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Abstract. The global Radial Basis Functions (RBFs) may lead to ill-
conditioned system of linear equations. This contribution analyzes con-
ditionality of the Gauss and the Thin Plate Spline (TPS) functions. Ex-
periments made proved dependency between the shape parameter and
number of RBF center points where the matrix is ill-conditioned. The
dependency can be further described as an analytical function.
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1 Introduction

Interpolation and approximation of scattered data is a common problem in many
engineering and research areas, e.g. Oliver et al. [1] use interpolation (kriging)
method on geographical data, Kaymaz [2] finds usage of this technique in struc-
tural reliability problem. Sakata et al. [3] model wing structure with an approx-
imation method, Joseph et al. [4] even create metamodels. The RBF methods
are also used in the solution of partial differential equations (PDE) especially in
connection with engineering problems.

To solve interpolation and approximation problems, we use two main ap-
proaches:

— Tesselated approach — it requires tesselation of the data domain (e.g. De-
launay triangulation) to generate associations between pairs of points in the
tesselated cloud of points. Some algorithms were developed (Lee et al. [5]
show two of them, Smolik et al. [6] show a fast parallel algorithm for trian-
gulation of large datasets, Zeu et al. [7] recently use tesselation for seismic
data etc.) for triangulation and tesselation. Even though it seems simple,
tesselation is a slow process in general'.

* The research was supported by projects Czech Science Foundation (GACR) No.
17-05534S and partially by SGS 2019-016.

! The Delaunay triangulation has time complexity of O (nrd/ﬂ*l), where d is number

of tesselated dimensions.
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— Meshless approach — a method based on RBF's can be used, which does not
require any from of tesselation. Hardy [8] shown that the complexity of this
approach is nearly independent to the problem dimensionality, therefore it is
a better alternative to tesselation in higher dimensions. On the other hand,
RBF methods require solving a system of linear equations which leads to
some problems as well.

There are several meshless approaches e.g. Fasshauer [9] implements some
of the meshless algorithms in MATLAB, Franke [10] compares some inter-
polation methods of the scattered data.

Conditionality of the matrix of a linear system of equation is a key element
to determine whether the system is well solvable or not.

RBF research was recently targeted:

to find out RBF applicability for large geosciences data, see Majdisova [11],
to interpolate and approximate vector data, see Smolik [12],

— to study robusness of the RBF data for large datasets, see Skala [13][14].
to find out optimal variable shape parameters, see Skala [15].

This research is aimed to find optimal (or at least suboptimal) shape param-
eters of the RBF interpolation. This contribution describes briefly analysis of
some of the most commonly used RBFs and determines its problematic shape
parameters, causing ill-conditionality of the equation system matrix.

2 RBF approximation & interpolation

The basic idea behind the RBF approach is the partial unity approach, i.e. sum-
ming multiple weighted radial basis functions together to obtain complex inter-
polating function. The Fig.1 presents two RBFs (marked by red color) forming
an interpolating final function (blue one).

The RBF approach was introduced by Hardy [8] and modified in [16]. Since
then, this method has been further developed and modified. Majdisova et al. [17]
and Cervenka et al. [18] proposed multiple placement methods. There are also
some behavioural studies of the shape parameters, e.g. searching the optimal
ones from Wang et al. [19], Afiatdoust et al. [20] or using different local shape
parameters from Cohen et al. [21], Sarra et al. [22], Skala et al. [15].

This contribution analyzes the worst cases of the RBF matrix conditionality
in order to avoid bad shape parameters, therefore the bad shape parameters can
be avoided.

2.1 RBF method principle
The RBF interpolation is defined by Eq.1,

N N
hx) = A (llxi = x5l = 3 Ao ) 1)
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Fig. 1. Two RBFs (in red) and result of the addition (in blue).

where h (x;) is the resulting interpolant, N is the number of RBFs, \; is a weight
of the i-th RBF, ¢ is the selected RBF and r;; is a distance between points x;
and x;. The points x; are all the points on the sampled original function, where
the function value is known.

The RBF approximation is slightly different, see Eq.2. The notation is the
same as above, however, x; are replaced by reference points &;,7 = 1,..., M.
Some arbitrary (sufficiently small M <« N) number of points from the data
domain are taken instead. More details can be found in Skala [23].

M
h(xi) =Y Nellxi—&l), i=1....N (2)

j=1

In both cases, i.e. approximation and interpolation, the equations can be
expressed in a matrix form as:

AN = b, b=h (X) 5 Aij = Pij (3)

In the interpolation case, the matrix A is a square matrix, while in the approx-
imation case, the matrix A is rectangular and the result is an overdetermined
system of linear equations. In this case, we do not obtain exact values for the
already calculated reference points ;.

2.2 RBF classification

There are many RBFs and still new ones are being proposed e.g. Menandro [24].
In general, we can divide the RBFs into two main groups, ”global” and ”local”
ones, see Fig.3 and Fig.2.
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— Global RBFs influence the interpolated values globally. The matrix A will
be dense and rather ill-conditioned. Typical examples of the global RBF are
the Gaussian, the TPS or the inverse multiquadric RBFs.

— Local RBFs have limited influence to a limited space near its centre point
(hypersphere, in general). The advantage of the local RBFs is that they lead
to a sparse matrix A. RBFs belonging to this group are called ” Compactly
Supported” RBFs (CS-RBFs, in short).

Global RBFs are functions, which influence is not limited and its value may
be nonzero for each value in its domain. The well-known ones are the Gaussian
or the TPS functions. However, there are other functions, see e.g. Tab.1 or Lin
et al. [25]. Mentioned functions are illustrated in Fig.2.

Gaussian RBF TPS RBF
1 —— Gaussian RBF_ 15 —— TPSRBF
0.8
y
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Fig. 2. Some of the global RBF functions.

Name ‘ Expression ‘
Gaussian RBF emor?

TPS RBF 1r?log (Br?)
Multiquadratic RBF ﬁ

I Multiquadratic RBF | ———
nverse Multiquadratic Jiie

Table 1. Various global RBF functions.

The CS-RBF or compactly supported radial basis function is a function limited
to a given interval. Some of CS-RBFs are presented on Fig.3. Generally, these
functions are limited to an interval (usually r € (0, 1)) otherwise the value equals
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zero. These functions are defined by Eq.4, where P (r) is a polynomial function,
r is the distance of two points and ¢ is a parameter.
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Fig. 3. Some of the CS-RBF functions. [26] (edited)
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It should be noted that some new CS-RBF's have been recently defined by Menan-
dro [24].

3 Matrix conditionality

Assuming a linear system of equations Ax = b, the condition number of the
matrix A describes how the result (vector b) can change when the input vector
x is slightly modified. This number describes sensitivity to changes in the input
vector. We aim for the lowest possible sensitivity, in order to get reasonable
results. In terms of linear algebra, we can define conditionality of a normal
matrix A using eigenvalues \; € C! as:

Ponen (A)] ©)

where £ (A) is the condition number of the normal matrix A, |Amas (A)] is the
highest absolute eigenvalue of the matrix A and |\ (A)] is the lowest absolute
eigenvalue of the matrix.

The higher the value x (A) is, the more sensitive the matrix A is, meaning
that s (A) = 1 is the best option, forcing all eigenvalues A to have the same
value.

Kk(A) =
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It is worth noting that the conditionality is closely related to the matrix
determinant. In the case when the determinant is zero, we have at least one
eigenvalue equaling zero, so the conditionality will be infinite, see Eq.6.

det (A) = 0 = |Amin (A)] = 0 = £ (A) = +00 © [Amas (A)| 20 (6)

This is only a brief introduction to the matrix conditionality. Details can be
found in e.g. Ikramov [27] or Skala [14], some experimental results can be found
in Skala [28].

4 Experimental results of RBF approximation

In the RBF approximation problem, we normally have two main issues to deal
with — selecting number of RBFs and its global shape parameter. To obtain a
robust solution, the matrix A of the linear system of equations should not be ill-
conditioned. We did some experiments to show how the condition number of the
matrix A depends on the number of RBFs (N) used and a shape parameter (o or
B, see below). To make things easier, all RBFs have been distributed uniformly
on z € (0,1) interval and have the same constant shape parameter.

4.1 Gaussian RBF

The Gaussian RBF is defined by Eq.7. It is the unnormalized probability den-
sity function of a Gaussian distribution centred at zero and with a variance of
i. Variable r denotes the distance from its centre points and « is the shape
parameter.

p(ra)=e" (7)

Fig.4 presents dependence of matrix conditionality on Gaussian RBF shape
parameter a and number of uniformly distributed RBF reference points.
A hyperbolic function (Eq.8) was used to fit extremal points of each curve.

Hyperbole | a b c Hyperbole | a b c
1] 7.64| 38.36| -3.58 6| 8.47]1387.35|-30.84
2113.49 1.93| -7.98 7117.98 | 1218.46 | -49.14
31 9.17|277.29 | -11.95 8149.16 | 278.29 | -78.53
4| 9.44|509.55 | -18.37 9193.81 63.73 | 16.11
512.02 | 545.66 | -31.8

Table 2. Analytical form of first 9 hyperboles.
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Matrix conditionality depending on number of RBFs and shape parameter
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Fig. 4. Matrix conditionality values for Gaussian RBF.
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The plot at Fig.5 describes the situation. These curves describe number of
RBFs N and shape parameter @ when the matrix is ill-conditioned.

Matrix conditionality depending on number of RBFs and shape parameter
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Fig. 5. Worst conditionality shape parameters a for Gauss RBF.
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4.2 Thin Plate Spline RBF

The Thin Plate Spline (TPS) radial basis function is defined by the Eq.9. The
TPS was introduced by Duchon [29] and used for RBF approximation afterwards.
Variable r is the same as in the Gaussian RBF — the distance from its centre
point and parameter 3 is the shape parameter.

o (r, ) = 5" log (1) )

The Fig.6 presents a result for a simulated experiment to the recent Gaussian
RBF case using the TPS function instead. There is only one curve which has a
hyperbolic shape similar to the Gaussian RBF case.

Matrix conditionality depending on number of RBFs and shape parameter

log(Conditionality)

-

S

//(/ 100
Shape parameter 0.8 _ 60
075 ////(
07 /,/\/ 40 Number of RBFs
: e 20
065

Fig. 6. Matrix conditionality values for TPS RBFs.

The Fig.7 also represents the curve, when the matrix A is close to singular.
The Tab.3 presents dependency of the f3.;, shape parameter for different N as
an function when the matrix A is significantly ill-conditioned.

We obtained a hyperbolic function from the graph on Fig.7 (coefficients are
rounded to 2 decimal places).

0.36
ﬁ_0'79+N—1.24 (10)
The Tab.3 presents the shape parameters [.q;. evaluated for small numbers of
RBF functions according to Eq.10.
The experimental results presented above led to a question, how the results
are related from the analytical side. This led to the validation of experiments
with two analytical results described in this section.
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TPS - shape parameter depending on nhumber of RBFs
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Fig. 7. Worst conditionality shape parameters g for the TPS RBF.

5 Theoretical analysis

Let us calculate values of the TPS shape parameter 5 for N =3 and N =4 in
a way that the matrix A will be ill-conditioned (x (A) = 4o00).

It should be noted that the multiplicative constant % is ommited in the Eq.11
as it has no influence to the conditionality evaluation. In the first case, i.e. N = 3,
the RBF matrix A has the form (using equidistant distribution of RBF center
points):

0 r?log (Br?) (2r)?log (B4r?)
As = r2log (ﬂr2) 0 r?log (ﬁ’l‘2) (11)
(2r)%log (64r2) r2log (57"2) 0

Let us explore singularity of the matrix Ag, when det (A3) = 0, the deter-
minant will have the form:

0
% log (Br?) 0 log (Br?) | =0 (12)
2

As r # 0 for all pairs of different points, lim,_,o 72 log (r2) = 0 and equidis-
tant point distribution.
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ﬂexp /Bcalc N /Bexp ﬁcalc N 66901) Bcalc
1.00000 | 0.99874 | 23 | 0.81338 | 0.81319 | 43 | 0.80535 | 0.80536

0.92206 | 0.92564 | 24 | 0.81264 | 0.81247 | 44 | 0.80515 | 0.80516
0.89118 | 0.89141 | 25 | 0.81197 | 0.81182 | 45 | 0.80496 | 0.80497
0.87182 | 0.87155 | 26 | 0.81135 | 0.81121 | 46 | 0.80477 | 0.80479

0.85909 | 0.85858 | 27 | 0.81078 | 0.81065 | 47 | 0.80459 | 0.80462

0.85002 | 0.84945 | 28 | 0.81025 | 0.81014 | 48 | 0.80442 | 0.80445

olo|~w|lo|la|a|w]|Z

0.84324 | 0.84268 | 29 | 0.80976 | 0.80966 | 49 | 0.80426 | 0.80429

—_
o

0.83799 | 0.83744 | 30 | 0.80930 | 0.80921 | 50 | 0.80410 | 0.80414

—_
—_

0.83379 | 0.83329 | 31 | 0.80888 | 0.80880 | 51 | 0.80395 | 0.80399

—_
[\]

0.83037 | 0.82990 | 32 | 0.80848 | 0.80841 | 52 | 0.80380 | 0.80385

—_
w

0.82753 | 0.82709 | 33 | 0.80811 | 0.80804 | 53 | 0.80366 | 0.80372

—
~

0.82512 | 0.82472 | 34 | 0.80776 | 0.80770 | 54 | 0.80353 | 0.80359

—_
ot

0.82306 | 0.82269 | 35 | 0.80743 | 0.80738 | 55 | 0.80340 | 0.80346

—
(o)

0.82128 | 0.82094 | 36 | 0.80711 | 0.80708 | 56 | 0.80328 | 0.80334

Ju—
-3

0.81973 | 0.81941 | 37 | 0.80682 | 0.80679 | 57 | 0.80316 | 0.80322

—_
o

0.81835 | 0.81807 | 38 | 0.80654 | 0.80652 | 58 | 0.80304 | 0.80311

—_
©

0.81713 | 0.81687 | 39 | 0.80628 | 0.80626 | 59 | 0.80293 | 0.80300

[\
(e]

0.81605 | 0.81581 | 40 | 0.80603 | 0.80602 | 60 | 0.80282 | 0.80290

[\]
—_

0.81507 | 0.81485 | 41 | 0.80579 | 0.80579 | 61 | 0.80272 | 0.80280

22 0.81418 | 0.81398 | 42 | 0.80557 | 0.80557 | 62 | 0.80262 | 0.80270

Table 3. Beup-values for TPS RBF for some small N (number of RBFs) obtained by
experiment as well as [.qic values calculated by Eq.10

For the sake of simplicity, we substitute ¢ = log (57"2), a = log4 and use
formula log (ab) = log a + log b so we get:

0 ¢ 4g+a)
q 0 q =0
4(qg+ a) q 0
8(¢q+a)i*=0—=q=0Vqg=—a
1
1 %) = —log4 = log ~
og(ﬁr) og og4
1
2—7
Br =1
1
B=— (13)
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In the experiments, we used interval € (0,1) and with three points (0, 0.5, 1).
The distance between two consecutive points 7 is 0.5, which led to 8 = 1. This
exact value we obtained from experiments as well (see Tab.3).

In the second case, i.e. N = 4, a similar approach has been taken. In this
case the matrix Ay is defined as:

0 r?log (Brz) (2r)% log (ﬁ4r2) (37)% log (697"2)
A, = r?log (Br?) 0 r?log (Br?)  (2r)?log (B4r?)
47 (2r)%log par?)  r?log (Br?) 0 r?log (Br?
(3r)2log (B9r?) (2r)%log (B4r?)  r?log (Br?) 0
(14)

Similarly as in the case for N = 3, we can write the det (A4) and declare the
matrix singular if:

0 log (Br?) 4log (B4r?) 9log (89r?)
log (Br?) 0 log (Br?) " 4log (84r2) | _
r’ 4log (B4r?) log (BT ) 0 log( 2) (15)
9log (B9r?) 4log (ﬁ4r ) log (67"2) 0

Using the substitutions g = log (ﬁ ) a =log4 and b = log9, we obtain:

0 q 4(q+a)9((q+b))

q 0 q 4(g+a
4(g+a) q 0 q (16)
9(q+b)4(q+a) q 0

This can be further expressed as:

(4(g+a)' +¢" +¢*(9(g+b)* =

—2¢°(9(q+b) —2¢(4(¢+a)* (9(q+b) —2¢> (4 (¢ +a))* =
256(q + a)* + ¢* +81¢%(q + b)? — 18¢° (¢ + b)— (17)
—288¢(q + a)(q + b)* — 32¢*(q + a)?

This leads to the cubic equation:

(383a — 144b)¢® + (1216a> + 81b* — 576ab)q>+
+ (1024a® — 288a2b)q + 256a* = 0 (18)
Solving this cubic equation (Eq.18), one real and two complex (complex conju-
gate) roots are obtained:
¢~ —2.2784

~ —1.1149 + 0.8239; (19)
~ —1.1149 — 0.8239i
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As we have four points distributed uniformly on the interval x € (0,1), the
distance between two adjacent nodes is r = % Now, using the real root of the
Eq.19, i.e. ¢ = —2.2784, we can estimate the shape parameter 3 as follows:

q = log (Br®) ~ —2.2784

Br? ~ =227 ~0.10245 (20)
672.2784
i —m
e—2-2784
B~ = 9e~ 22" ~ (.92206

(3)°

From the experiments, we obtained value B = 0.92206 which is consistent
with this theoretical estimation. Both these analytical examples support the
argument that the experiments made are correct.

It should be noted, that if irregular point distribution is used, i.e. using
Halton points distributions, the ill-conditionality get slightly worse.

6 Conclusion

In this paper, we discussed some properties of the two well-known RBFs. We
find out that there are some regularities in the shape parameters, where the
RBF matrix is ill-conditioned. Our experiments proved that there are no global
optimal shape parameters from the RBF matrix conditionality point of view.

In the future, the RBF conditionality problem is to be explored for higher
dimension, especially for d = 2, d = 3 and in the context of partial differential
equations.
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