Polynomial multiplication C(x)=A(x)*B(x) using tables: An alternative tool for teaching mathematics

1. Introduction

- ² The polynomial multiplication, if made by the "item by item" approach Wiki (2023a),
- 3 combines two steps:
 - multiplication of the polynomial coefficients, and concurrently
- summation of the polynomial item's exponents.
- 6 These two simultaneous steps lead to errors and difficulties in understanding. Polyno-
- 7 mial multiplication is actually a tensor product Wiki (2023b) applied on two polynomi-
- 8 als represented by Tab.1. It should be noted, that in some courses, the polynomials are
- 9 handled as a purely abstract algebraic structure and students do not have a geometric
- 10 interpretation.

11 2. Polynomial multiplication

- Let us consider, for a sake of simplicity, two polynomials A(x) of the degree n_A and
- 13 B(x) of the degree n_A of one variable. Then the polynomial C(x) is given as C(x)
- 14 A(x) * B(x) of the degree $n_A + n_B$.
- Let us consider two polynomials¹:

$$A(x) = 3x^{0} + 1x^{1} + 4x^{2} + 7x^{3} + 6x^{4}$$
, $B(x) = 2x^{0} + 3x^{1} + 1x^{2} + 5x^{2}$

Then the polynomial given as C(x) = A(x) * B(x) can be expressed by table Tab.1:

Table 1. Multiplication of A(x) and B(x) polynomials

	exponent	0	1	2	3	4
exponent	coefficient	3	1	4	7	6
0	2	6	2	8	14	12
1	3	9	3	12	21	18
2	1	3	1	4	7	6
3	5	15	5	20	35	30

Using the table interpretation leads numerically to two simple consecutive operations, as only two coefficient values are multiplied, i.e. $coefficient_i * coefficient_j$ for each $exponent_i$ and $exponent_j$. Summing the values on the anti-diagonals in the Tab.1, i.e. $exponent_i + exponent_j = const$, coefficients for each exponent of the polynomial C(x) are obtained.

Table 2. Coefficients for a constant exponent

exponent 0	1	2	3	4	5	6	7
coefficient 6	11	14	42	42	45	41	30

¹It is necessary to explain to students that $x^0 = 1, x^1 = x$.

22

24

The resulting polynomial C(x) = A(x) * B(x) is of the degree 7, see Tab.2. 23

The resulting polynomial C(x) is given by Eq.1, see Tab.2:

$$C(x) = 6x^{0} + 11x^{1} + 14x^{2} + 42x^{3} + 42x^{4} + 45x^{6} + 41x^{6} + 30x^{7}$$
(1)

This polynomial multiplication method splits the polynomial multiplication into two 26 consecutive steps. It is resulting in a better and faster understanding of the polynomial multiplication computation. clearpage The presented approach can also be applied for polynomials with multidimensional arguments, i.e. $C(\mathbf{x}) = A(\mathbf{x}) * B(\mathbf{x})$. Let us consider two polynomials $A(\mathbf{x}) = (x+2y)$ and $B(\mathbf{x}) = (3x-4y+5)$. Then the resulting polynomial $C(\mathbf{x})$ is given by Eq.2:

$$(x+2y)(3x-4y+5) = 3x^2 - 4xy + 5x + 6xy - 8y^2 + 10y$$
$$= 3x^2 + 2xy + 5x - 8y^2 + 10y$$
 (2)

In this case, the table items must also contain variables, see Tab.3.

As the multiplication of items has no constant exponents, i.e. there is no order in

Table 3. Multiplication of $A(\mathbf{x}) * B(\mathbf{x})$ polynomials items $3x^2$ 2y6xy

exponents, the summation of elements in Tab.3 is a bit complicated. As a result, we 33 obtain: 34

$$(x+2y)(3x-4y+5) = 3x^2 + 2xy + 5x - 8y^2 + 10y$$
(3)

It can be seen that this approach enables solving even complicated cases more reliably and limit errors in students' course-works.

3. Conclusion

A simple methodology for polynomial multiplication using a table representation has been presented. It uses a tensor product represented by a table, which reduces mistakes

caused by omitting some mutual polynomial items in the multiplication of A(x) and

B(x) polynomials. It is also applicable in multidimensional cases. A similar approach can be used for the polynomial summation, too. 42

This presented approach was used in classes with pupils at a grammar school with positive results. 44

There is a hope that this contribution can help teachers in more efficient teaching 45 this topic. 46

47 Author:

- 48 V. Skala^{a,b}
- 49 skala@kiv.zcu.cz
- ⁵⁰ ^aDept. of Computer Science and Engineering, Faculty of Applied Sciences,
- University of West Bohemia, CZ 301 00 Pilsen, Czech Republic;
- ⁵² bDepartment of Military Robotics, Faculty of Military Technology,
- University of Defence, CZ 662 10 Brno, Czech Republic

54 References

- 55 Wiki. Polynomial multiplication, 2023a. URL
- https://en.wikipedia.org/wiki/Polynomial. [accessed 2023-01-07].
- 57 Wiki. Kronecker product, 2023b. URL
- https://en.wikipedia.org/wiki/Kronecker_product. [accessed 2022-12-07].