, skalárni pole, časově proměnná śı̌t
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Chapter 1

Introduction

This work focuses on visualization of time-varying data sets. In particular the

problem of iso-surface extraction from the data sets with dynamic simulation

mesh is addressed. Since introduction of the famous Marching Cubes algo-

rithm [28] in 1987 a lot of research has been done in iso-surface extraction towards

time-varying data sets. This work presents both the previous work and our con-

tribution to the field.

1.1 Visualization, scientific visualization

’Scientific visualization’: an application of computer graphics

which is concerned with the presentation of potentially huge quan-

tities of laboratory, simulation or abstract data to aid cognition,

hypotheses building and reasoning.

http://www.wikipedia.org, March, 2007

Visualization in any form has always been a powerful tool for understanding

information, be it an inventor’s idea, explanation of solution to some problem

or more recently the data from measurements or simulations. Ancient inventors

used visualization to store and communicate their ideas. Recent advances in

science and technology require new forms of visualization.

In the past decades scientific visualization was born and evolving into a valu-

able tool for visual exploration and understanding of scientific data. A proper

visualization is often the fastest and the most intuitive way for scientists to gain

insight into the large numeric data sets, which have to be explored and evaluated

in order to accomplish their research.

5



6 CHAPTER 1. INTRODUCTION

1.2 Definitions

In order to avoid ambiguities in terminology a list of terms and meanings is

presented in this sub-chapter.

Simulation mesh is a structure witch discretizes continuous simulation do-

main. Simulation mesh consists of interconnected vertices (point samples within

a simulation domain), creating the bounded sub-spaces - cells. The terms mesh

and grid are used interchangeably with the same meaning. In static simulation

mesh geometry the mesh cells and their correspondence between adjacent time

steps remains fixed during a simulation, while in the dynamic mesh the number

of mesh cells and their geometry may vary along the time dimension.

Active cell is a mesh cell which satisfies condition: min ≤ q ≤ max, where

min/max are minimum and maximum of all values associated with cell’s vertices

and q is a user-defined scalar value.

Iso-surface is a surface represented by the points of constant value (e.g.

pressure, temperature, velocity), constructed within a volume of data. Mathe-

matically, the iso-surface S for iso-value q is a surface:

S(q) = {x | F (x) = q}
where x ∈ S is a 3D point and F (x) is a scalar function F : R3 → R defined over

3D points. 2D version of iso-surface is iso-contour.

1.3 Iso-surface extraction from dynamic simulation meshes

Data sets consisting of multiple time steps are common in many scientific and

engineering fields, including medicine, computational fluid dynamic or geology.

Iso-surfaces proved to be a valuable tool for visual exploration of the static and

time-varying data. Figure 1.1 shows the example of evolving iso-surface of a

constant viscosity 0.017 inside an engine valve.

(a) time step 21 (b) time step 30 (c) time step 136

Figure 1.1: Iso-surface of total viscosity (iso-value=0.017) at the time steps 21,

30 and 136 from a time-varying data set of combustion process in an engine.



1.4. ORGANIZATION 7

Even if the dynamic simulation meshes have many scientific and industrial

applications [2, 17, 15] and the techniques for their generation are being rapidly

developed [16], there is a lack of the suitable visualization techniques. This work

focuses on the iso-surface extraction from the data sets with dynamic simulation

mesh. This task includes many challenges:

• space efficient representation of dynamic simulation mesh,

• fast structures for active cell identification,

• large data sets handling.

Today the data sets with dynamic simulation mesh are treated as a set of

stand-alone static data volumes defined at each discrete time step. Therefore,

our aim is to develop data structures and methods able to exploit spatial and

temporal coherence in data sets with dynamic mesh to reduce space and time

requirements of iso-surface extraction process.

1.4 Organization

This work is divided into three parts. First part (chapter 2) provides an overview

of techniques for visualization of scalar fields and their evolution over time. In

the second part (chapter 3), the techniques for iso-surface extraction from data

sets with static simulation mesh and time-varying scalar values are described.

Chapter 4 covers the main topic of this work - visualization techniques for

data sets with dynamic simulation mesh. Introduction to the problematic of

dynamic meshing is sketched together with description of the initial research

done in this field. Finally our newly developed techniques contributing to this

field are described followed by the proposal of future research.





Chapter 2

Visualization of scalar field

structure and evolution

Often demanded task in scientific visualization is to show structure of a scalar

field. Moreover, when data set covers state of the scalar field over certain period

of time, it is often useful to visualize its evolution. An overview of the tech-

niques dedicated to these two purposes is sketched in this chapter, starting with

experimental visualization which served as an inspiration for computer aided vi-

sualization described in the second part of the chapter. Sections 2.2.1 to 2.2.3

focus on visualization of static scalar fields, followed by the Chronovolumes and

Illustration-inspired techniques in the sections 2.2.4 and 2.2.5, which describe

visualization of scalar field evolution.

2.1 Experimental visualization

Prior to the age of computers, the experimental techniques for visualization of

fluid flow were widely used. Experimental fluid flow visualization techniques,

categorized according to [35, 21] are described in this chapter.

1. Addition of Foreign Material. To visualize a fluid flow behavior over time,

the small particles of foreign material can be injected into it. Their motion

ruled by a fluid flow is then analyzed and evaluated. Techniques differ

according to the type of foreign material and style in which it is added

into flow. Time lines are formed by the row of small particles (such as

hydrogen bubbles), released perpendicularly to the flow. Streak line arises

when colored dye is injected into the flow from a fixed position over a period

of time.

9
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EVOLUTION

(a) (b)

Figure 2.1: Experimental visualization of supersonic flow. (a) Oil flow patterns

on the surface. (b) Shadowgraph of the density distribution. Both pictures are

from [35].

2. Optical Techniques. This branch of experimental visualization techniques

is based on the fact that the light reflection index is changing with varying

density. Technique is applicable only in the flows with varying density.

3. Addition of heat and energy. The effect of adding heat into the flow field

to artificially change local density is utilized. Then a structure of flow field

can be visualized using optical techniques.

Final picture made by the experimental visualization techniques shows struc-

ture of the flow in the single moment, enhancing places with higher and lower

value of an observed quantity. Computer aided techniques, described in the next

chapter 2.2, are more-or-less trying to find the ways to construct and visual-

ize structures over the scalar field to approximate the pictures produced by the

experimental techniques.

2.2 Computer aided visualization

Inspired by the experimental visualization and supported by the recent advances

in graphics hardware, a computer aided visualization of scalar fields evolution

is quickly developing in the past decades. This section gives and overview of

the commonly used graphics techniques to visualize a structure and evolution

of scalar field. Different branch of techniques such as particle tracing, stream

lines, or streamlets are used for vector and tensor fields visualization [22, 37, 25],

however they are out of scope and interest of this work.
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2.2.1 Direct volume rendering

Probably the simplest technique to visualize a scalar field is to render a scalar

field directly by applying transfer function. Transfer function maps the optical

properties like color and opacity to the values in data set. During the visualization

no geometric information need to be calculated, because 3D data are directly used

to render the resulting image [26] of a scalar field.

The first step in Direct volume rendering is the reconstruction process. Given

a set of original discrete samples in the dataset, a ray is cast from eye position

through the each pixel of the resulting image and further through a data volume.

A ray is sampled by a constant rate that has to be high enough to visualize

structure of a scalar field properly. Value of each single sample along the ray is

computed by the reconstruction filter [29, 30].

After reconstruction a transfer function is designed and applied onto com-

puted values of sampled rays. This is called classification step. Finally the casted

rays are integrated along themselves using volume rendering integral:

C =

∫ D

0
c(s(~x(t)))e−

R

t

0
τ(s(~x(t′)))dt′dt (2.1)

Integral 2.1 incorporates the parts of emission-absorption optical model, in

which C is the pixel output color, ~x(t) denotes a ray casted into a volume (t

is the distance to eye), scalar value corresponding to the position is denoted by

s(~x(t)), τ(s(~x(t′))) is the light absorption coefficient and c(s(~x(t))) is the light

emitted by the particles.

Research on volume rendering is now focused on interactivity and utilization of

advanced graphics hardware to increase the efficiency of the rendering process [19,

18]. Volume rendering of large unstructured meshes is discussed in [7]. Volume

rendering of time-varying data is discussed in [5, 61].

2.2.2 2D slicing and Orthogonal slicing

2D slicing [50] investigates the structure of scalar field by cutting it in the desired

position by the plane, usually aligned with some of the basis axis. Information

about the scalar values along the cutting plane may be visualized by the direct

their direct mapping of the scalar data on the cutting plane or illustrated by the

extraction of iso-contours.

Orthogonal slicing is the technique applicable to 3D scalar fields. It has been

developed as an extension of the single 2D slicing of 3D scalar field. A set of

mutually orthogonal slices is constructed, each of which shows the structure of

a scalar field in the desired plane and position. Such set of slices gives better

insight into structure of a scalar field than a single parallel 2D slice.
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2.2.3 Iso-contours and iso-surfaces

This section provides overview of the methods for extraction of iso-surface ge-

ometry from static data sets (data specified only at the single moment in time).

Extraction of iso-surface geometry is not the main focus of this work. However,

it is an integral part of the iso-surface extraction and there we discuss the topic

in this chapter. Note that this is not a comprehensive list of all methods. The

techniques are sorted in categories according to the principle they are based on.

The example methods are mentioned by each category.

Marching methods. The initial work on extraction of iso-surface geometry

was presented by Lorensen and Cline in 1987. Their Marching Cubes (MC)

algorithm [28] works over regular grids and is easy to implement. Its limitations

lie mainly in the high time complexity, since all the cells in a mesh have to be

traversed. Another drawback of the MC method is the possible ambiguity in

triangulation when reconstructing part of an iso-surface within a single active

cell. These limitations were the main boost for the next research in this field.

Marching Tetrahedra (MT) [31, 51] approach works over more general case

of tetrahedral meshes. Since any mesh can be decomposed into tetrahedral one

this in generally not considered as a limitation. As in the case of MC algorithm,

an iso-surface is approximated by triangles extracted by the linear interpolation

of the values in the vertices of a simulation mesh. MT solves the triangulation

ambiguity problem of the MC method. The two possible cases of triangulation

within a single tetrahedron are depicted by the figure 2.2.

(a) (b)

Figure 2.2: Marching tetrahedra. The two cases where triangulation is re-

quired, and the resulting triangulations. Case (b) can be rendered as a quadrilat-

eral rather than two triangles, since the surface is guaranteed to be planar [51].

Dual contouring method [24] address the crack problem of MC method and

capture the sharp features of the iso-surfaces. Hermite data along the edges

(exact intersection points and normals) are assumed to be known prior to iso-

surface extraction process.

In 2005 Anderson et. al introduced Marching Diamonds [3] (MD) technique

for unstructured meshes. Rather that linearly interpolate along the edges of
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a cell, the pieces of iso-surface are computed from diamond composed of two

neighboring tetrahedra (or triangles in 2D). Diamond provides more information

about the surrounding data (more vertices) than a single tetrahedral cell. Result

are visually smoother iso-surfaces with significantly lower amount of generated

triangles when compared to MT method.

The methods for effectively identifying only those cells which are intersected

by the iso-surface (active cells) have been in focus of many research. Fast identi-

fication of the active cells prior to the iso-surface extraction itself accelerates the

whole process, because non-active cells are not investigated. An overview of the

techniques for active cells extraction is given in the chapter 3.1.

Ray-traced iso-surfaces. Ray-tracing can be used for iso-surface visual-

ization, when proper transfer function is used [54]. Sramek [47] defined ray-iso-

surface intersection as the solution of system of equations:

X = A + t~u (2.2)

F (x, y, z, ρijk) = t1, (2.3)

where A is the eye position, ~u is the ray direction vector, t1 is a threshold value,

F is an interpolation function and ρijk is a function value in some neighborhood

of voxel vijk. Sramek discusses various interpolation functions F .

Parker et al. [32] optimized ray-tracing for iso-surface extraction by group-

ing cells into macro-cells, marked with minimum and maximum sample value

within them. Only the macro-cells and their child cells that contains the desired

iso-value are recursively traversed and considered for ray-iso-surface intersection

computation. If more than one ray-iso-surface intersection is computed for one

ray, the one closest to the eye is considered for visualization.

Point-based iso-surfacing. In 2004 Co et al. [39] proposed meshless method

for construction of crack-free iso-surfaces from multiblock data. Such data sets

involve multiple grids of various layout and position, often overlapping each

other. Their method disregards connectivity information in the overlapping grids.

Next the single samples are binded to a new grid G. A local RBF interpolant

Hk(x, y, z) =
∑N

j=1 ajBj(x, y, z), is associated to each RBF cell’s center ck of grid

G, computed from N samples within sphere of radius Rw = 2
√

sx
2 + sy

2 + sz
2

from a cell’s center, where (sx, sy, sz) are dimensions of single cell in RBF grid

G. aj is the blending coefficient and Bj is a multi-quadric function. Iso-surface is

then generated from triangles constructed within the cells of original grids, using

MC algorithm. These triangles are then sampled and function value F(x,y,z) and

gradient are computed for each sample using interpolants Hk of the RBF cell a

sample belongs to, and from its 26 neighbors by the partition of unity function

φk (
∑

k φk(x, y, z) ≡ 1): F (x, y, z) =
∑M

k=1 φk(x, y, z)Hk(x, y, z)
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Finally, function values of the samples and associated gradients are used as

the input parameters of the Newton-Raphson root-finding scheme to move the

samples onto the real iso-surface of interest. So the resulting iso-surface is not

just approximated by the triangles.

Co and Joy [14] used the similar RBF interpolation scheme for iso-surface

generation from large scattered data set. The method constructs a small local

tetrahedralization around the place at which the iso-surface is constructed. Inside

each local tetrahedralization a the products of RBF interpolation and point-

based rendering method is used to extract geometry of iso-surface. This allows

to process large-scale data sets because once the resulting iso-surface is extracted,

local tetrahedralization can be discarded.

2.2.4 Chronovolumes

The challenge of capturing the objects that vary in time on a single 2D pic-

ture, is well known among photographers for almost 100 years. It is known as

Chronophotography. Woodring and Shen [60] combined chronophotography and

direct volume rendering techniques (chapter 2.2.1) to visualize evolution of the

scalar data.

The resulting visualized objects are constructed by first integrating the four

dimensional voxel data (x, y, z, t) along the time axe. After this, each voxel in the

processed data has value v(x, y, z, t) from integrating along the time. Such a pre-

processed volume is called chronovolume. The regular volume rendering methods

are then used to obtain final two dimensional image of a scalar field evolution.

Special care is taken to the construction of integration function (chapter 2.2.1),

which has to reflect the goal of visualization. Woodring and Shen proposed [60]

five different integration function (Alpha compositing, First Temporal Hit, Ad-

ditive Colors, Minimum/Maximum Intensity and Edge Enhancements), each of

which enhances different temporal feature.

(a) (b)

Figure 2.3: (a) Example of chronophotography. (b) Alpha compositing used over

chronovolume for 3 consecutive time steps (time is moving from red to blue) in

the visualization of Jet dataset [60].
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2.2.5 Illustration-inspired techniques

Joshi and Rheingans introduced illustration-inspired approach [23], which shows

the temporal changes in the scalar data over a period of time. This is done by

first extracting the features of interest from the investigated scalar field and track

them over a sequence of n consecutive time steps. Finally the illustration features

are computed and added into the image, to indicate the temporal changes of a

feature (i.e. positional, rotational). Figure 2.4 shows the illustration features

giving an impression of object movement during a period of time.

Four illustration features (Speed lines, Flow ribbons, Opacity modulation and

Strobe silhouettes) are described in [23] (Fig. 2.4). Their suitability for description

of a specific temporal change of observed feature is also discussed.

Usage and suitability of the illustration-inspired techniques depends highly

on the visualized data and on a nature and intensity of the involved temporal

changes. Authors also discuss usability of this approach for flow visualization.

(a) (b) (c) (d)

Figure 2.4: Illustration features added to feature extracted from scalar time-

varying field to indicate its temporal changes [23]. (a) Speed lines, (b) Flow

ribbons, (c) Opacity modulation, (d) Strobe silhouettes.

Having described the most used techniques for visualization of scalar field

structure and evolution the cornerstone for scalar field visualization is put down.

The following chapter is focused on extraction of the active cells from time-varying

data sets with static simulation mesh.





Chapter 3

Iso-surface extraction from static

simulation mesh

In 1987 Lorensen and Cline introduced popular Marching Cubes algorithm [28] for

iso-surface extraction from static volumetric data sets. Many researchers inspired

by this seminal work tried to improve and extend it in many ways.

This chapter provides an overview of the methods for:

1. iso-surface extraction from static data sets,

2. iso-surface extraction from time-varying data sets with static simulation

mesh.

Even if the this family of methods and data sets is not a core topic of this work,

their overview is provided because they serve as a start point for the research on

iso-surface extraction from the data sets with dynamic simulation mesh.

3.1 Efficient iso-surface extraction from static data

The iso-surface extraction has been greatly popularized by the Marching Cubes [28]

algorithm. Despite its simplicity, the Marching Cubes algorithm suffers from

computational inefficiency, since all the cells in a data set have to be traversed

in order to extract desired iso-surface. Rather than traversing all the cells in a

dataset, a family of techniques for fast active cells identification was developed.

Wilhelm and van Gelder introduced a Branch-On-Need Octree (BONO) [59].

The technique is inspired by the traditional octree, but spatial subdivision is more

efficient than in the standard octree. done is a different manner. Space of the

BONO node is divided by assigning the-largest-possible-power-of-two rows and

columns to a lower branch and the rest of the subspace is divided among the

17
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Even Subdivision Strategy Branch-on-Need Strategy

Root

Level 1

Level 2

4 Nodes

12 Nodes 9 Nodes

4 Nodes

1 Node 1 Node

(a) (b)

Figure 3.1: (a) 2D example of BONO subdivision. The largest possible power

of two number of rows and columns is assigned to a lower left branch, and the

rest of the space is divided among the other quadrants (picture and description

from [59]). (b) Principle of span space usage for fast identification of the active

cells (picture from [55]).

other three ”quadrants” (in 2D). Figure 3.1a shows the 2D example of BONO

subdivision of regularly placed cells. Min/max values of the cells are stored in

the nodes of a BONO tree, so only those subtrees satisfying condition min < iso-

value < max are traversed during active cells extraction. The time complexity

of this method is O(K + log N/K), where K is the number of iso-surface cells,

and N is the total number of cells.

Shen and Johnson introduced Sweeping Simplices technique [43]. The

technique uses a cell list division scheme, which assigns the cells into the groups at

various level according to the min/max values. For each subgroup the minimum

list (cells sorted by the min values) and the corresponding sweeping list (cells

sorted by the max values) is constructed. During the active cells extraction, the

minimum lists and sweeping lists are restricted by the selected iso-value. Then

the efficient comparison scheme is used to quickly extract only the cells in both

restricted lists, which are in fact the active cells.

Livnat et al. introduced the notion of Span Space [27]. In the Span Space

the cells are represented by their minimum (x-coordinate) and maximum val-

ues (y-coordinate). Active cells are identified by the simple restriction of Span

Space along min and max axis. Figure 3.1b illustrates the process of iso-surface

extraction using Span Space (the area of active cells for iso-value q is enhanced).

Livnat et al. originally proposed kd-tree for spatial subdivision of Span Space

in the NOISE algorithm [27]. The points, representing the active cells can be
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extracted by simply traversing kd-tree with worst case time-complexity of O(
√

N

+ K ).

Shen et al. proposed lattice subdivision of Span Space in the ISSUE tech-

nique [42]. ISSUE lowers the time complexity of the active cells search to

O(log(N
L

) +
√

N
L

+ K)), where L is the user specified parameter defining the

number of lattice elements along each axis.

The Interval Tree technique [12] guarantees worst-case optimal efficiency.

Cells, represented by the min/max intervals are grouped at the nodes of balanced

binary tree. For any iso-value query, at most one path from a root node down to

a leaf node is traversed.

I/O efficient technique for visualization of iso-surfaces from time-varying data

sets which exceed limits of physical memory has been presented by Chiang [11].

The I/O efficient decomposition of interval tree is used and combined with an

out-of-core approach to load active cells’ geometry and scalar values.

Another solution has been found in work on Contour trees [9], and construc-

tion of Seed Set [8, 52] containing cells intersected by the iso-surface components

(one seed per component). The iso-surface construction begins at a seed and is

traced through neighboring cells using adjacency information.

Span-triangle data structure was introduced by von Rymon-Lipinski et

al. [53]. Span-triangle is focused on iso-surface extraction from medical volume

data sets, sampled as either 8 bits or 16 bits integers, moreover cropped to an

exploration range [emin, emax]. Skeleton of Span-triangle structure is base ar-

ray. Each element in the base array corresponds to the cells x with min value

b = xmin − emin and contains pointer to its span array and cell info array. An

element of span array at position s holds pointer to the first item with value span

s = xmax − xmin in a cell info array. Figure 3.2 shows example of Span-triangle

structure for exploration range [emin, emax] = [0, 3] and iso-value v = 2. Using

fast Radix sort algorithm, the structure can be constructed in O(N) time and

takes O(N) space.

Bordoloi and Shen [6] introduced the space efficient technique for iso-surface

extraction from large scientific data sets. The original mesh cells are first repre-

sented as the points in 2D UV-space . U coordinate of the cell C is determined

as u = Cmaximum + Cminimum and V coordinate as v = Cmaximum - Cminimum.

Then the U and V axis are quantized, which results into a set of rectangular

regions within UV-space. Given an iso-value, the decision boundaries for UV-

space are computed. The cells stored in the rectangular regions within such

decision boundaries are selected for extraction of iso-surface geometry. Due to

the quantization of the U and V axis the min/max values of the cells within each

rectangular region of UV-space do not need to be saved. Only the space for cells

IDs and the space for representing rectangular regions in UV-space are required.

Waters et al. [56] use fixed-sized buckets to divide the list of cells in a scalar
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field. A record for one cell includes a cell’s min/max and ID values. List of the

cells is first sorted according to the minimum values. Such sorted list is then split

into intervals of the same size B - buckets. Figure 3.3 illustrates organization of

the cells in the min/max space and their assignment to the buckets. Similarly

to Span Space the active cells are identified by restriction of the 2D space along

the min (x) and max (y) axis. Buckets are traversed along the min (x) axe and

tested for ycell = maxcell < max condition. The time complexity for creating the

list is O(N logN + N
B

(B logB)) and for identifying the active cells O(K + B).

Space complexity is O(N).
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Figure 3.2: Sample of the span-triangle data structure for exploration range

[emin, emax] = [0, 3] and isovalue v = 2. Active element of the data structure

for isovalue v = 2 are emphasized by a gray background.

m
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min
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Figure 3.3: Iso-surface extraction using fixed-sized buckets. The cells of scalar

field are organized in a space similar to Span space and divided into the buckets

of equal size. Parts of the buckets containing the active cells are emphasized by

the black boxes. The cells in the last bucket ca must be checked for both the

minimum and maximum value, therefore creating non-continuous block of cells.
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3.2 Temporal Hierarchical Index Tree

Shen et al. introduced Temporal Hierarchical Index Tree (THIT) [40] for iso-

surface extraction from time-varying scalar fields with static simulation mesh.

First the cells are assessed by their temporal variation. For a time-varying field,

a cell may has multiple corresponding points in the Span space for the different

time steps. To characterize a cell’s scalar variation over time, the area over which

the corresponding points spread in the Span space is measured.

Then a Temporal Hierarchical Index Tree is built, placing the cells with low

temporal variation over time closer to the root of the tree. Criterion for low

temporal variation is that the points corresponding to the same cell are located

with 2x2 elements of lattice subdivision of the Span space. For other cells that

do not satisfy the criterion of low temporal variation the root time interval is

divided in half. Process continues recursively into each of two subtrees. The leaf

nodes contain cells with the highest scalar variation over time, so that the cells’

time-specific extreme values are used. Search index for each node of the THI tree

is created by the ISSUE [42] algorithm. The min/max values in the nodes closer

to the root node are used to refer to a cell for more than one time step, which

contributes to the lower overall size of the tree structure.

Given an iso-surface query at time step t, THI tree is traversed and the nodes

that contain the active cells are visited. In the visited nodes the ISSUE search

for the active cells is performed.

This method accelerates iso-surface extraction from time-varying data. How-

ever at each time step the entire data domain (time step) is loaded into the main

memory. The iso-surface extraction process potentially needs to access all of the

time steps in the time-varying dataset, which may cause memory overhead.

3.3 Temporal Branch-on-Need Tree (T-BON)

The Temporal Branch-on-Need Tree (T-BON) [48] extends the three dimensional

Branch-On-Need Octree (BONO) [59] (figure 3.1) for time-varying iso-surface

extraction. The method focuses on minimizing the number of I/O operations, by

reading from disk only those portion of search structure and data necessary to

construct the current iso-surface.

First a BONO tree [59] is computed for each time step. Information about

general infrastructure of a BONO tree is saved to the disk once for an entire

dataset. Then the extreme values for nodes are computed and stored separately

for each time step.

During iso-surface extraction a query of the form (iso-value, time) is processed

by first testing if the iso-range of the root node of BONO tree for desired time

cover the desired iso-value. If so, root node’s children are tested for iso-range as

well. Once the leaf node is hit and covers the desired iso-value then the disk block
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containing the data for the cells in that leaf node is added to the list. Once this

process is over, all block in the list are read from the disk. This clearly minimizes

the I/O access. However, T-BON does not exploit any temporal coherence in the

data.

3.4 Time-space partitioning tree

Time-space partitioning tree (TSP) [41] is the octree-based data structure, effi-

ciently encoding coefficients of spatial and temporal variation of the data to speed

up visualization of time-varying data. TSP tree is a standard full octree. Each

node of TSP tree stores a binary tree, recursively bisecting time-span [0, t ] of the

entire data set until the unit time step is reached. For each node of binary time-

tree associated with each TSP tree node the coefficients of spatial and temporal

variations are computed from the original time-varying data.

During the volume-rendering-based visualization the partial images from sub-

volumes are cached for the current time step. When another time step is selected

a TSP tree is traversed. The test whether particular sub-volume’s spatial and

temporal variations exceed the user selected thresholds is performed, in case of

which this sub-volume is rendered again. Otherwise a cached rendered partial

image is used, speeding up the visualization process.

TSP enables user to manage the trade-off between the visualization speed

and accuracy through the thresholds of spatial and temporal coherence. Similar

error-based iso-surfacing method [55] is described later in the chapter 3.7.

3.5 4D approach

In 1996 Weigle and Banks introduced recursive contour meshing method [57]

of decomposing n-dimensional simplex into a set of (n-1 )-dimensional simplices,

including the 4D case. Based on this work, two years later, they published the

method [58] for iso-surface extraction from time-varying scalar fields.

Basic idea of their 4D method [58] is to look at the time-varying data as to

be the one static 4D dataset. Each sample of the original dataset is identified by

three spatial coordinates x, y, z and one time coordinate t. This interpretation of

3D time-varying data together with the usual way of extracting iso-surfaces from

the mesh composed of n-dimensional simplices (over n-dimensional data) lead

them to construction of a mesh of 4-simplices. To find an iso-surface f(x,y,z,t) =

0, they apply two constraints to the 4-simplicial mesh.

In the first pass a set of iso-volumes f1(x,y,z,t) = 0 are extracted by imposing

iso-value constraint over the 4-simplices. This results in a set of 3-simplices

intersected by the iso-surfaces of given iso-value.
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To produce iso-surface for the particular time step ct the second pass is done,

imposing the time constraint f2(x,y,z,t) = t - ct = 0. This produces the resulting

iso-surface, composed of 2-simplices, for desired iso-value and time. Although

this method elegantly captures temporal coherence in a dataset, its high compu-

tational demands makes it impractical for the large data sets.

Figure 3.4: Iso-surface satisfying 2 constraints in 4-dimensional space. 3-

simplexes (wire frames) are the result of imposing first (iso-value) constraint.

Extracted iso-surface satisfies the second (time) constraint (picture from [58]).

3.6 Out-of-core visualization

Recent advances in computational performance enable scientists to perform large-

scale simulations, producing data sets which are usually a magnitude larger than

is a size of physical memory of workstation-class computers. Thus, various out-

of-core visualization approaches have been proposed. Principle of the out-of-core

approaches is to split original data set into a range of files and using only those

of them needed for visual analysis. One of the main issues solved when using

out-of-core approach is to minimize the number of disk I/O operations necessary

to access required data. This concept is usually used as the extension of the

existing methods, enabling them to work with large-scale data set.

As an example of the out-of-core method the work of Reinhard et al. [36] is

briefly described. Their method is focused on fast out-of-core iso-surface visual-

ization. The method first partitions the whole data set into a range of small files.

Each file contains the data for one time step and a certain range of iso-values.

Efficient 28 bytes-per-voxel data format is used to store time-varying data in the

files, reducing the necessary disk-memory traffic. For visualization of the iso-

surfaces they use ray-tracing based method of Parker et al. [32]. The technique

has been implemented and tested on 32 processors SGI Origin 2000 computer,

with 12 GB memory, which together with out-of-core nature of the technique

allows visualization of the iso-surfaces at the interactive frame rates.
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3.7 Adaptive extraction of time-varying iso-surfaces

Solution to the problem of fast iso-surface extraction from large time-varying data

sets proposed by Gregorski et al. [20], utilizes adaptive mesh refinement scheme

and an out-of-core approach (chapter 3.6). The key of the adaptive extraction

method is the recursive mesh refinement scheme which splits initial volume into

a set of tetrahedra. These are further grouped into the diamonds organized in a

hierarchical structure.

During the preprocessing phase an iso-surface approximation error, minimum

and maximum data values enclosed by each diamond and normalized gradient

vector at each data point are computed. At runtime, the refinement process

creates a set of tetrahedra, describing domain around the iso-surface, based on

user supplied iso-surface approximation error, iso-value and time step.

If another time step is selected the visible diamonds’ min, max and error tol-

erance values are checked. If these fit the user defined threshold values, then all

the tetrahedra within such diamonds are used for iso-surface extraction. Other-

wise, the refinement process (sequence of split and merge operations) is initiated.

When the iso-value is changed then the refinement process can start either

from the root diamond of a diamond hierarchy or from a current refinement of

a mesh, checking the min, max and error tolerance values of the diamonds. The

way in which the refinement process is initiated depends on the data difference

between time steps ti and ti+1.

3.8 Difference intervals

Waters et al. introduced the Difference intervals technique [55] for better uti-

lization of spatial and temporal coherence in a data set. Static mesh with time-

varying scalar values is assumed. Input of the method are desired iso-value and

time step. Iso-surface evolution is visualized by first computing the active and

inactive cells from an entire data set (or only from a selected time span) and then

visualized using this information.

In a preprocessing time a set of active cells is first computed for the first

time step, using an arbitrary existing technique. Active / inactive cells are then

computed from this initial information for the next time step. Movement of cell

in the span space [27] is observed and classified into 11 cases (figure 3.5), which

results into designation of each cell with either add (cell became active) or remove

(cell became inactive) operation. Eventually, a cell can holds its status in a next

time step. The changes between ti and ti+1 are encoded into an operation set Di.

In a preprocessing step the operation sets are computed for all the adjacent pairs

of time steps. The technique for temporal compression of a sequence of operation

sets is also discussed.
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Visualization utilizes the encoded operation sets to update only the necessary

portions of the iso-surfaces according to the add or remove operation assigned

to each single cell. In this way an interactive playback of iso-surface evolution of

constant iso-value q is possible in both forward and backward direction.

A point-based rendering technique is utilized for visualization of the iso-

surfaces itself. Once the desired iso-value is changed the preprocessing steps

has to be done with this new parameter again.

Figure 3.5: Examples of the add and remove operations assigned to a cell ac-

cording to its movement in Span space. These operations are then encoded in

the operation sets and used for interactive playback of the evolving iso-surfaces

for a given iso-value (pictures from [55]).

3.9 Persistent hyperoctree (PHOT)

Persistent hyperoctree (PHOT) [44] introduced by Shi and allows to extract a set

of the active cells and simultaneously only those of them that are visible from the

current point of view (relevant cells). By saving the time to extract occluded cells

and more efficient tree construction, significant speed up in iso-surface extraction

is achieved.

By deleting the nodes which contain only the inactive cells in their sub-volume

and collapse the nodes that contain only one children in an octree a compact octree

is made (figure 3.6). Each PHOT’s node has 8+k jumpers (k is a small constant)

with associated version number. Root node of hyperoctree represents an entire

hyper volume and has 16 children, each representing one hyperoctant. To make

hyperoctree persistent all the cells are collected and two copies are held for each

of them. One copy holds a cell’s min value as its key and the other one holds

the max value. The cells are sorted according to their key values in ascending

order and the list is traversed. If a cell has its min value as its key it is stored in

the current version of the tree, otherwise the new version is created and the cell

is stored into it (figure 3.7). When traversing a PHOT, the root node with the

largest version number smaller or equal to iso-value is identified and its subtree

is traversed by following the latest jumpers no later than iso-values.

For 3D iso-surface extraction by 4D slicing along the time axis a 4D cells are

constructed and indexed by their value ranges using PHOT. Given an iso-value
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and time parameters the active and relevant cells are extracted, and then sliced

along the time axis to determine the iso-surface at given time.

Figure 3.6: Compact hyperoctree for the set of active cells (the black ones on the

left sub-figure). As can be seen from the right sub-figure the nodes which contain

only one children are collapsed (picture from [44]).

(a) (b)

Figure 3.7: Example of PHOT for static 1D data (picture from [44]).



Chapter 4

Iso-surface extraction from

dynamic simulation mesh

The methods presented in the chapter 3 assume, that a simulation mesh remains

static during the course of simulation. So, geometry of mesh cells and their cor-

respondence between time steps remains constant. However, simulation domain

may change from time step to time step, because of the moving parts or dynamic

boundaries. In such a case the dynamic meshing techniques are often employed

to maintain quality of a simulation mesh under deforming domain boundaries.

Figure 4.1 shows dynamic mesh from a simulation of combustion process in an

engine. The mesh changes its layout (number of cells and their geometry) accord-

ing to the vertical position of a moving piston. Dynamic mesh provides better

discretization of changing simulation domain and positively influences overall ac-

curacy of the solution.

(a) time step 400 (b) time step 420 (c) time step 440

Figure 4.1: Example of dynamic mesh from a simulation of combustion process

in an engine. The simulation mesh is reconstructed according to the vertical

position of a moving piston. Layout of the simulation mesh is depicted for the

time steps 400, 420 and 440.

27
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While the techniques for generating dynamic meshes are being rapidly devel-

oped, there is a lack of suitable visualization methods. Treating each time step

as a separate static subset of data is common in visual exploration of the data

sets with dynamic mesh. Therefore, this work is focused on development of the

visualization techniques capable of interactive visual exploration of data sets with

dynamic simulation mesh.

The rest of this chapter splits into two logical parts. The first part (chap-

ters 4.1 to 4.2) provides brief introduction to the theory and application of dy-

namic meshes. The second part (chapter 4.3) describes existing visualization

techniques for dynamic simulation mesh, followed by our concept of iso-surface

extraction from this specific kind of data sets.

4.1 Introduction to dynamic meshing

Principle of dynamic meshing lies in the conditional update of generated initial

simulation mesh at each time step. Criteria and conditions of mesh quality and

mesh update depend strongly on particular application.

There are many kinds of conditional mesh update covered by the term dy-

namic meshing. In the simulations where the zones of frequent changes in data

values are moving, the fixed uniform grids are computationally inefficient. There-

fore, solution adaptive grids are often employed, refining the mesh right at the

place of the high data changes. This is called mesh adaptation [1].

Another kind of dynamic meshing are the moving meshes. Moving mesh

techniques use a fixed number of grid points, and let the grid points move in

space or move entire grid. Thompson et al. [49] provides a good survey of the

area.

The most general case is to rebuild the whole mesh at each time step, which

is usually termed as the dynamic re-meshing. This kind of mesh update is used

in simulations with rapidly moving domain boundaries (figure 4.1). Dynamic

re-meshing changes both geometry and the number of cells during mesh update.

No matter which one of the techniques described above is used to update

simulation mesh, the techniques for iso-surface extraction from the data sets

with static mesh (chapter 3) become inefficient as the mesh deformation grows.

In the case of dynamic re-meshing, when the number of cells vary in time, these

techniques fail completely.

The following two sub-chapters deal with methods for dynamic mesh update

to better illustrate the problematic and to give an impression of how dynamic

re-meshing works. The first sub-chapter describes the group of methods com-

monly known as Arbitrary Lagrangian-Eulerian. The second one describes three

frequently used re-meshing techniques: Layering, Spring smoothing and Local

re-meshing.
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4.1.1 Arbitrary Lagrangian-Eulerian (ALE) methods

In the following paragraphs the term continuum stands for a moving fluid or

other material volume.

In the CFD applications the mesh generation process begins by choosing the

right kinematical description of moving and deforming continuum. This descrip-

tion essentially determines the relationship between a continuum and a mesh [16].

There are two classical descriptions of motion:

• Lagrangian description, in which each node of simulation mesh is attached

to a particle in a continuum. During simulation a mesh follows the con-

tinuum in its motion because mesh nodes remains attached to the same

particles. The main drawback of this method is its inability to follow large

deformations of simulation domain without frequent re-meshing.

• Eulerian description lefts a mesh fixed during the whole simulation. The

physical quantities associated with particles moving through the fixed re-

gion of space are examined. A particular value of observed quantity at a

mesh node at time t corresponds to the value of observed quantity at node

position in time t. Eulerian method handle the simulation domain distor-

tions relatively easy, but at the cost of lower resolution of flow details.

There are situations that would be difficult to analyze in either the La-

grangian reference frame or the Eulerian reference frame individually. Arbitrary

Lagrangian-Eulerian (ALE) description of continuum movement combines the

best features from both Eulerian and Lagrangian description. Figure 4.2 shows

example of mesh nodes and particles movement in Eulerian, Lagrangian and ALE

description. In the ALE description the nodes of simulation mesh may fully or

partially follow a movement of continuum or may be fixed like in the Eulerian

description. The movement of nodes in ALE description offer higher ability to

handle the mesh distortions caused by large deformations or movement of simu-

lation domain boundaries.

Lagrangian description
t

Eulerian description
t

ALE description
t

Mesh node
Continuum particle Particle motion

Node motion

Figure 4.2: 1D example of the Lagrangian, Eulerian and ALE mesh update with

respect to the actual particle motion (picture from [16]).
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4.1.2 Dynamic mesh models

Layering. Hexahedral meshes can be update by dynamically adding the layers

of mesh cells near the moving boundaries (figure 4.3). Layer of the cell adjacent

to the simulation domain boundaries (layer j in figure 4.3) can be split or merged

with its adjacent layer (layer i in figure 4.3). When the layer j grows, its height

h is checked by the ideal cell height hideal condition [17]:

h < (1 + α)hideal (4.1)

If cell height h does not meet condition 4.1, the layer j is split according to

the user specified criteria and the new layer is build upon j. The mesh from

figure 4.1 has been created by the layering method.

Moving boundary

layer  j

layer  i

h

Figure 4.3: Layering. Layer j grows on the layer i according to the movement

of domain boundaries. Height h of layer j is periodically checked until it fails to

meet condition 4.1 - then the layer j is split (picture from [49]).

Spring smoothing. Spring smoothing idealizes the connections between

mesh vertices as a network of interconnected springs. The initial connection

of the mesh nodes is considered as a stable state of the mesh. Deformation of

the mesh boundaries causes displacement of the vertices by the boundaries and

generates tension on the springs. The tension on the springs connected to i -th

internal mesh vertex is expressed as a force ~Fi in the i -th vertex:

~Fi =

ni
∑

j

kij(δ ~xj − δ ~xi) (4.2)

where ni is the number of vertices connected to vertex i, δ ~xj is a displacement

of neighbor nj against the vertex xi, kij is the spring constant (Equation 4.3).

So, the resulting force in the i -th vertex is proportional to the displacement

along the springs connected to the node i [17]. The position of the i -th vertex is

then adjusted according to the vector and magnitude of the ~Fi. This process of

force-relaxation on the mesh springs is applied to all internal mesh vertices.

kij =
1

√

~xi − ~xj

(4.3)
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Local re-meshing. When the displacement of the mesh boundaries is large

compared to the cell size, degeneration of the mesh cells can be significant. Lo-

cal re-meshing methods measure the quality of the cell shape (e.g. skewness,

min/max length) and update mesh locally when it decreases under the prede-

fined thresholds.

4.2 Real-world applications of dynamic meshing

This chapter discusses three examples of the industrial applications of the dy-

namic meshing. The fourth example is discussed in the next chapter together

with applied visualization technique.

Cavallo et al. [10] used dynamic mesh in the simulation of a flow through the

split-body valve. The mesh is adaptively refined and coarsened in the zones where

a moving inner part of the valve creates moving mesh boundaries. Figure 4.4

shows example of the mesh layout from a split-body valve simulation [10] at

various stages of the valve opening.

Amsden [2] describes dynamic meshing techniques used in KIVA-3V program

for simulation of vertical and canted valves of combustion engines. Especially

useful in these simulation are Layering and local refinement and coarsening of a

simulation mesh. As stated by Amsden: ”This is not simply a matter of generat-

ing the initial grid: The grid must dynamically change during the run in response

to the changing valve positions...”.

Snyder and Sverdrup [46] discuss advantages of dynamic meshing against

other methods for simulation of munition separation from under an aircraft wing.

Rapid movement of falling munition requires continual modification of a simula-

tion mesh. The ability to dynamically change a mesh between successive time

steps is used to increase the speed of grid generation during a simulation.

(a) 50% open (b) 70% open (c) 80% open

Figure 4.4: Layout of the dynamically updated simulation mesh and direct ren-

dering of the data from a split-body valve simulation (picture from [10]).
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4.3 Iso-surface extraction

This chapter deals with the problem of iso-surface extraction from the data sets

with dynamic mesh and is divided into three parts. The first part describes the

problem itself and the related issues. The second part provides an overview of the

existing techniques for iso-surface extraction designed for static simulation mesh

(chapter 3), along with brief explanation why a particular technique is unable to

work with data sets with dynamic mesh. This is to show that efficient extraction

of the iso-surfaces from dynamic mesh requires new approach to the problem

and can not be simply solved by applying existing techniques designed for static

meshes. The third part, describes our approaches to the problem together with

their limitations.

4.3.1 Problems

The two major problems when dealing with dynamic simulation mesh are:

1. Different number of mesh cells at each discrete time step. Geometry of the

cells and possibly topology of the mesh may also vary during the course of

simulation.

2. Due to the different simulation mesh at each time step the data sets with

dynamic mesh are usually a magnitude larger compared to those with static

mesh.

A list of particular challenges that have to be overcome by the efficient solu-

tion to the iso-surface extraction from dynamic simulation mesh can be derived

directly from the two principal problems stated above:

• Efficient representation of a dynamic mesh. Due to the fact that

geometry and topology of the cells may be different at each timestep, time

and space efficient representation of dynamic mesh is necessary. At a higher

level this point also includes calculation of changing mesh layout at the

intermediated time steps.

• Space and time efficient structure for identification of the active

cells. Many techniques for active cells extraction have been introduced in

the past decade. Most of the existing techniques for active cells extraction

assume static simulation mesh and exploit this fact to represent the mesh

cell only by its min/max values and id number or pointer to the record

with cell’s static geometry. Therefore, new techniques have to be developed,

designed specially for data sets with dynamic simulation mesh. Following

chapter discuss this problem closely.
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• Suitable out-of-core strategies. Keeping geometry of all mesh cells in

the main memory could be very space-consuming (if not impossible for large

data sets). Thus, only the space efficient structures holding the minimal

amount of information necessary to identify the active cells, could be in the

main memory. Geometry of the active cells then can be read from the disk

using out-of-core techniques.

Since the mesh at each timestep is usually composed of tetrahedral or hex-

ahedral cells, an arbitrary marching-style [3, 28, 51], ray-tracing [54] or point-

based [4, 13, 14] methods can be used to extract geometry of resulting iso-surface

from each single mesh cell. As stated above the main problems and challenges lie

in the active cells identification and efficient out-of-core strategy that have to be

done prior to extraction of an iso-surface geometry. Thus, the next sub-chapter

is dedicated to the active cells identification in the dynamic simulation meshes.

4.3.2 Active cells identification

Majority of the existing techniques for active cells identification have been de-

signed for the data sets with static simulation mesh (chapter 3). The assumption

of static geometry and coherence of the mesh cells between adjacent time steps

can not be in generally exploited for dynamic simulation mesh. In the following

paragraphs, the existing techniques for active cells identification are listed again

along with brief explanation why a particular technique can not be applied to

the data sets with dynamic simulation meshes.

In THI tree Temporal Hierarchical Index Tree [40] a cell’s temporal variation is

measured as a displacement of its corresponding points (for various time steps) in

Span space. Since, the correspondence of the mesh cells between adjacent time

steps is in generally unknown for a dynamic simulation mesh, such temporal

variation measurements in Span space can not be done, which is why the THI

tree is unusable for the case of data sets with dynamic simulation mesh.

T-BON [48] use BONO tree [59] for spatial indexing of the mesh cells. BONO

tree is created only once for the whole data sets, so a simulation grid has to

remain static during the course of simulation. Only the min/max values of the

cells are computed and stored separately for each time step. Because the T-BON

technique does not exploit any temporal coherence of the data between adjacent

time steps, a set of different BONO trees can be used to represent dynamic

simulation mesh. This idea will be clarified later in this sub-chapter.

TSP tree [41] is a time supplement octree. Grid cells in are spatially indexed

by the standard octree. So, each leaf node of TSP tree corresponds to a particular

mesh cell. A binary time tree stored at each TSP node keeps an information about

variation of the cells’ min/max values along the time dimension. Because of the

variable number of mesh cells in a dynamic simulation mesh, a TSP tree should

has to be rebuild at each time step to reflect changes in mesh layout.
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4D approach [58] of Weigle and Banks represents 3D time-varying data set as

the 4D static data. The original 3D gridded time-varying data are represented

as a mesh composed of 4D cells - the hypercubes. To construct a hypercube, a

correspondence of the two original 3D cells, a hypercube is composed of, has to be

known and one-to-one. So a simulation mesh has to remain static between any two

adjacent time steps. Moreover, high computational and space requirement of the

method makes it impractical for rather large data sets with dynamic simulation

mesh.

In the Adaptive extraction approach [20] the original mesh cells are grouped

into a hierarchy of diamonds. Since the hierarchy of the diamonds does not

change during a simulation, a simulation mesh is required to remain static.

The Difference intervals [55] method encodes the changes of cell status in the

successive time step as either add (cell become active) or remove (cell become

inactive) operation. In order to encode status of all cells in the data set the

assumption of static one-to-one correspondence between the cells at adjacent

time steps has to be satisfied. This requires the simulation mesh to hold the

fixed number of mesh cells during the whole simulation.

Persistent Hyperoctree (PHOT) [44] is derived from the standard hyperoctree,

in which each node has 16 children (hyperoctants). Since the original 3D octants

are merged in into the 4D hyperoctants a data grid in is assumed to be regular

and fixed during the whole simulation.

- -

As can be seen from the list of the techniques above, the active cells identifica-

tion in the dynamic meshes can not be simply solved by applying the existing

techniques designed for static simulation meshes. A common approach to the

this problem today is to consider data (simulation mesh and values associated

with a mesh vertices) at each time step as a stand-alone static subset of data,

without exploiting either the spatial or temporal coherence in the data. For such

a brute-force approach, any of the existing technique for active cells identification

for static data sets (chapter 3.1) might be used over a single time step.

Figure 4.5 shows possible usage of BONO tree [59] for data set with dynamic

simulation mesh. A separate BONO tree is constructed for each time step. Re-

sulting set of BONO trees is indexed by a two-level tree along the time dimension.

This brute-force approach will be used as a starting point in our research and

its performance will be used as a reference performance against which all the

advanced techniques will be compared.

Doleisch et al. [15] introduced technique for visualization of data sets with

dynamic simulation mesh. Their technique is specifically oriented onto the layered

meshes (chapter 4.1.2). The continuous intervals are assumed in the data set



4.3. ISO-SURFACE EXTRACTION 35

BONO t1
BONO t2

BONO tn

Time tree tnt1 -

Figure 4.5: Example of BONO tree usage for data sets with dynamic simulation

mesh. A separate BONO tree is constructed for each time step. Resulting set of

BONO trees is indexed by a two-level tree along the time dimension.

within which a number of mesh cells and their correspondence between adjacent

time steps remains static. Such intervals are called topology zones. However,

mesh cells are not matched or tracked over the topology zones borders (rezone

points). Figure 4.6 illustrates the principle of the method.

Within a topology zone a mesh layout is expected to change linearly, so a

shape of the mesh cells as well as values associated with mesh vertices can be

interpolated from the key geometries at the borders or inside of a topology zone.

So the data value can be computer anywhere at or in between defined time steps.

This allows to use most of the existing methods for iso-surface extraction (chap-

ter 3) or any other techniques for visualization of time-varying data (chapter 2).

The assumption of the topology zones can be used only for a specific subset

of the data sets with dynamic simulation mesh. However, in generally, each time

step might represent a different topology zone. Thus, more robust techniques for

iso-surface extraction from dynamic simulation meshes need to be developed.

Figure 4.6: Principle of the topology zones technique [15]. Each topology zone

consists of at least two key geometries. Borders of the topology zones are called

rezone points (picture from [15].)



36
CHAPTER 4. ISO-SURFACE EXTRACTION FROM DYNAMIC SIMULATION

MESH

4.4 Published original contributions

4.4.1 Iso-contours extraction from time-varying meshes

As was stated in the chapter 4.3.1 in dynamic simulation mesh the number of the

mesh cells and their correspondence between adjacent time steps may not be one-

to-one. Thus, prior to extraction of iso-contours for an arbitrary iso-value and

time (also in between the originally defined time steps) a cell-cell correspondence

has to be established between the simulation meshes at adjacent time steps. Our

method [33] address the problem of establishing an edge-edge correspondence be-

tween adjacent time steps and the solution is employed for iso-contour extraction

from 2D dynamic simulation meshes.

The key idea of the method is to establish an edge-edge correspondence be-

tween meshes at adjacent time steps, based on the data similarity. The method

works over 2D triangular dynamic meshes.

Figure 4.7 compares the brute-force solution and principle of our method.

In brute-force solution the iso-contours for a desired iso-value are first extracted

from both adjacent time steps. Then a hyper-surface ruled at both ends by the

extracted iso-contours is built and cut at the desired time.

(a) (b)

Figure 4.7: (a) The brute-force approach to the problem. (b) Our method.

Our method establishes an edge-edge correspondence in four steps applied for

each pair of consecutive time steps:

a. Iso-component extraction.

b. Tracking of iso-components between adjacent time steps.

c. Mapping of iso-components’ inner envelope vertices.

d. Edge-to-edge mapping, to make out final set of edge-to-edge mappings for

each iso-component extracted in step a).
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(a) (b) (c) (d)

Figure 4.8: Four stages of our method: (a) iso-components extraction, (b) feature

tracking, (c) inner envelopes vertices mapping, (d) final edge-to-edge mapping.

An iso-component is a strip of neighboring triangles, covering certain range

of the iso-values. Each iso-component has its with inner (IE) and outer (OE)

envelope (figure 4.9).

Outer envelope

Iso-curve

Inner envelope
Edges sequence

Figure 4.9: Iso-component is a strip of neighboring triangles with inner and outer

envelope.

The four steps of establishing an edge-edge correspondence have to be done

for each pair of the meshes at adjacent time steps.

Iso-component extraction begins by sorting a list L of all different iso-values

from both adjacent time steps. Then the iso-components are extracted using

continuation method and middle values of the intervals in L (figure 4.10).
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Figure 4.10: Iso-components extraction. All the different iso-values from two

adjacent time steps are merged and sorted into one list L. Iso-components are

then extracted using continuation method and middle values of the intervals in

the list L.
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Next the feature tracking techniques [38] are employed to find the best match-

ing successors for each extracted iso-components. In our implementation, the area

overlapping test is used [45]. Depending on the application, more complex fea-

ture tracking techniques can be used without disturbing the overall concept of

our method.

Once the successors of iso-components are determined for each extracted iso-

component, the process of mapping their IE vertices takes place. This mapping

provides a guide to the final edge-to-edge mapping.

Process of IE vertices mapping is based on the notion of candidate area (fig-

ure 4.11a), which is defined for each mapped IE vertex. Candidate successor

vertex has to lie within this area. Employing this principle, the closest from

such restricted set of candidate vertices is chosen as the successful one. During

the mapping process the projections (Fig. 4.11b) of vertices from successive time

slices are considered rather than computing with the real space-time elements.

More detailed description of the set of rules can be found in [33].

p
q

r
LS

(a)

S

S’

S’

q

q’
C(q)

C’(q)
IE

IE’

(b)

Figure 4.11: (a) Candidate area of the vertex q (shadow region). (b) Projection

of slicechord S.

Connecting the IE vertices of successive iso-components by the slicechords

enables us to map the edges of related iso-components. Edges from connected

vertices are mapped. By this way a list of each extracted iso-component edges

mapping onto the edges of its successive iso-components are build up. Extracted

lists of iso-intervals, iso-components and edge-to-edge mapping are saved and can

be used anytime for the final visualization.

Visualization

Having determined the set of iso-components for each iso-interval and a set of

edge-to-edge mapping for each iso-component, resulting iso-curve evolution can

be visualized.

First the iso-components are selected from the interval covering a user-selected

iso-value and time. Then the vertices C and E (figure 4.12) are interpolated out at

the edges of successive iso-components based on selected iso-value. User-selected

time rules the interpolation of point R (on the connection of C and E). Resulting

iso-curve is composed of line segments connecting a set of R points.
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Figure 4.12: Visualization. First the vertices C and E are interpolated out at

the edges of successive iso-components based on selected iso-value. User-selected

time rules the interpolation of point R (on the connection of C and E).

All the tests have been performed on two processors Intel Pentium workstation

with 2GB of RAM. Method has been implemented in C# language.

Airfoil data set is the result of simulation of low-speed air wave hitting the

leading edge of the flexible airfoil. Scalar values associated with the mesh vertices

are the velocity magnitudes of advancing air wave. The data set consists of 200

time steps each represented by the triangular adaptive mesh with 16 000 to 17

000 vertices per time step. Simulation mesh adapts to the changing shape of

flexible airfoil at each simulation step. For the test we took every 10th time

slice and computed the iso-contour evolution in between them by our method.

Figure 4.13 shows original data from the Airfoil data set, dynamic mesh and

evolving iso-contours.

Finally, the figure 4.14 shows the GUI of the application, implementing our

iso-contour extraction method. Iso-contours rendered in the visualization window

in figure 4.14 are from the data set originating from the simulation payload release

from under an aircraft wing.
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(a) (b) (c)

(d) (e) (f)

Figure 4.13: Airfoil dataset. (a)-(b) input data (speed magnitude) at the time

steps 10 and 100, (c) dynamic adaptive mesh (time step 80), (d) iso-contour

evolution computed by the proposed method between the time steps 30 and 50,

(e)-(f) extracted iso-contours at the time steps 74 and 186.

Figure 4.14: Iso-contours extracted from payload-release simulation (iso-

value=0.533, time step: 395). Blue rendered original data at the background

(speed magnitude values) are just for illustration and comparison purposes.
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4.4.2 Z-Diamonds: Iso-surface extraction from dynamic meshes

Z-Diamonds [34] is simple and efficient algorithm for extraction of the iso-surfaces

from the data sets with dynamic mesh. Z-Diamonds method works over triangular

or tetrahedral meshes. No assumption is made about the way a simulation mesh

changes between adjacent time steps. We also do not attempt to reconstruct the

evolving iso-surfaces in between time steps defined in a data set. Figure 4.15

outlines the principle of the Z-Diamonds method.

Since a simulation mesh dynamically changes, we do not try to match the

original mesh cells between adjacent time steps. Instead the mesh at each time

step is preprocessed into a list of diamonds. Each diamond is composed of two

neighboring simplicial cells, sharing a common face (i.e. two triangles in 2D or

two tetrahedra in 3D, figure 4.16). Diamonds are not matched or tracked between

adjacent time steps.

Pairing of the tetrahedral mesh cells into the diamonds has several advantages

over the simple tetrahedral representation of a mesh. Firstly, a single diamond

is represented by five vertices and five scalar values, in comparison to the eight

vertices with associated scalar values necessary to represent two separate tetrahe-

dra. Since the active diamonds are dynamically loaded for each iso-surface query,

such ”five-vertex” representation of the diamonds reduces the I/O traffic dur-

ing interactive visualization. Secondly, it allows use of the Marching Diamonds

algorithm [3] to produce smoother resulting iso-surfaces.

Once we have a list of diamonds for each time step, we need a data structure

to support fast extraction of the active diamonds. Because of the large amount

of data needed for representation of dynamic simulation mesh, we keep only the

min/max values of the diamonds in the main memory. The min/max values of

all diamonds from all time steps are indexed by a common TSP tree [41].

During the visualization phase the queries in the form (iso-value, time step)

are accepted and processed. IDs of the active diamonds are extracted by travers-
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Figure 4.15: Outline of the principle of the Z-Diamonds method. Original mesh

cells are paired into diamonds. Min/max and ID values of the diamonds are then

organized in the diamond tables (one for each time step). A common TSP tree

is used to index the diamonds stored in the diamond tables for all time steps.



42
CHAPTER 4. ISO-SURFACE EXTRACTION FROM DYNAMIC SIMULATION

MESH

v v

vv

2

43

1

(a)

vv

v

v

v

1

32

4

5

(b)

Figure 4.16: Each diamond is composed of two neighboring simplicial mesh cells,

sharing a common face. Reference diamonds are depicted for 2D (a) and 3D (b)

simulation mesh.

ing a common TSP tree using given iso-value and time step. Geometry of the

active diamonds is then dynamically loaded from a disk in an out-of-core fashion.

Iso-surface geometry can be extracted from the loaded active diamonds using

techniques like Marching tetrahedra [51] or Marching Diamonds [3].

Since we extract a queried iso-surface only at the discrete time steps, specified

in a data set, we do not deal with the topological changes of the iso-surfaces in

between adjacent time steps. We assume that the data sets processed by our

method are sampled sufficiently along the time dimension.

Table 4.1 provides overview of the data sets used for tests as well as the

preprocessing times. Table 4.2 draws the iso-surfaces extraction times during in-

teractive visualization. Query execution times stated in the table 4.2 include time

for active cells extraction by traversing a TSP tree, loading of active diamonds

geometry from disk and extraction of iso-surface geometry from loaded active

diamonds. Finally the figure 4.17 shows iso-surface for selected iso-values and

time steps extracted by the Z-Diamonds method during interactive visualization.

Data set # of time # of cells Data set Preprocessing Size of

steps per size time preprocessed

time step data

Motor 148 40k to 115k 3.2GB 86mins 32s 1.2GB

Wind tunnel 700 400k to 430k 7.5GB 120mins 8s 3.4GB

Table 4.1: Data sets used for testing Z-Diamonds method with the preprocessing

times and sizes of the preprocessed data sets.
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Data set / iso-value / time step Extraction # of active # of triangles

time diamonds on the iso-surface

Motor / 391.124 / 30 612ms 15,900 36,768

Motor / 392.345 / 130 514ms 6,741 15,398

Wind tunnel / 8.612 / 451 289ms 3,133 4,932

Table 4.2: Extraction times, numbers of active diamonds and numbers of triangles

on the resulting iso-surfaces for selected iso-values and time steps for Motor and

Wind tunnel data sets.

(a) Motor 3D, Isovalue

391.142, time step 30

(b) Motor 3D, Isovalue

392.345, time step 130

(c) Wind tunnel, Iso-value 8.612,

time step 451

Figure 4.17: Iso-surfaces for selected iso-values and time steps extracted by the

Z-Diamonds method.





Chapter 5

Summary and future research

5.1 Summary

This state-of-the-art report summarizes the research work done in iso-surface ex-

traction from time-varying data sets and provides description of our contribution

to the field. The main focus of this work is the iso-surface extraction from the

data sets with dynamic simulation mesh. Only a few approaches addressing this

problem have been published yet (chapter 4.3.2). The natural first step when

staring new research is the investigation of the existing techniques, which is why

this report covers all three fields of iso-surface extraction from time-varying data:

1. Iso-surface extraction from static data (chapter 3.1).

2. Iso-surface extraction from data sets with static simulation mesh (chap-

ters 3.2 to 3.9).

3. Iso-surface extraction from data sets with dynamic simulation mesh (chap-

ter 4).

Chapter 3.1 provides an overview of the methods for iso-surface extraction

from static data. Even if this part of the research area deals with the data

defined for a single moment in time, it provides a starting point for iso-surface

extraction from time-varying data.

In the recent years a range of methods for time-varying scalar fields have

been introduced (chapters 3.2 to 3.9). These methods work with the assumption

that a simulation mesh remains fixed during the course of simulation. Known

correspondence of the mesh cells between adjacent time steps allows to build space

efficient data structures, utilizing temporal coherence among corresponding cells.

The third part (chapter 4) deals with iso-surface extraction from data sets

with dynamic simulation mesh. The chapter begins with a short introduction

45
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into the problematic of dynamic meshing of simulation domains (chapter 4.1),

supported by the three real-world examples (chapter 4.2).

Sub-chapter 4.3 deals with iso-surface extraction from data sets with dynamic

simulation meshes - the main focus of our research. First part of the chapter dis-

cuss three main challenges of this visualization problem: efficient representation

of a dynamic mesh, space and time efficient structure for active cells identification

and out-of-core strategies.

Sub-chapter 4.3.2 presents a list of methods for fast iso-surface extraction from

data sets with static meshes once again, along with brief explanation of why a

particular method can not be applied onto the data sets with dynamic simulation

mesh. This is to show that each of three challenges described in sub-chapter 4.3.1

Problems, requires different approach than in the case of static simulation mesh.

Two possible solutions to the problem of iso-surface extraction from the data sets

with dynamic simulation meshes are listed in the second part of sub-chapter 4.3.2:

1. The brute-force solution. Each time step is treated as a stand-alone static

subset of data and one common tree or list is created, connecting all the

time steps along the time dimension (figure 4.5). With this approach, the

temporal coherency of the data remains unexploited.

2. Solution of Doleisch et al. [15]. The continuous intervals along the time

dimension are assumed, within which a correspondence between the cells at

adjacent time steps remains fixed (topology zones). This allows to compute

the data at any time within topology zone, even in between the originally

defined time steps. So, the smoothly evolving iso-surfaces can be visualized.

From the research of the existing methods for iso-surface extraction from data

sets with static simulation mesh and initial research done in the area of dynamic

simulation, we made the three following conclusions:

1. Since the techniques for generation of dynamic simulation meshes are being

developed rapidly, there is a lack of suitable visualization techniques. Iso-

surface extraction from the data sets with dynamic meshes is under-research

area with only two known approaches (chapter 4.3.2).

2. Existing techniques for fast identification of the active cells used for data

sets with static simulation mesh cannot be applied onto the data sets with

dynamic mesh.

3. The three main problems (chapter 4.3.1): efficient representation of a dy-

namic mesh, space and time efficient structure for active cells identification

and out-of-core strategies require new methods able to handle dynamic sim-

ulation mesh.
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5.2 Future research

The goal of our research is a space and time efficient method for iso-surface

extraction from data sets with dynamic simulation mesh. In particular, we focus

on interactive iso-surface extraction (along both spatial and temporal dimension)

on a workstation class computers.

Fixed simulation mesh is one of the basic assumption of all existing techniques

for iso-surface extraction from time-varying data sets (chapter 3). This assump-

tion prevents their usage with the data sets with dynamic simulation mesh. This

claim is supported by the analysis of these methods in the chapter 4.3.2 of this

work. Therefore, we propose not to continue in our research by extending the

existing methods towards the data sets with dynamic simulation mesh.

The data sets with dynamic simulation mesh are usually a magnitude larger

compared to those with static mesh. Therefore a space requirements play an

important role in the future techniques for iso-surface extraction from this kind

of data.

Coming out of the low space requirements conclusion from the previous para-

graph, we propose to continue our research by first develop the space and time

efficient techniques for iso-surface extraction from the static data sets and then

extend them towards the time-varying data sets with dynamic simulation mesh.

This is in fact our key idea of how to achieve our main research goal stated at

the beginning of this chapter.

5.2.1 Iso-surface extraction from static data

The lowest space requirements of the existing methods for iso-surface extraction

from static data are around 3N, where N is the number of mesh cells, plus some

overhead for a data structure. Table 5.1 summarizes the space requirements of

the existing methods for iso-surface extraction from static data (chapter 3.1).

Method Space required Reported space complexity

NOISE (kd-tree) 3N + kd-tree overhead O(N )

ISSUE (lattice) 4N + kd-trees at min=max line O(N )

Interval tree H + M O(H + M )

Span-Triangle# N + base array + span arrays O(N )

Fixed-sized buckets 3N + min dictionary O(N )

Quantized search 3N + N + U and V tables++ O(N )

+ = Temporary structure # = Only applies to quantized data
++ = Quantized data H = # interval tree nodes

M = # of distinct intervals in data

Table 5.1: Space requirement comparison.
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Usually the min, max and ID attributes are somehow indexed by the data

structure (therefore 3N ). Note that even if the reported space complexity of all

methods is O(N ) the real space requirements of the methods differ.

The following example illustrates the impact of the real space requirements.

Lets assume that most of the todays workstation class computers have 2GByte of

main memory. A 3D volume data set (regularly sampled) of the size 5123 (4 bytes

per sample) takes 512MB of memory. As stated in the table 5.1 the requirements

of the ISSUE method are 4N. If the cells IDs are stored also as 4-byte integers,

then the N = 5123 data set occupy 2036 MB, which clearly exceeds the size of

the allocable main memory.

Therefore, we propose to focus the first phase of our research at the devel-

opment of space efficient method for iso-surface extraction from static data sets.

Since the space needed for storage of cells IDs will always take N numbers (usu-

ally 4-bytes integers), our goal is to achieve 2N and lower space requirements.

The three main challenges of this goal are:

1. Efficient representation of the cells’ min/max values.

2. Usability of a structure resulting from data dimensionality reduction for a

fast identification of the active cells.

3. Resulting data representation has to allow investigation of the temporal

coherency between the cells at adjacent time steps.

ad 1) We believe that 2N (or lower) space requirements are achievable via the

methods for dimensional reduction, like: Principal component analysis (PCA),

Multidimensional scaling (MDS) or Clustering. The dimensional reduction tech-

niques can be applied onto the pairs of cells’ min/max values, representing a

group of such pairs by one number or vector. As an inspiration the Quantized

search method is discussed in the next paragraph.

Bordoloi and Shen introduced the Quantized search [6] method, which ex-

ploits quantization of the cells min/max values. However, their method requires

temporal structure of the size 3N and the resulting search error is around 2%.

Moreover, the data needs to be sorted three times according to various criteria

during the construction of the search structure.

ad 2) The second challenge includes two aspects. First the resulting data

structure should provide the optimal or near optimal search time of the active

cells O(K ), where K is the number of the active cells.

The second aspect is the additional memory overhead caused by the search

structure, which should also be minimal, compared to the 2N (or lower) require-

ments for representing the min/max pairs. For example: in the case of Quantized

search method, the space for N cells IDs is required and moreover an extra space
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is required to store the U and V tables, defining the partitioning (quantization)

of the UV-space.

ad 3) The third challenge provides connection point with the second phase

of our research, which is detailed in the next chapter.

5.2.2 Iso-surface extraction from dynamic simulation mesh

The purpose of the second phase of our research is to extend the space efficient

methods for iso-surface extraction from static data sets (previous chapter) toward

time-varying data sets with dynamic simulation mesh. The primary challenge of

this phase is an effective strategy of exploiting temporal coherency in the data.

In a dynamic simulation mesh the number of mesh cells and geometry change

over time. Therefore, the implicit correspondence of the mesh cells can not be in

generally exploited as in the case of fixed simulation mesh.

The results of our previous research [33] show that spatial geometric correla-

tion of the mesh cells seem to be the hard task. This is because one vertex of the

simulation mesh may be interpolated to many in the following time step. This

may results in a set of possible cell-cell mappings without any tools to decide

which solution is the right one.

Considering the one-to-many-interpolation problem discussed in the previous

paragraph, we propose to focus our research at the extraction of the iso-surfaces

only from the data defined at the discrete time steps. Development of the methods

for computation of the data evolution in between defined time steps remains the

research task which require a lot of time and goes far beyond the horizon of this

doctoral work.

Coming out of the goal of the first phase of our research, which was: data

structure size less than 2N, where N is the number of the mesh cells at one

particular moment in time, we intend to achieve the same goal in the second

phase. The resulting size of the data structure for T time steps should be 2M or

less, where M is the total number of all cells from all time steps T.

We propose to investigate the temporal coherency of the group of cells in

the alternative spaces like Span space [27]. Correlating the mesh cells in such

alternative spaces provides more flexibility, since the main problem - changing

geometric position and of the mesh cells, losses a lot of its significance.

As stated in the previous chapter the data structure for iso-surface extraction

developed in the first phase of our research should allow investigation of the cell

temporal coherency. Because we intend to build our structures for iso-surface

extraction from static data over mentioned the alternative spaces, we propose to

encode only the difference between the data structures at adjacent time steps.

This should lead to the significant space savings, while preserving the originally

declared near-optimal extraction time of the active cells.
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Conference: New Trends in the Operation of Production Technology 2003, Prešov,

Slovensko, pp. 426-431, 2003.

Project assignment

• 2006 - present: VIRTUAL - Virtual Research-Educational Center of Com-

puter Graphics and Visualization, MSMT Czech Rep. No: 2C 06002,

http://virtual.zcu.cz,

• 2005 / 2006: 3DTV - Integrated Three-Dimensional Television - Capture,

Transmission and Display, FP6-2003-IST-2, Network of Excellence,

No:511568, http://3DTV.zcu.cz,

• 2005 / 2006: INTUITION - Network of Excellence on VIrtual Reality aNd

VirTUal Environments ApplIcaTIONs for Future Workspaces, FP6-2003-

IST-2, No:507248-2, http://intuition.zcu.cz.
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Teaching activities

2005/2006:

• KIV/WIN Introduction to programming in MS Windows

• KIV/ZIT Introduction to information technologies
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